
Citation: Li, J.; Zhao, J.; Kan, Q.; Tian,

Y.; Yu, L.; Peng, Y.; Huang, X. A

Novel Equivalent Method for

Computing Mechanical Properties of

Random and Ordered Hyperelastic

Cellular Materials. Materials 2023, 16,

6990. https://doi.org/10.3390/

ma16216990

Academic Editor: Miguel Jorge

Received: 12 October 2023

Revised: 24 October 2023

Accepted: 27 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Novel Equivalent Method for Computing Mechanical
Properties of Random and Ordered Hyperelastic
Cellular Materials
Jian Li 1,*, Jianfeng Zhao 1, Qianhua Kan 2, Yuyu Tian 1, Li Yu 1, Yunqiang Peng 1 and Xicheng Huang 1,*

1 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province,
Mianyang 621999, China

2 School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 611756, China
* Correspondence: lijian12306@foxmail.com (J.L.); huangxc@caep.cn (X.H.)

Abstract: Simulating the mechanical behavior of cellular materials stands as a pivotal step in their
practical application. Nonetheless, the substantial multitude of unit cells within these materials neces-
sitates a considerable finite element mesh, thereby leading to elevated computational expenses and
requisites for formidable computer configurations. In order to surmount this predicament, a novel
and straightforward equivalent calculation method is proposed for the computation of mechanical
properties concerning both random and ordered hyper-elastic cellular materials. By amalgamating
the classical finite element approach with the distribution attributes of cells, the proposed equivalent
calculation method adeptly captures the deformation modes and force-displacement responses exhib-
ited by cell materials under tensile and shear loads, as predicted through direct numerical simulation.
This approach reflects the deformation characteristics induced by micro-unit cells, elucidates an
equivalent principle bridging cellular materials and equivalent materials, and substantially curtails
exhaustive computational burdens. Ultimately, this method furnishes an equivalent computational
strategy tailored for the engineering applications of cellular materials.

Keywords: cellular materials; hyper-elasticity; equivalent calculation method; finite-element
simulation; computational efficiency

1. Introduction

Cellular materials exhibit microstructure-controlled mechanical properties, behaving
as structures at a small scale and as materials at a macroscopic scale [1]. They are widely
studied and applied due to their advantages [2–5], i.e., lightweight, high specific strength,
good thermal and acoustic insulators, a wide range of material mechanical properties,
multifunction, etc. Originally stemming from foam or porous materials with random unit
cells, they have evolved into honeycomb, lattice, architected cellular, and metamaterial
forms with ordered unit cells. In practical applications, numerical simulation of cellular
materials is the footstone of structural design [6–8].

Researchers have recently conducted many numerical simulations on cellular materi-
als, which can be classified into three distinct categories:

(1) Equivalent constitutive model [9–11]. The unit cells of cellular materials can exhibit
random or ordered arrangements. A brief simulation method was established accord-
ing to the constitutive model for the continuous materials. When the macroscopic
scale of cellular materials is much larger than the microscopic scale of their unit cells,
they can be treated as continuous solid materials. Based on the experimental results,
an equivalent constitutive model is developed to describe the macroscopic equivalent
stress-strain curves. However, this method neglects the micro-architecture properties.
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(2) Modeling based on representative volume element (RVE) [12–20]. Cellular materials
include materials with either uniform or non-uniform unit cells. In the case of non-
uniform cellular material, an RVE is constituted by enough characteristic unit cells
or mesoscopic models [12–14]. Then, the simplified RVE, such as the primitive cubic
model, Kelvin model, Voronoi model, and so on, is established. In the case of uniform
cellular material [16,17], such as periodic lattices and triply periodic minimal surfaces,
the RVE consists of specific unit cells. This method effectively describes the defor-
mation behavior of cellular materials and reflects their basic structure characteristics
(the micro-architecture shape), while also demonstrating computational efficiency.
However, this method overlooks the influence of the micro-architecture parameters
(size, wall thickness, distribution, and material properties) on the mechanical prop-
erties, thus emphasizing that selecting an appropriate RVE is crucial for accurately
determining the overall mechanical properties.

