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Abstract: This work reports new mixed matrix membranes (MMMs) for the adsorption of enzymes
from organic solvents. In this work, polyimide/hydroxyapatite (PI/HAP) MMMs were prepared
via phase inversion method and further crosslinked with 3-aminopropyl triethoxysilane (APTES).
The chemical and structural stability of the crosslinked PI/HAP MMMs were improved and applied
for lysozyme (LZ) adsorption in organic solvent. PI/HAP MMMs were crosslinked by changing the
3-aminopropyltriethoxysilane (APTES) concentration and crosslinking time. The optimal APTES
crosslinking condition for PI/HAP MMMs is 6% of concentration for 8 h. The LZ adsorption
performance was studied by changing solvent types. PI/HAP MMMs possessed a high LZ adsorption
in organic-solvent-aqueous solutions, and the LZ adsorption capacity reached 34.1 mg/g. The MMMs
had a high desorption capacity and recovery ability. The MMMs maintained 60% of their adsorption
capacity and 58% of their desorption at the fourth cycle of adsorption and desorption. The MMMs
provided a new technology for the purification and separation of enzymes or proteins by MMMs in
organic solvents.

Keywords: polyimide; hydroxyapatite; mixed matrix membranes (MMMs); crosslinking; lysozyme
(LZ) adsorption

1. Introduction

Enzymes are well recognized as practical catalysts because of their tremendous poten-
tial application and are being increasingly exploited for asymmetric syntheses, transfor-
mations and industrial processes [1,2]. However, most enzymes could not be dissolved in
water, and water sometimes leads to unwanted side reactions and degradation of common
organic reagents. The thermodynamic equilibria of many processes are unfavorable in
water, and sometimes it is difficult to recover products from water [3]. The proteolysis
of enzymes could be overcome and the stability of enzymes improved by using organic
solvents as reaction media. The conformational flexibility of enzymes keeps very well in
aqueous-organic mixtures and even in anhydrous organic solvents that could not give rise
to the denaturation of enzymes. Recently, the use of enzymes [4] or modified enzymes [5]
to improve biocatalysis in organic solvents has been developing very fast.

It was previously widely used to employ adsorbers in liquid mixtures to remove
proteins or enzymes based on their chemical and physical properties [6]. The adsorbers
could be classified as particles, microspheres and membranes, among other things in the
field of solid extraction. Recently, mixed matrix membranes (MMMs) have been studied
by many researchers because MMMs combine the advantages of membrane technology
and particles. Additionally, MMMs provide a low pressure drop, high throughputs, a high
efficiency, an easy scale-up, etc. The adsorption-based separation behavior involves the
preferential participation of adsorbate molecules moving from the liquid phase onto the
substrate surface [7]. Adsorptive MMMs incorporate adsorptive particles into the poly-
meric porous matrix where the interactions between enzymes or proteins and adsorptive
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particles happen. So far, different adsorptive particles, such as ion-exchange resins [8,9],
amino-functionalized silicon dioxide (NH2−SiO2) [10], activated carbon (AC) [11] and
hydroxyapatite (Ca5 (PO4)3(OH), HAP) [12], were embedded into polymeric matrixes to
adsorb enzymes or proteins. Modified HAP [13–15] and other phosphates [16–18] are also
important and were used in biomedical applications. Previously, we prepared MMMs
by incorporating HAP into different polymer matrixes (polyether sulfone (PES) [19], chi-
tosan (CS) [20], polyvinylidene fluoride (PVDF) [21]), and those MMMs showed good
bovine serum albumin (BSA) and lysozyme (LZ) adsorption and desorption properties in
an aqueous system. MMMs combined a good adsorption property of HAP with a high
productivity of the filtration membrane. Other polymers, such as ethylene vinyl alcohol
copolymer (EVAL) [22], poly(ether imide) (PEI) [23], polyimide (PI) [24], etc., were also ap-
plied to prepare MMMs. PI is an excellent membrane material due to its high chemical and
thermal stability [25]. In recent years, PI membranes combining different inorganic fillers
(zeolite, metal-organic framework (MOF), zeolitic imidazolate framework (ZIF), carbon
nanotube, etc.) were applied in gas separation, such as CO2/CH4 [26], propylene/propane
(C3H6/C3H8) [27], H2/CO2, H2/N2, etc. [28]. Recently, they were also applied in dye/salt
separation [29] as well as in lysozyme (LZ) and cholesterol separation [30] in organic sol-
vent. The organic-solvent-resistant performance and stabilization of PI membranes [31]
and PI-based MMMs [30] in organic solvents can be further improved via the chemical
crosslinking of the PI matrix. Different crosslinking agents, such as aliphatic diamines
(ethylene diamine (EDA) [32], 1,6-hexanediamine (HDA) [24], hexamethylenediamine
(HMDA) [33], etc.) and silicon coupling agent ((3-isocyanatopropyl) triethoxysilane [34]),
were used to crosslink PI molecular chains.

