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Abstract: This paper investigates the bipolar resistive switching and synaptic characteristics of IZO
single-layer and IZO/SiO2 bilayer two-terminal memory devices. The chemical properties and
structure of the device with a SiO2 layer are confirmed by x-ray photoemission spectroscopy (XPS)
and transmission electron microscopy (TEM) imaging. The device with the SiO2 layer showed better
memory characteristics with a low current level, as well as better cell-to-cell and cycle-to-cycle unifor-
mity. Moreover, the neuromorphic applications of the IZO/SiO2 bilayer device are demonstrated by
pulse response. Paired pulse facilitation, excitatory postsynaptic current, and pulse-width-dependent
conductance changes are conducted by the coexistence of short- and long-term memory character-
istics. Moreover, Hebbian rules are emulated to mimic biological synapse function. The result of
potentiation, depression, spike-rate-dependent plasticity, and spike-time-dependent plasticity prove
their favorable abilities for future applications in neuromorphic computing architecture.

Keywords: neuromorphic computing; synaptic plasticity; spiking neural network; resistive
switching; InZnO

1. Introduction

To overcome the scaling issue of present complementary metal-oxide-semiconductor
(CMOS) technology and the bottleneck problem of Von Neumann computing architec-
ture, various next-generation memory devices to implement neuromorphic computing
architecture have emerged in recent years [1–6]. Because of its easy fabrication method,
high switching speed, low operating voltage, and non-volatility, resistive random-access
memory (RRAM) is regarded as the most promising choice for the next generation of mem-
ory [7–19]. Furthermore, several structures expandable to high density, such as 3D vertical
structures and array structures, are easy to use due to their simple metal–insulator–metal
structures [20–27].

The resistive switching phenomena of metal-oxide-based RRAM of the bipolar switch-
ing type are caused by the creation and rupture of a conducting filament in the insulating
layer that connects the top and bottom electrodes [28–36]. When the conducting filament
links the top and bottom electrodes under external voltage bias, a large current flows
with decreasing resistance. Thus, the device switches from its initial resistance state to a
low-resistance state (LRS), indicating the device is ‘on’. Alternatively, when an opposite
polarity bias is employed, it causes a break in the conducting path, restricting the flow of the
current and transitioning the device into a state of high resistance (HRS), effectively turning
it ‘off’. Various metal oxides such as TaOx [37], ZrO2 [38], ZnO [39,40], SiO2 [41,42], and
HfOx [43] have been widely studied for resistive switching. Uniformity poses a significant
challenge in metal-oxide-based RRAM because of the sporadic creation and disruption of
conducting filaments. One way to improve uniformity is by inserting a thin SiO2 layer,
which prevents hard breakdown and enables repeated switching [44]. Among these, ZnO
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is gathering interest due to the suitable range of its bandgap (~3.37 eV at 300K) for resistive
switching [45], good transparency [46], and abundant defects [47] for memory applications.
Also, indium zinc oxide (IZO) is a popular semiconductor material applied in various
devices such as thin film transistors (TFT) [48,49], oxide diodes [50], and sensors [51] due
to its high thermal stability, low film stress, and high transparency [52–54]. However, most
of the IZO applications in RRAM involve making transparent electrodes [55,56]. Although
Hsu et al. discovered a bipolar resistive switching phenomenon in sol–gel IZO, its synaptic
applications can be investigated further [57].

In this paper, we fabricated an IZO layer-based RRAM device using RF sputtering.
Thin silicon oxide was introduced between the bottom electrode and the IZO layer to
improve its resistive switching properties. In addition to an improvement in uniformity, the
current level was reduced, improving its power consumption. Furthermore, the synaptic
characteristics of the ITO/IZO/SiO2/TaN bilayer device were characterized by applying a
pulse on the device. Due to the coexistence of short- and long-term memory characteristics,
potentiation, depression, paired-pulse facilitation (PPF), and excitatory postsynaptic current
(EPSC) were performed [58–62]. Finally, spike-rate-dependent plasticity (SRDP) and spike-
time-dependent plasticity (STDP) of the Hebbian rule were emulated to investigate the
ability of ITO/IZO/SiO2/TaN (tantalum nitride) stack to act as a synapse device [63–65].