(3) Modeling based on reconstructed microstructure [21–25]. With the development of
computational ability and micro-computerized tomography, reconstructed microstruc-
tures can be used to simulate the deformation behavior of actual materials. The dis-
crepancies arising from design and manufacturing contribute to the unstable mechan-
ical responses observed in cellular materials through foaming or 3D printing [22–24].
By employing reconstruction technology, the actual micro-structural models are con-
structed for finite element simulation, enabling a comprehensive understanding of
complex cellular materials and an accurate prediction of their deformation behaviors.
However, this direct modeling method requires significant computational resources
due to the incorporation of complex micro-architectures with large finite element
meshes into finite element software, thereby limiting its practical applicability in
engineering contexts.

In summary, ongoing research is focused on simulating the mechanical behavior of
cellular material. This study endeavors to develop a novel and straightforward equiva-
lent calculation method for predicting the mechanical properties of random and ordered
hyper-elastic cellular materials. The developed method aims to accurately capture the
characteristics of micro-architecture, enhance computational efficiency, and facilitate engi-
neering applications. The organizational structure of this paper unfolds as follows: Section 2
presents the generic strategy of the equivalent calculation method. Subsequently, Section 3
delineates the detailed simulated procedure. Moving forward, Section 4 showcases the
calculated results using this equivalent calculation method, along with discussions. Finally,
Section 5 presents the conclusions.

2. Generic Strategy for Equivalent Calculation Method

In this section, based on the equivalent principle of the stress–strain curve equivalence
between cellular material and their corresponding equivalent material, we propose a
novel and straightforward method for calculating the equivalent properties of cellular
materials. This approach treats the cellular material as analogous to a continuous medium
and employs a generic strategy depicted in Figure 1. Firstly, Figure 1a illustrates a cellular
material with varying pore sizes. Subsequently, the cellular material is divided into multiple
parts according to their structural features. These parts are classified and defined as various
representative volume elements (RVEs), as illustrated in Figure 1b. These RVEs are further
represented by uniformly equivalent cells with various material parameters to transfer their
mechanical properties. Consequently, an equivalent model consisting of several equivalent
cells is constructed to represent the original cellular material in Figure 1a, as shown in
Figure 1c. Finally, the mechanical properties of cellular materials can be simulated using
the equivalent model while ensuring the equivalence between the computed results in
Figure 1c and those in Figure 1a. The procedural essence of this equivalent computational
method is briefly summarized in Figure 1d.
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Figure 1. The schematic diagram of the generic strategy for the equivalent computational method: (a)
cellular material with different pore sizes; (b) RVEs transforming to equivalent cells with different
material parameters; (c) the equivalent model corresponding to (a); (d) the procedural essence of the
equivalent computational method.

Within this methodology, the cellular material under consideration can exhibit ei-
ther a random or ordered nature. For random cellular materials with different micro-
characteristics, the selection of RVEs aligns with the size and distribution of the micro-
architecture, which can be derived from micro-computerized tomography. It is worth
noting that the precision of the computational result increases as more RVEs are chosen.
Thus, selecting an appropriate number of RVEs requires a delicate balance between accu-
racy and efficiency. This is the same as in the traditional approaches, where the number
of elements can be reduced suitably without significantly reducing the accuracy of the
evaluation. For the ordered cellular materials with regular unit cells (both uniform and
non-uniform distributions), these unit cells themselves can serve as RVEs. Subsequently,
the equivalent cells are implanted into the equivalent model based on the distribution
of RVE. For simplicity, this study employs cellular materials with regular unit cells as
illustrative examples to explore the potential of the equivalent calculation method.