In this work, solvent-resistant MMMs for the adsorption of enzymes or proteins in
organic solvents was developed and demonstrated. PI (P84) was used as a polymer matrix,
which was crosslinked with 3-aminopropyltriethoxysilane (APTES), and therefore the
MMMs became resistant to organic solvents. HAP was used as adsorption particles and
was embedded in the PI matrix to prepare crosslinked PI/HAP MMMs. Subsequently, the
crosslinked PI/HAP MMMs were used for the adsorption of LZ in N,N-dimethylformamide
(DMF), dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidinone (NMP). LZ plays an
important role in mammalian bodies and is widely used in the medical and biological
fields. LZ was used as a target enzyme in this work. The preparation process of crosslinked
PI/HAP MMMs is simple, non-toxic and low-cost. A good adsorption performance of
crosslinked PI/HAP MMMs provides a wide application as an adsorptive membrane in
organic solvents.

2. Materials and Methods
2.1. Materials

Hydroxyapatite (HAP, d = 40 nm) was purchased from Nanjing Emperor Nano Ma-
terial Company (Nanjing, China). Polyimide, type P84 (325 mesh, STD) was purchased
from HP Polymer GmbH (Lenzing, Austria). Dimethylformamide (DMF), dimethyl sul-
foxide (DMSO), N-methyl-2-pyrrolidone (NMP), 3-aminopropyltriethoxysilane (APTES)
and Lysozyme (LZ) were bought from Sinopharm Chemical Reagent Company (Shanghai,
China). All reagents used in the preparation and in the adsorption studies were of analytical
grade. All used water was deionized.

2.2. Membrane Preparation
2.2.1. Preparation of PI/HAP MMMs

PI/HAP MMMs were prepared by phase-inversion technique. DMF was used as the
solvent to dissolve PI, and pure water was used as a coagulation bath. PI and HAP were
dried in the vacuum oven (DZF-6020, Shanghai Sumsung Laboratory Instrument Co., Ltd.,
Shanghai, China) at 60 ◦C for 24 h. PI dope solution was prepared by dissolving 20 wt%
PI in DMF for 10 h, and 20 wt% HAP particles were added in PI dope solution to obtain
the mixed solution. The mixed solution was stirred for another 12 h and left for degassing
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for 12 h. After the removal of gas bubbles, the mixed solution was cast on glass substrates,
and the membrane was immersed in a water bath where phase inversion occurred. After
2 h, the membrane was placed in a fresh water bath and left for 24 h to ensure sufficient
removal of the solvent.

2.2.2. Crosslinking of PI/HAP MMMs

PI/HAP MMMs were crosslinked by immersion into APTES/2-butanone (w/w) so-
lution at 75 ◦C for 12 h and subsequently thoroughly washed with methanol (analytical
grade, Sinopharm Chemical Reagent Company, Shanghai, China) to remove the residues of
APTES. The APTES concentration (2, 4, 6, 8 and 10 wt%) and crosslinking time (2, 4, 6, 8, 10,
12 h) were changed to prepared crosslinked PI/HAP MMMs. The crosslinking reaction of
PI by APTES is presented in Figure 1.
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Figure 1. Schematic diagram of crosslinking of polyimide (PI) molecules with APTES.