2. Experimental Section

To fabricate the RRAM device, a SiO2/Si wafer was cleaned using acetone and iso-
propyl alcohol (IPA). Subsequently, a TaN bottom electrode with a thickness of 100 nm was
sputtered onto the SiO2/Si wafer using DC sputtering. A Ta target of 99.99% purity was
employed at a DC power of 65 W. The sputtering gas was a mixed gas of Ar (19 sccm) and
N2 (1 sccm) with a deposition pressure of 5 mTorr. Next, for the IZO/SiO2 bilayer device,
on top of the TaN layer, SiO2 was deposited using low-pressure chemical vapor deposition
(LPCVD). The deposition occurred at 785 ◦C by reacting dichlorosilane (DCS, SiCl2H2,
40 sccm) and N2O (160 sccm). Then, for both devices, IZO 50 nm thick was deposited
through a radio frequency (RF) sputter, with an RF power of 50 W. The deposition pressure
was 2 mTorr, and the reactive gas consisted of Ar 10 sccm and O2 1 sccm. Following the
deposition of the IZO film, square patterns measuring 100 µm × 100 µm were created using
photolithography. Subsequently, a indium tin oxide (ITO) top electrode 120 nm thick was
deposited and shaped through a lift-off process using acetone after the RF sputter deposi-
tion of ITO, which employed a commercial ITO target of 99.99% purity, operated at an RF
power of 80 W. The gas pressure stood at 3 mTorr with an Ar flow of 8 sccm. The electrical
characteristics of both devices were assessed using the Keithley 4200-SCS semiconductor
parameter analyzer and the 4225-PMU pulse measurement unit from Keithley Instruments
in Cleveland, OH, USA. The bias was applied to the top electrode (ITO), while the bottom
electrode (TaN) remained grounded. Additionally, the device’s schematic and its chemical
properties were examined using X-ray photoelectron spectroscopy (XPS) and transmission
electron microscopy (TEM) (Oxford Instruments, Tubney Woods, Abingdon, UK).

3. Results and Discussion

Figure 1 shows the resistive switching characteristics of IZO-based RRAM devices.
Figure 1a shows that both ITO/IZO/TaN single-layer and ITO/IZO/SiO2/TaN bilayer de-
vices require a forming process to transition from an initial resistance state to an LRS [63,66].
The forming process is often known as the initial set or breakdown process, accumulating
the defects in thin films under a higher voltage applied prior to the resistive switching
phenomenon. The forming process is controlled by compliance currents of 10 mA and
5 mA for single-layer and bilayer devices, respectively. The I-V curves of the devices
are shown in Figure 1b. Both devices were controlled at less than 3 V and −3 V for the
set and reset processes. However, different compliance currents were needed in order to
avoid a hard breakdown. For the single-layer IZO device, a high compliance current of
30 mA was needed. However, for the bilayer ITO/IZO/SiO2/TaN device, a relatively lower
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compliance current of 5 mA is required. The cycle-to-cycle endurance and retention charac-
teristics of both devices were then examined. In Figure 1c,d, it is shown that both devices
remained in their LRS and HRS states during 100 endurance cycles and 104 s of retention
time, with voltages of 3 and −3 V applied to trigger the resistive switching phenomenon
and a read bias of −0.3 V. In both experiments, the bilayer ITO/IZO/SiO2/TaN device
had a lower operating current level and a larger window compared to the ITO/IZO/TaN
device. This phenomenon can be noted as the effect of inserting a thin SiO2 film, decreasing
the on and off currents, and improving the device’s power consumption.
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Figure 1. Resistive switching characteristics of devices with and without an SiO2 layer. (a) I–V
curves of forming process; (b) I–V curves of set and reset processes. (c) Endurance characteristics;
(d) retention test in HRS and LRS at a read voltage of −0.2 V.