3. Simulated Procedure
3.1. Simulated Model Generation

The cellular materials in this study are based on polydimethylsiloxane (PDMS) with
hyper-elastic properties as the basic material. To investigate the equivalent method men-
tioned in Section 2, we have established models of ordered and random cellular materials
along with their corresponding equivalent material, shown in Figure 2. In this study, the
cellular materials consist of rectangle unit cells measuring 1 × 1 × 1 mm3, with pore
diameters of 0.8, 0.6, and 0.4 mm, as shown in Figure 2a. Based on the different topologies,
cellular materials with dimensions of 10 × 20 × 1 mm3 are established to exhibit uniform
deformation features in Figure 2b, stretching features in Figure 2c, shearing features in
Figure 2d, double shearing features in Figure 2e, circular deforming features in Figure 2f,
and random deformation features in Figure 2g. The models of the corresponding equivalent
materials are depicted in Figure 2h–m. The plate with uniformly distributed cells will be
used to validate the reasonability of the equivalent method and supply basic material pa-
rameters for simulating equivalent materials. The plate with different deformation features
will be employed to verify the applicability of the equivalent calculation method and clarify
the equivalent principles. The plate with randomly distributed cells will be used to predict
the mechanical properties of the random cellular materials.
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Figure 2. The cellular materials and their corresponding equivalent materials: (a) A plate unit cell
with a circular hole in the thickness direction; (b) A plate with uniformly distributed cellular; (c)
A cellular plate with stretching feature; (d) A cellular plate with shearing feature; (e) A cellular
plate with double shearing feature; (f) A cellular plate with circular deforming feature; (g) A cellular
plate with random deforming feature. (h–m) are the corresponding equivalent materials of cellular
materials from (b–g). The green, white, and red codes denote the equivalent cells with pore diameters
of 0.4, 0.6, and 0.8 mm, respectively.

Two types of simulated model generation methods are employed, differing for the
ordered and random models. (1) For the ordered cellular material: The cellular materi-
als are first established by assembling the unit cells with varying pore diameters in the
ABAQUS to form the cellular materials exhibiting different deformation features. Subse-
quently, continuum cubes measuring 10 × 20 × 1 mm3 are established and meshed with
an element size of 1 mm. Material parameters corresponding to the distributions of cells
with different pore diameters in the cellular materials are then assigned to cubic elements
at their respective locations, resulting in computed models representing ordered equivalent
materials. The determination of material parameters will be discussed in Section 3.3. (2)
For the random cellular material, the randomness of the equivalent materials is achieved
using the Python script. Firstly, the continuum cubes with dimensions of 10 × 20 × 1 mm3

are established. These cubes are then meshed with an element size of 1 mm to create a finite
element model of random equivalent material. The combination of finite element software
and Python (3.11) script is utilized for this purpose, and further details can be found in
Appendix A. Subsequently, cellular materials are established by assembling the unit cells
with different pore diameters based on the material parameter distribution of the random
model. Finally, a finite element model of cellular materials with varying sizes of unit cells
(as shown in Figure 2g) is constructed using the random information in Figure 2m.

3.2. Finite Element Modeling, Boundary Conditions, and Mesh

This study employs the structural static general analysis method in ABAQUS 6.14,
using the geometric models presented in Figure 2 for the finite element modeling. The
C3D8R element with a minimum size of 0.1 mm is utilized to simulate cellular materials,
while the C3D8R element with a fixed size of 1 mm is used to simulate equivalent materials.
Typic finite element models are depicted in Figure 3 and summarized in Table 1 according
to their respective numbers of elements for both cellular and equivalent materials. The
loading conditions are illustrated in Figure 3, where referent points are employed to apply
loading and constraint conditions. Vertical surface constraints are set on surfaces along X,
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Y, and Z directions, and tensile loading is applied along the Y direction at a loading rate of
1 mm/min with maximum deformation limited to 10 mm.
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equivalent material. The arrows represent the loadings, and the triangle symbolizes the normal
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Table 1. The computational efficiency of the equivalent method.