2.3. Membrane Characterization

The morphology of the membrane was observed by AFM (NanoScope IV, Veeco,
Dallas, TX, USA) and SEM (Quanta-250 ESEM Co., Brno, Czech). The pure water flux of
the membrane was tested by a dead-end filtration system, and the membrane was pre-
compacted at 0.15 MPa for 30 min before the tests. The contact angle of the membrane was
evaluated by a micro video contact angle measuring instrument (OCA40 Dataphysics Co.,
Stuttgart, Germany), and each membrane was captured six times to obtain an average value.
The functional groups of the membrane were investigated by fourier transform infrared
spectroscopy (FTIR, Nicolet Co., Vernon Hills, IL, USA). The tensile strength and elongation
at break of the membrane were measured by a tensile testing machine (Chang-Zhou Textile
Machine Co., Changzhou, China). The membranes were cut into rectangular splines
(15 × 90 mm) and tested at a stretching rate of 20 mm/min.
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2.4. Adsorption Experiments

LZ was used as an enzyme target in the adsorption study. Three different organic
solvents (DMF, DMSO and NMP) were chosen, and the organic solvent/water ratios (90/10,
80/20, 70/30, 60/40 and 50/50, v/v) were used for the LZ adsorption of crosslinked MMMs.

The MMMs were dried at 30°C under vacuum conditions for 10 h. MMMs measuring
15 × 15 mm were weighted and sealed in 5 mL 2 g/L LZ organic solvent–aqueous solution.
The sealed solutions were shaken for 24 h at 25 ◦C. The concentration of LZ solution was
determined with a UV−1800 spectrophotometer (SHIMADZU Company, Tokyo, Japan) at
281 nm, and the adsorption capacity of the MMMs was calculated as follows:

q =
(C0 − C1)× V

W

where q is the adsorption capacity (mg/g), C0 is the concentration of LZ original solution
(mg/mL), and C1 is the concentration of LZ solution after adsorption (mg/mL). W is the
weight of dry MMMs (mg), and V is the volume of LZ solution (mL).

The LZ desorption property was carried out by using NaCl (analytical grade, Sinopharm
Chemical Reagent Company, Shanghai, China) aqueous solution (0.5 mol/L) at 25 ◦C for
24 h. The regeneration of PI/HAP MMMs was evaluated by four adsorption–desorption
circle processes.

3. Results and Discussion
3.1. Effects of Crosslink Conditions on Pure Water Flux, Contact Angle, Mechanical Properties
of MMMs
3.1.1. Effect of APTES Concentration

Figure 2 shows the effect of the APTES concentration on (a) pure water flux and
(b) contact angle of PI/HAP MMMs. As shown in Figure 2a, the pure water flux increases
with an APTES concentration increasing from 0 to 10%. As shown in Figure 2b, the
contact angle decreases with an APTES concentration increasing from 0 to 6%, and reaches
the minimum when the APTES concentration is 6%. MMMs become more hydrophilic
after crosslinking with APTES. More APTES react with PI molecular chains when the
APTES concentration increases. The imide group of PI becomes an amino group when
PI reacts with APTES and the APTES molecule has an amino group, which improves the
hydrophilicity of PI/HAP MMMs. The contact angle increases when further increasing the
APTES concentration from 6 to 10%. There are more groups of Si−O−Si in PI molecular
chains, which may restrain the hydrophilicity of PI/HAP MMMs.

Figure 3 shows the effect of the APTES concentration on (a) tensile strength and
(b) elongation break. As shown in Figure 3a, the tensile strength of MMMs is improved
when the APTES concentration increases from 6 to 10%. Moreover, compared to non-
crosslinked MMMs, the elongation break of crosslinked MMMs is also improved when
the APTES concentration increases from 0 to 10%. PI molecular chains are not crosslinked
completely by APTES when the APTES concentration is lower than 6%, and therefore the
tensile strength and elongation break of MMMs are low at a low APTES concentration. PI
molecular chains are crosslinked completely by APTES, and the full net structure of PI
molecular chains forms when the APTES concentration is over 6%, which improves the
mechanical property of MMMs. Thus, by comprehensive consideration, the optimal APTES
concentration for MMMs is 6%.
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Figure 3. Effect of APTES concentration on (a) tensile strength and (b) elongation break of PI/HAP MMMs.