Figure 2 shows the cell-to-cell variations in both devices. A total of 10 randomly
selected cells from both devices were selected, and 20 cycles were run for each cell. The ad-
dition of a SiO2 layer enhances cell-to-cell and cycle-to-cycle uniformity as illustrated in
Figure 2a,b. Figure 2c also depicts the cell-to-cell variability of the ITO/IZO/TaN and
ITO/IZO/SiO2/TaN devices. By introducing a SiO2 thin film, the variability of both HRS
and LRS was improved.
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Figure 2. Cell-to-cell variance of 10 randomly selected cells of (a) ITO/IZO/TaN device and
(b) ITO/IZO/SiO2/TaN device. (c) Calculated cell-to-cell variability of devices with and without an
SiO2 layer.
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To confirm the fabrication of the bilayer device as shown in the schematic structure in
Figure 3a, TEM and XPS were used. A cross-sectional TEM image of the device is shown
in Figure 3b. The sputter-deposited ITO and TaN electrodes had thicknesses of 120 nm
and 100 nm, respectively. Additionally, insulating layers were sandwiched between the
electrodes. The thicknesses of the IZO and SiO2 layers were about 50 nm and 2 nm, respec-
tively. Furthermore, the XPS depth mode is used to investigate the chemical components of
the IZO and SiO2 layers, as shown in Figure 4.
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Figure 3. (a) Schematic structure of ITO/IZO/SiO2/TaN device. (b) Cross-sectional TEM images.
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XPS spectra of the IZO film are depicted in Figure 4a–c, with an etch time of 10 s.
The peak intensity values of Zn 2p are located at the binding energies of 1021.5 eV and
1045.2 eV for Zn 2p3/2 and 2p1/2, respectively [40]. 3d5/2 and 3d3/2 are located at about
444.6 eV and 453.35 eV, respectively [67]. In addition, as shown in Figure 4c, the peak
of O 1s at 529.6 eV represents metal–oxygen bonding, proving the existence of the IZO
insulating layer [68]. Next, the Si-O bond is illustrated at an etch time of 25 s, as shown in
Figure 4d,e. The XPS of Si 2p is shown to have three peaks, representing its three oxide
states of Si2+, Si3+, and Si4+ [69]. Also, the O 1s peak of Figure 4e is located at about 529.6 eV,
demonstrating Si-O bonding. Additionally, in both the O 1s peaks of the IZO and SiO2
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thin films, an additional peak is located at a binding energy of 531 eV, which represents the
existence of oxygen vacancies in each insulating layer [34].

Illustrations of resistive switching mechanisms are shown in Figure 5. For an ITO/IZO/TaN
device, when a positive bias is applied to the top electrode, oxygen ions in the IZO film migrate
toward the ITO layer via the electric field, where the ITO layer acts as an oxygen reservoir.
Then, the amount of oxygen vacancies in the IZO film increases and forms a thick conducting
filament, enabling a large current flow in the device. As a result, a set occurs, and the device
switches to LRS (Figure 5a). Moreover, when the opposite bias is applied to the top electrode,
oxygen ions stored in the ITO layer return to the IZO film and recombine with oxygen vacancies.
Thus, a reset occurs due to the rupture of a conducting filament, and the device switches into
HRS (Figure 5b). However, due to the random nature of the conducting filament, the single-layer
device suffered from poor uniformity. On the other hand, for the ITO/IZO/SiO2/TaN device,
when a positive bias was applied to the top electrode as shown in Figure 5c, oxygen vacancies
generated in the IZO-film accumulated and formed a conical-shaped filament toward the in-
terface of IZO/SiO2 [70,71], making the IZO film more conductive [72]. During the formation
of the filament, a major drop in electric potential occurred in the SiO2 film. A high electric
field was applied to the film, localizing the conducting filament and reducing randomness
in the formation of the conducting path [44]. Additionally, the reduced current levels were
likely achieved due to the narrow thickness of the conducting path in the SiO2 film, limiting
the current flow. Furthermore, it is believed that when a negative voltage is applied to the top
electrode, as illustrated in Figure 5d, the rupture of the conducting filament occurs in the SiO2
layer, where, due to its diffusion limiting role, an improvement in uniformity occurs [73,74].
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Figure 5. Conduction mechanism of the ITO/IZO/TaN device, (a) Set, and (b) Reset. Conduction
mechanism of the ITO/IZO/SiO2/TaN device, (c) Set, and (d) Reset.