Sample

Number of Elements
The Size of Computational

Results
(Mega Byte)

Computing Time
(s) Average

Deviation
CM EM ICE

(%) CM EM ICE (%) CM EM ICE
(%)

Uniform deforming
feature with a diameter

of 0.4 mm
103,010 200 99.81 6492.16 22 99.66 8718 17.5 99.80 0.0035%

Uniform deforming
feature with a diameter

of 0.6 mm
97,845 200 99.80 6215.68 22 99.65 8274.7 17.6 99.79 0.0024%

Uniform deforming
feature with a diameter

of 0.8 mm
64,465 200 99.69 4229.12 22 99.48 4735.3 17.4 99.63 0.00015%

Stretching feature 99,630 200 99.80 6266.88 22 99.65 8534 17.2 99.80 0.170%

Shearing feature 93,105 200 99.76 5898.24 22 99.63 8076 16.9 99.79 0.851%

Double shearing feature 94,740 200 99.79 6010.88 22 99.63 8153 16.9 99.79 0.489%

Circular deforming
feature 98,725 200 99.80 6236.16 22 99.65 8423 17.7 99.79 0.458%

Double shearing feature
under shearing loading 94,740 200 99.79 6010.88 22.1 99.63 10,902 17.2 99.84 8.316%

Random deforming
feature 88,540 200 99.77 5601.28 22 99.61 10,166 17.3 99.83 4.74%

Mark: CM denotes the cellular material, EM denotes the equivalent material, and ICE denotes the increment in
the computational efficiency, which equals (CM − EM)/CM × 100.
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3.3. The Constitutive Models and Their Material Parameters for the Cellular Materials and Their
Equivalent Materials

In order to calculate the mechanical properties of the cellular materials and their
equivalent materials, two constitutive models should be employed for the basis material
and equivalent material of the cellular materials, respectively.

3.3.1. The Constitutive Model and the Material Parameters for the Cellular Material

The PDMS material is simulated using the hyper-elastic Ogden model in the ABAQUS
software [26]. The constitutive equations and responding parameter descriptions can be
found in Appendix B. A cube with one C3D8R element is established to simulate the
compression behavior. The parameters for the Ogden model are determined by fitting the
experimental results, as shown in Table 2, and the experimental and simulated stress–strain
curves are shown in Figure 4. The experiment details can be found in Appendix C. The
hyper-elastic Ogden model and its parameters will be used to simulate the mechanical
properties of cellular materials with different deformation features.

Table 2. Parameters of the hyper-elastic Ogden model for PDMS.

µ1/MPa µ2/MPa µ3/MPa a1 a2 a3 K/MPa

0.43 0.011 −0.015 4.55 16.54 −7.22 332.72
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3.3.2. The Constitutive Model and the Material Parameters for the Equivalent Material

According to the sets in Sections 3.1 and 3.2, the mechanical properties of three
uniformly distributed cellular materials are computed using the hyper-elastic Ogden model
in Section 3.3.1 and the parameters of the basis material in Table 2. The computed results
for these uniformly cellular materials are shown in Figure 5a. It is observed that stress
increases with a decrease in the pore diameter at the same strain. In addition, the computed
effective Poisson’s ratio for the cellular materials with diameters of 0.8, 0.6, and 0.4 mm is
0.343, 0.298, and 0.187, respectively. The investigated cellular materials exhibit hyperelastic
behaviors and compressibility characteristics due to the inherent hyperelasticity of the basis
material and the presence of pores within the cellular materials. As the basic data points,
these obtained results will serve as inputs for determining the mechanical properties of the
equivalent material. Subsequently, the uniformly distributed cellular materials and their
corresponding equivalent materials will be taken as examples.
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Figure 5. (a) The nominal stress−strain curves of uniformly distributed cellular materials and
corresponding elements with different pore diameters; (b) the deviations between the results of the
uniformly distributed cellular materials and their corresponding equivalent material. The deviations
are computed using the equation (SCM − SEM)/SCM × 100. SCM and SEM denote the stress values of
the cellular and equivalent materials at the same strain, respectively.