3.1.2. Effect of Crosslinking Time

Figure 4 shows the effect of the crosslinking time on (a) pure water flux and (b) contact
angle of PI/HAP MMMs. As shown in Figure 4a, the pure water flux increases with an
increasing crosslinking time and reaches a stable value. This means that the stable MMMs’
structure forms after the MMMs are crosslinked for 4 h. As shown in Figure 4b, the contact
angle decreases when increasing the crosslinking time, and is almost unchanging when the
crosslinking time is more than 8 h. More imide groups of PI become amino groups when PI
reacts with APTES with an increasing crosslinking time, and almost all of APTES is reacted
when the crosslinking time is more than 8 h. No reaction proceeds when further increasing
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the crosslinking time. The hydrophilicity of PI/HAP MMMs is improved by extending the
crosslinking time.
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Figure 5 shows the effect of crosslinking time on (a) tensile strength and (b) elongation
break. As shown in Figure 5a, the tensile strength of MMMs is improved when the crosslink-
ing time increases from 0 to 6 h, and it reaches the maximum (MPa) at 6 h. Moreover,
the elongation break of crosslinked MMMs is also improved when the crosslinking time
increases from 0 to 6 h, compared to non-crosslinked MMMs. The crosslinking degree
increases and the MMMs structure becomes more and more compact when extending
the crosslinking time and when the crosslinking time is less than 6 h, which leads to an
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increased tensile strength and elongation break of MMMs. The branching reaction of PI
molecular chains partly happens when further extending the crosslinking time when the
crosslinking time is more than 6 h, which reduces the tensile strength and elongation break
of MMMs. Thus, by comprehensive consideration, the best APTES crosslinking time for
MMMs is 8 h. The optimal APTES crosslinking condition for MMMs is a 6% concentration
for 8 h.
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3.2. Characterization of PI/HAP MMMs

Crosslinking is an important technology for the improvement of polymer materials’
properties. The corrosion resistance, solvent resistance, plasticization resistance and tem-
perature tolerance can be improved through crosslinking. The PI (P84) membrane was
crosslinked with HDA, and the solvent resistance property of the crosslinked PI membrane
was enhanced [24]. PI was crosslinked with EDA, and the plasticization resistance property
of the crosslinked PI membrane was enhanced [27]. The imide groups of PI molecules react
with the amino group of APTES, and PI molecules are crosslinked, as shown in Figure 1.
Figure 6 shows the FTIR spectra of APTES, PI/HAP MMMs and crosslinked PI/HAP
MMMs. Table 1 shows the FTIR spectra characteristic peaks data of APTES, PI/HAP
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MMMs and crosslinked PI/HAP MMMs. For APTES, the characteristic peaks at 1095 cm−1

and 794 cm−1 are the stretching vibration band and bending vibration band of Si–O–Si,
respectively, and the characteristic peak at 1590 cm−1 is the bending vibration band of
–NH2. The characteristic peaks at 2928 cm−1 and 2890 cm−1 are the anti-symmetric and
asymmetric stretching bands of –CH2– in APTES [30,35]. After PI/HAP MMMs were
crosslinked with APTES, the characteristic peaks of the imide group at around 1780 cm−1

(symmetric C=O stretching), 1725 cm−1 (asymmetric C=O stretching), and 1370 cm−1 (C–
N stretching) became weakened [36]. Meanwhile, the characteristic peaks of the amide
group at 1650 cm−1 (C=O stretching) and 1540 cm−1 (C–N stretching of C–N– group)
appeared [37], and the characteristic peaks of Si–O–Si of APTES at 1095 cm−1 appeared [38].
The above change suggests that crosslinked PI/HAP MMMs were successfully prepared. It
can be concluded that the imide groups of PI reacted with APTES and that PI molecules
were crosslinked with amide bonds of APTES. PI/HAP MMMs were successfully prepared.
However, the presence of the characteristic peaks of the imide group suggests that the
crosslinking reaction was not completed.
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Table 1. FTIR spectra characteristic peaks data of 3-aminopropyl triethoxysilane (APTES), poly-
imide/hydroxyapatite (PI/HAP) MMMs and crosslinked PI/HAP MMMs.