In a biological synapse, synaptic information is processed through neurons. As shown
in Figure 6a, neurons are composed of pre- and post-synaptic cells, which can be easily
mimicked by a two-terminal RRAM device. As a synaptic device, the top and bottom
electrodes mimic pre- and post-synaptic cells. One of the important features of neuro-
morphic application is potentiation and depression [75]. A pulse train of 50 identical set
and reset pulses were used for potentiation and depression. The amplitude and width
of the set pulses were 2 V and 0.5 µs, and those of the reset pulse were −1.5 V and 5
µs. Figure 6b shows the increase and decrease in conductance caused by the pulse trains.
Five potentiation and depression cycles were also performed to ensure reproducibility, as
shown in Figure 6c.
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Figure 6. (a) Schematic of an RRAM device as a synaptic device and a biological synapse. (b) Potenti-
ation and depression. (c) Five cycles of repetition of potentiation and depression.

The results of potentiation and depression were then transformed into an artificial
neural network to calculate the accuracy of a Modified National Institute of Standards and
Technology (MNIST) handwritten data set. As illustrated in Figure 7a, the deep neural
network-based pattern recognition system (PRS) consisted of input, hidden, and output
layers. When the 28 × 28-pixel MNIST handwritten data set entered, nodes of layers
changed their parameters via the backpropagation method. Then, by repeating its training
through epochs, the accuracy of PRS improved with the training time. Figure 7b shows the
training outcome after 10 successive epochs, with a maximum accuracy of 93.03% [76].
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Figure 7. Pattern recognition through a neural network. (a) Schematic illustration of a deep neural
network for numerical number recognition consisting of input, hidden, and output layers. (b) Simu-
lated recognition accuracy using the MNIST numerical data set, with a maximum accuracy of 93.03%
for the ITO/IZO/SiO2/ITO device.

Furthermore, in the human brain, short-term memory (STM) and long-term memory
(LTM) coexist. This was implemented in the short-term device by rehearsing certain
events, and STM could be converted into LTM [77]. Thus, the coexistence of STM and
LTM characteristics in RRAM devices is beneficial for synaptic applications. PPF is neural
facilitation in biological systems related to short-term synaptic plasticity (STP) [78–80].
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The STP behavior was replicated in the ITO/IZO/SiO2/TaN device to investigate the
coexistence of volatility and non-volatility in one RRAM cell. A twin pulse with an
amplitude of 2.6 V and a width of 10 µs was applied to the semiconductor device under
a varied pulse interval of 1 µs to 500 µs. The PPF behavior is known to be related to the
negative correlation between time interval and PPF index (PPF index = ((I2 − I1)/I1) × 100,
where I2 is the current response of the second pulse and I1 is the current response of the
first pulse train). When the time between two pulses was short, the device remembered the
first stimulus, resulting in a greater current response to the second stimulation. When the
gap was long enough, however, the system forgot about the first stimulus and no variation
occurred in the second pulse. The result of the twin pulse scheme is illustrated in Figure 8a.
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Figure 8. (a) PPF as a function of time interval. (b) Change in EPSC depending on the number of
pulses applied. (c) Pulse-width-dependent conductance change.