According to the structure features of the cellular materials, a hyper-foam model [26] is
employed to describe the deformation features of the equivalent materials. The details of the
hyper-foam model can be found in Appendix D. By fitting the results of cellular materials
in Figure 5a, the necessary parameters for this hyper-foam model can be determined (as
shown in Table 3). Using the hyper-foam model and its parameters, the simulated stress–
strain curves for equivalent materials closely match the results of cellular materials (as seen
in Figure 5a). Similarly, the setups for finite element modeling are shown in Section 3.2.
The nominal stress–strain curves of uniformly distributed cellular materials and their
equivalent materials are shown in Figure 5a. The deviations between the cellular and
equivalent materials’ results are computed, as shown in Figure 5b. It can be seen that
the deviations range from −0.25% to 0.5%, thereby ensuring the validity of the proposed
equivalent method. In addition, Figure 5 demonstrates a decrease in the stress responses
with an increase in the pore diameter, indicating a reduction in the equivalent modulus
associated with larger pore sizes. The obtained equivalent stress responses will be used to
compute other equivalent materials with different deformation features in Section 4 using
the hyper-foam model.

Table 3. Parameters of the hyper-foam model for equivalent material.

µ1/MPa µ2/MPa µ3/MPa a1 a2 a3 β1/MPa

1© −1.244 1.249 0.130 14.448 14.454 4.866 −980.116

2© −2.148 1.945 0431 10.762 10.994 6.914 −110.087

3© −2.577 2.334 0.519 10.772 11.004 6.923 −57.183

Remark: 1©, 2©, and 3© denote the parameters for the equivalent materials with diameters of 0.8, 0.6, and 0.4 mm,
respectively.

4. Results and Discussions
4.1. The Equivalent Computation Results for the Ordered and Random Cellular Materials
4.1.1. The Deformation Response of the Cellular and Equivalent Materials with Different
Deformation Features under Axial Tension

The calculated results for the different cellular materials and their equivalent materials
under tensile loading are shown in Figures 6–9. Initially, these results depict the force-
displacement curves of the cellular materials and their equivalent materials. Subsequently,
strain and stress contours are presented at various displacements to understand the de-
formation response across different deformation features. Following this, a comparative
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analysis is conducted between the contours of the cellular materials and their equivalent
materials to clarify the equivalent principle.
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range between 0.3160 and 0.4244. We extract three strain values in region A, such as 0.394, 

Figure 6. The results of cellular material and its corresponding equivalent material with stretching
feature under tensile loading: (a) force–displacement curves and the deviation between the results of
cellular material and equivalent material; (b) strain contour of cellular material and its corresponding
equivalent material at different displacements during the tensile process; (c) stress contour of cellular
material and its corresponding equivalent material at different displacements during the tensile
process; (d) the zoom−in strain contour of cellular material and its corresponding equivalent material
at displacement of 10 mm; (e) the zoom-in stress contour of cellular material and its corresponding
equivalent material at displacement of 10 mm. CM denotes cellular material, and EM denotes
equivalent material. In the figure, I, II, and III denote the numbers of their right regions. In (b,c),
the first and second rows exhibit the contour of cellular material and its corresponding equivalent
material from up to down, respectively, and the displacement increases from 0 mm to 10 mm from
left to right. The original states at a displacement of 0 mm represent the no-stress/no-strain state.
The same arrangement is shown in the contour image below.

From the force–displacement curves shown in Figures 6–9, it can be seen that the
calculated curves of equivalent materials agree with the results of cellular materials. The
deviations between curves of the cellular materials (CM) and equivalent materials (EM) are
computed as (CM − EM)/CM × 100, which should be as small as possible to ensure the
validity of the equivalent calculation method. As shown in Figures 6–9, all the deviations
are less than 1.25%, indicating that this equivalent method can accurately describe the
force–deformation responses of cellular materials. Furthermore, stress and strain contours
at different deformation stages are extracted to analyze the deformation features, as shown
in Figures 6b,c, 7b,c, 8b,c and 9b,c.