APTES PI/HAP MMMs Crosslinked PI/HAP MMMs

Wavelength
(cm−1) Group Wavelength

(cm−1) Group Wavelength
(cm−1) Group

794 bending vibration
band of Si–O–Si 1370 C–N stretching 1095 stretching vibration

band of Si–O–Si

1095 stretching vibration
band of Si–O–Si 1725 asymmetric

C=O stretching 1540 C–N stretching of
C–N– group

1590 bending vibration
band of –NH2

1780 symmetric
C=O stretching 1650 C=O stretching

2890 asymmetric stretching
bands of –CH2– 1725 asymmetric C=O

stretching

2928
anti-symmetric

asymmetric stretching
bands of –CH2–

1780 symmetric C=O
stretching

References [30,35] Reference [36] References [37,38]
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3.3. Morphology of PI/HAP MMMs

Figure 7 shows SEM micrographs of the pure PI membrane and PI/HAP MMMs and
crosslinked PI/HAP MMMs. The cross-sections of three membranes are finger-like, as
shown in Figure 7. The finger-like pores of the pure PI membrane almost run through the
whole support layer, and the finger-like pores of PI/HAP MMMs just possess a half support
layer. The finger-like asymmetric structure usually formed by using water as a coagulation
bath due to a rapid liquid-liquid demixing process during the membrane fabrication, which
is common for membrane fabrication by non-solvent induced phase separation (NIPs) [39].
Compared to the high viscosity of PI/HAP dope, the low viscosity of PI dope accelerates
the double diffusion process, which results in the formation of large finger-like pores in
the support layer of the pure PI membrane. As shown in Figure 7(B1–B3,C1–C3), PI/HAP
MMMs and crosslinked PI/HAP MMMs have similar structures, which means that the
crosslinking reaction does not change the structure of MMMs. HAP particles could be
obviously observed in the support layer of MMMs. The skin layer of MMMs is denser than
that of the pure PI membrane because the high viscosity of PI/HAP dope depresses the
double diffusion process and dense membrane support forms.
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Figure 7. Scanning electron microscope (SEM) micrographs of (A1–A3) pure PI membrane,
(B1–B3) PI/HAP MMMs and (C1–C3) crosslinked PI/HAP MMMs. ((A1,B1,C1): cross-section;
(A2,B2,C2): top skin layer; (A3,B3,C3): bottom skin layer. 20% HAP was embedded in PI/HAP MMMs).

Figure 8 shows AFM micrographs of the pure PI membrane, PI/HAP MMMs and
crosslinked PI/HAP MMMs. Table 2 shows the surface roughness parameters of the PI
membrane, PI/HAP MMMs and crosslinked PI/HAP MMMs. The bright part is the highest
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point of the membrane surface, and the dark region is the lowest point of the membrane
surface. The average roughness (Ra), the root mean square roughness (Rq) and the distance
between the highest point and the lowest point (Rmax) are the roughness parameters, which
could reflect the surface roughness of membranes. As shown in Figure 8 and Table 2, the
surface of the pure PI membrane is coarse, and Ra, Rq and Rmax are 5.49 nm, 6.86 nm and
51.10 nm, respectively. The surface roughness parameter of MMMs obviously decreases,
especially when the MMMs are crosslinked with APTES. The PI solution fixes the position of
HAP at the beginning, and the viscosity of the system also limits the Brown movement and
gravity sedimentation of HAP particles after HAP particles are homogeneously dispersed
in PI dope. That some HAP particles evenly distribute on the surface of MMMs might
result in the surface reorganization of PI molecular chains, which leads to the decreases of
the surface roughness of MMMs. The MMMs have the lowest surface roughness parameter
after they are crosslinked with APTES. PI molecular chains change from a linear structure to
a network structure during the crosslinking process, and the distance between PI molecular
chains decreases. The surface of crosslinked MMMs is smoother compared to the surface of
MMMs, which leads to further decreases of the surface roughness of crosslinked MMMs.
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Table 2. Surface roughness parameters of PI membrane, PI/HAP MMMs and crosslinked PI/HAP MMMs.