Additionally, the EPSC change in the device by varying pulse number was conducted
to check whether the ITO/IZO/SiO2/TaN device could convert STM to LTM by repeating
the experiment. The pulse amplitude and width were fixed at 2.4 V and 100 µs. The number
of pulses varied from 1 to 20. Figure 8b shows that as the number of pulses increased, the
EPSC increased, and the read current abruptly surged after 20 consecutive pulses, indicating
that the STM was switched to LTM. To further investigate the relationship between pulse
width and its current response, the EPSC test was repeated with the pulse width varying
from 1 µs to 100 µs, while the pulse amplitude had a fixed value of 2.6 V. The result is shown
in Figure 8c, where the linear relationship between pulse and conductance is observed.
When the pulse width was short, the STM characteristics remained. On the other hand,
when the pulse width was long, long-term potentiation occurred from the first single pulse,
resulting in higher conductance at the final 20 consecutive pulses.

Finally, Hebbian rules were applied to ITO/IZO/SiO2/TaN devices [81]. As the basis
of neuromorphic computing implementation is emulating the biological brain, synaptic de-
vices need to mimic the brain’s synapse and neuron properties. In this synapse and neuron
interconnection process, various functions occurred under given stimuli, strengthening or
weakening the synaptic connection [82]. One of the ways to implement this weight change
is by following the Hebbian rules, which are learning tools that verify the ability of the
synapse device to imitate the synaptic plasticity of biological synapses. Among various
Hebbian rules, SRDP and STDP are two of the most typical ways to copy synaptic weight
change and information processing between pre- and post-synaptic cells [83–87]. First,
SRDP behavior is observed by altering the pulse interval. The schematic illustration of
the pulse train is shown in Figure 9a, where the pulse interval varies from 1 µs to 100 µs.
The pulse height and width have fixed values of 2.7 V and 30 µs. In Figure 9b, the SRDP
response is illustrated. The pulse interval and conductance value are shown to have a
linear relationship. When the pulse interval was short, the synapse received practically
consecutive pulse trains, rapidly increasing the conductance. When the pulse interval was
long, however, the synapse ‘forgot the previous stimulus, resulting in a gradual increase in
conductance. Furthermore, STDP was examined by applying the same pair of pulses to the
pre-and post-synapse under varied time difference conditions. Spike time (∆t) was defined
as the time difference of pulse trains applied to the pre-and post-synapses (∆t = tpost − tpre.
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tpost and tpre are the times when pulses are applied to the pre-and post-synapses). If the
pre-synapse fired before the post-synapse (∆t > 0), a set of pulses led to LTP. Conversely, if
the post-synapse fired before the pre-synapse (∆t < 0), a different set of pulses caused LTD.
The STDP behavior of the ITO/IZO/SiO2/TaN device is illustrated in Figure 9c, where
the depression of the synaptic weight (∆W) is shown with an increase in spike time value.
Here, ∆W = (Gf − Gi)/Gi) × 100, where Gf is the conductance value of the device after
pulse application and Gi is the conductance value of the device before pulse application.
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Figure 9. (a) Schematic illustration of pulses applied to observe SRDP behavior. (b) SRDP and
(c) STDP behaviors of ITO/IZO/SiO2/TaN device.

4. Conclusions

In summary, the resistive switching and synaptic properties of IZO-based RRAM
devices were investigated by electrical measurements, including DC sweep and pulse re-
sponse. The bilayer-structured ITO/IZO/SiO2/TaN device demonstrated superior memory
characteristics compared to the single-layer device, consuming less power and showing
better uniformity. It is noted that the inserted SiO2 layer prevented the hard breakdown of
the IZO layer and localized the conducting filament. Additionally, synaptic functions were
assessed using pulse measurements and other biological synapse learning criteria. The PPF,
potentiation, depression, and EPSC changes demonstrate the coexistence of STM and LTM.
Finally, STDP and SRDP prove the potential of the ITO/IZO/SiO2/TaN device to be used
in future neuromorphic system applications.
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