Figure 6 presents the deformation responses of the cellular material with a stretching
feature under tensile loading. The maximum diameter pores are predominantly located
in the middle of the sample, resulting in a strain localization in the middle of the cellular
material and its equivalent material, as shown in Figure 6b. Additionally, stress localization
is also observed in the middle two rows of the samples, as shown in Figure 6c. However,
there exists a disparity between the distributions of strain and stress values within this
localization region. Specifically, the maximum strain appears in the middle two rows
of the cellular material and its equivalent material; the maximum stress only appears in
the middle two rows of the cellular material, but the minimum stress appears in them
of the equivalent material. This discrepancy can be attributed to the distribution of the
pore influencing the modulus characteristics since bigger pore diameters correspond to
smaller equivalent moduli. Consequently, lower stresses are observed within the regions
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containing larger pore diameters in the middle part of the equivalent material. Despite
some variations in the contours, the force–displacement curve of the equivalent material is
predicted successfully using the equivalent calculation method.
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Figure 7. The results of cellular material and its corresponding equivalent material with shearing
feature under tensile loading: (a) force–displacement curves and the deviation between the results of
cellular material and equivalent material; (b) strain contour of cellular material and its corresponding
equivalent material at different displacements during the tensile process; (c) stress contour of cellular
material and its corresponding equivalent material at different displacements during the tensile
process.

In order to analyze the equivalent principles of the equivalent calculation method, we
extract the details of the strain contour and stress contour at a displacement of 10 mm, as
shown in Figure 6d,e. From Figure 6d,e, the sample is divided into three types of regions,
including (I) the uniform deformation region at both ends, (II) the transitional deformation
region, and (III) the localized deformation region. The zoom-in contours are extracted in
the middle of the images. From Figure 6d, it can be seen that the strain localization appears
in the region (III) of the cellular and equivalent materials. First, it is found that the pore wall
in the region (I) along the loading direction appears yellow, with a strain range between
0.3160 and 0.4244. We extract three strain values in region A, such as 0.394, 0.396, and
0.399. Similarly, the strain value at an arbitrary point of the equivalent material is extracted
as 0.389, which is approximate but slightly smaller than the strain value in region A of
the cellular material. Then, the pore wall in region B along the loading direction appears
from yellow to red, and its strain value changes from 0.3160 to 0.5328. We extract three
strain values in region B, such as 0.388, 0.411, and 0.489. The strain value at an arbitrary
point of the equivalent material is 0.422, approximating the average strain value in region
B. Next, the pore wall in the region (III) along the loading direction appears red, and its
strain value changes from 0.4244 to 0.5328. We extract three strain values in region C, such
as 0.497, 0.455, and 0.499. The strain value at an arbitrary point of the equivalent material is
0.514, being in the strain range in region C. The above descriptions indicate that the strain
distribution of the cellular material is predicted by the equivalent material model using
the equivalent calculation method. The shortcoming is that the strain of the equivalent
material in each region is uniform instead of non-uniform in the cellular material due to
the influence of pores. It does not still affect the strain distribution with pore distribution.
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Figure 8. The results of cellular material and its corresponding equivalent material with double
shearing feature under tensile loading: (a) force–displacement curves and the deviation between
the results of cellular material and equivalent material; (b) strain contour of cellular material and its
corresponding equivalent material at different displacements during the tensile process; (c) stress
contour of cellular material and its corresponding equivalent material at different displacements
during the tensile process.