Roughness Parameter PI Membrane MMMs Crosslinked MMMs

Ra (nm) 5.49 4.07 2.54
Rq (nm) 6.86 5.07 3.25

Rmax (nm) 51.10 43.20 32.80

3.4. LZ Adsorption of PI/HAP MMMs
3.4.1. LZ Adsorption of MMMs in Organic-Solvent-Aqueous Solutions

Figure 9 shows the LZ adsorption of MMMs in different organic-solvent-aqueous
solutions. In the aqueous system, the adsorption is based on electrostatic interactions
between the biomolecules and charged particles, whereas in the organic solvents, hy-
drophobic/hydrophilic interactions play a dominant role [7]. As shown in Figure 9, the
adsorption property of MMMs was tested in three different organic-solvent-aqueous so-
lutions, such as DMSO/H2O, DMF/H2O and NMP/H2O. The LZ adsorption capacity
respectively reached the maximum (18.9 mg/g, 23.4 mg/g, 34.1 mg/g) when the ratio
of DMSO/H2O, DMF/H2O, and NMP/H2O was respectively 10/90 (v/v), 20/80 (v/v),
and 30/70 (v/v). The whole LZ adsorption capacity in NMP/H2O is the highest among
the three organic-solvent-aqueous solutions, which is maybe related to the polarity of the
solvent. The solubility and polarity parameter of the three solvents is DMSO (26.7 MPa1/2,
16.4 MPa1/2) > DMF (24.8 MPa1/2, 13.7 MPa1/2) > NMP (22.9 MPa1/2, 12.3 MPa1/2) [40].
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Figure 9. LZ adsorption of MMMs in different organic-solvent-aqueous solutions: (a) DMF/H2O,
(b) DMSO/H2O, and (c) NMP/H2O.

LZ is a polarity macromolecule, and the stronger interaction between the LZ macro-
molecule and solvent happens when the solvent with a higher solubility and polarity
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parameter is used, which leads to the formation of more entanglements on one LZ molecu-
lar chain. LZ is more unfolding in the solvent with a low solubility and polarity parameter,
and unfolding LZ is easily adsorbed. In this case, the unfolding degree of LZ in three
solvents is DMSO < DMF < NMP. A low solubility and polarity parameter of a solvent is
helpful to the LZ adsorption capacity. Therefore, the LZ adsorption capacity of MMMs
in three solvents is NMP > DMF > DMSO. There are fewer reports about the adsorption
property of LZ in the organic solvents. Kopec et al. reported that the adsorption of LZ
onto crosslinked PI/cation exchange particle MMMs was 27.9 mg/g [7], lower than the
results obtained in this work (34.1 mg/g). Ro et al. used powderized liposomes to carry
LZ, and the loading amount of LZ in liposome was 5.4% at a volume ratio of aqueous to
organic of 1:4 [40]. The absolute values cannot be compared to this work because the units
of adsorption capacity are different.

3.4.2. LZ Recovery of MMMs

Figure 10 shows the LZ recovery of crosslinked PI/HAP MMMs. As shown in
Figure 10, PI/HAP MMMs have a good recovery property. After the LZ adsorption–
desorption cycle occurs four times, the LZ adsorption capacity of PI/HAP MMMs decreases
from 34.1 mg/g to 20.6 mg/g because of the membrane fouling. The desorption of MMMs
decreases from 33.0 mg/g to 19.1 mg/g. The MMMs maintained 60% of their adsorption
capacity and 58% of their desorption at the fourth cycle of adsorption and desorption.
This means that adsorbed LZ in MMMs is not completely desorbed in every adsorption–
desorption cycle and that the number of active sites decreases with increasing cycle times.
It is suggested that MMMs are suitable for a repeated application for LZ adsorption.
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4. Conclusions

PI/HAP MMMs were crosslinked with APTES, and the optimal APTES crosslinking
condition for PI/HAP MMMs was a 6% concentration for 8 h. The MMMs were successfully
applied for LZ adsorption in an organic-solvent-aqueous solution. The LZ adsorption
capacity reached the maximum (34.1 mg/g) in an NMP aqueous solution. The MMMs
had a high desorption capacity and recovery ability after the fourth adsorption–desorption
cycle. PI/HAP MMMs have a potential application in the field of protein and enzyme
purification in organic solvent systems.
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