Figure 6e also presents a stress localization in the cellular material, with the high-stress
region in the middle of the sample. In the constant, the equivalent material presents a
reversed stress localization, with a low-stress region in the middle of the sample. In order to
clarify the detailed difference in stress distribution between cellular material and equivalent
material, we analyze the stress values in different regions. For instance, from Figure 6e, the
pore wall in the region (I) of the cellular material along the loading direction presents blue,
with a stress range between 0 and 2.2 MPa; the pore wall in the region (II) along the loading
direction presents from blue to blue-green, with a stress range between 0 and 4.41 MPa; the
pore wall in the region (III) along the loading direction presents from blue-green to green,
with a stress range between 4.41 and 6.62 MPa; the maximum stress reaches 11.04 MPa in
the stress contour due to the stress concentration. The stress distribution of the cellular
material indicates that the stress increases with porosity since the effective section area
decreases with the increase in porosity under the same force. After that, as seen in the stress
distribution of the equivalent material in Figure 6e, the stress (1.05 MPa) in the region (I) is
larger than that (1.0295 MPa) in the region (II), and the stress (1.0295 MPa) in the region
(II) is larger than that (1.0163 MPa) in the region (III). Since the equivalent material has a
more uniform section and a larger section area than cellular material, it results in a smaller
stress than the cellular material at the same force. At the same time, the stress distribution
is reversed, as is the pore distribution. In addition, the stress in the equivalent material
is always smaller than that in the cellular material, especially the maximum stress. It is
because the equivalent material has a larger section area than cellular material. In addition,
the stress concentration is easily produced in the cellular material’s deformation process.
The above descriptions indicate that the stress distribution of the cellular material can also
be reversely predicted by the equivalent material model using the equivalent calculation
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method. The larger the stress in the cellular material, the smaller the stress in the equivalent
material.

The analyzed results of the deformation response of the cellular material with the
stretching feature can be used to help understand the deformation response of the cellular
material with other deformation features. From Figures 7b, 8b and 9b, it can be seen that
the strain localizations appear in the region with deformation features. For instance, the
strain localization of the equivalent material presents a shearing deformation feature since
the big pore distributes with a “backward slash” shape, shown in Figure 7b. In the strain
contour of the cellular material, a large strain appears along the big pore wall. As seen
in Figure 7c, the stress distribution is related to the strain distribution. The maximum
stress distribution region of the cellular material is the minimum stress distribution of the
equivalent material since the equivalent modulus of the equivalent material is small in
the shearing deformation feature region. The stress concentration of the cellular material
appears in the strain concentration, but the small stress distribution of the equivalent
material appears in the strain concentration.
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Figure 9. The results of cellular material and its corresponding equivalent material with circular
deforming feature under tensile loading: (a) force–displacement curves and the deviation between
the results of cellular material and equivalent material; (b) strain contour of cellular material and its
corresponding equivalent material at different displacements during the tensile process; (c) stress
contour of cellular material and its corresponding equivalent material at different displacements
during the tensile process.

The same situation appears in the stress and strain distributions of the cellular ma-
terial with the double stretching and circular deforming features. Their stress and strain
distributions present the “X” shape and “loop” shape deformation features, as shown in
Figures 8 and 9. The strain and its distribution of the cellular material are reproduced
by calculating the equivalent material and are approximated to those of the equivalent
material. The computed results indicate that the strain distribution of the cellular material
is predicted by the equivalent material model using the equivalent calculation method.
The stress value of the equivalent material is also slightly smaller than that of the cellular
material, and the stress distribution of the cellular material is also reversely predicted by
the equivalent material model using the equivalent calculation method.

Nevertheless, the above results indicate that the equivalent method can describe the
deformation mode of cellular materials with different deformation features under tensile
loading. Although there is some difference in the value, the distribution of stress and strain
in cellular materials is still simulated using the equivalent method. The method mentioned
above further proves the effectiveness of the equivalent method.
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4.1.2. The Deformation Response of the Cellular and Equivalent Materials under
Shearing Loading

The calculated results of cellular material and its corresponding equivalent material
with the double shearing feature under shearing loading are shown in Figure 10. The
maximum loading displacement is 5 mm, and the loading rate is 1 mm/min. It can be seen
from Figure 10a that the simulated force-displacement curve is approximately linear. The
average deviation between the results of cellular material and equivalent material under
shearing loading is about 8.316%, which is slightly bigger than that under tensile loading.
From Figure 10b,c, the equivalent method captures the deformation mode of cellular
material predicted by the direct numerical simulation. The stress and strain contours
present a shearing deformation mode. In addition, the equivalent method captures the
distributions of strain and stress in the cellular material predicted by the direct numerical
simulation.

The red dashed line in Figure 10b shows that the same shapes of strain distribution are
obtained in the results of the cellular material and its corresponding equivalent material.
From the strain contour, the maximum strain of the cellular material is larger than that of the
equivalent material, which is more remarkable than the deformation response under tensile
loading. From the zoom-in image in Figure 10b, the pore presents shearing deformation
with a non-uniform strain distribution, and the maximum strain distributes in the pore wall
along the shearing deformation direction. It differs from the pore wall’s axial deformation
under tensile loading, as shown in Figure 8b. The above-mentioned may be the reason
why the average deviation between the results of cellular material and equivalent material
under shearing loading is bigger than that under tensile loading.

In Figure 10c, the high stress of cellular material is distributed in the pore wall with
a large diameter; in contrast, the low stress of equivalent material is distributed in the
low modulus region, like an italic “X” shape. The phenomenon is in line with the results
under tensile loading. In addition, the pore walls present shearing deformation under the
shearing loading. The stress distribution of cellular materials is also reversely predicted by
the equivalent calculation method. The above results indicate that the equivalent method
can describe the deformation response of cellular materials under shearing loading.

4.1.3. The Prediction for the Deformation Response of the Random Cellular Material under
Axial Tension

The simulated results for the random cellular material under axial tension are shown
in Figure 11. From Figure 11a, the simulated force–displacement curve of equivalent
materials agrees with the result of the cellular material with an average deviation of 4.74%.
From Figure 11b,c, it can be seen that the equivalent method can capture the strain and
stress distributions under tensile loading. The deformation region concentrates on the big
pores in the cellular material and the low-modulus elements in the equivalent material.
On the contrary, the high stress is distributed on the wall of big pores in the cellular
material, and the low stress is distributed on the element with a low modulus in the cellular
material. In addition, the stress and strain distributions of the random cellular material
and its corresponding equivalent material are not completely in line with the big pore
distribution, as seen from the dashed box in Figure 11b,c. It may be because the surrounding
structures affect the deformation feature. It is still a complex question that will continue to
be investigated. Nevertheless, the above results indicate that the equivalent method can
describe the deformation behavior of the random cellular material under tensile loading.
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Figure 10. The results of cellular material and its corresponding equivalent material with shearing 
feature under shearing loading: (a) force-displacement curves and the deviation between the results 
of cellular material and equivalent material; (b) strain contour of cellular material and its corre-
sponding equivalent material at different displacements during the tensile process; (c) stress contour 
of cellular material and its corresponding equivalent material at different displacements during the 
tensile process. 

The red dashed line in Figure 10b shows that the same shapes of strain distribution 
are obtained in the results of the cellular material and its corresponding equivalent mate-
rial. From the strain contour, the maximum strain of the cellular material is larger than 
that of the equivalent material, which is more remarkable than the deformation response 
under tensile loading. From the zoom-in image in Figure 10b, the pore presents shearing 

Figure 10. The results of cellular material and its corresponding equivalent material with shearing
feature under shearing loading: (a) force-displacement curves and the deviation between the results of
cellular material and equivalent material; (b) strain contour of cellular material and its corresponding
equivalent material at different displacements during the tensile process; (c) stress contour of cellular
material and its corresponding equivalent material at different displacements during the tensile
process.
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1.819%. It indicates that the equivalent method can reasonably describe their mechanical 
properties. Also, it infers that the influence of the random distribution of unit cells on the 
macro mechanical properties can be neglected under the same unit cells. However, the 
size of the micro-structure can affect the macro mechanical properties [14,27]. From Figure 
13b,c, the deformation model presents uniform deformation macroscopically and non-
uniform deformation microscopically. Compared with the stress and strain distributions 
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Figure 11. The simulated results of the random cellular material under tensile loading: (a) force–
displacement curves and the deviation between the results of cellular material and equivalent
material; (b) strain contour of cellular material and its corresponding equivalent material at different
displacements during the tensile process; (c) stress contour of cellular material and its corresponding
equivalent material at different displacements during the tensile process.

4.1.4. The Effect of the Randomness on the Deformation Response of the Random Cellular
Material under Axial Tension

In order to further verify the equivalent method and its computational efficiency and
accuracy, a random equivalent material with 6400 elements is computed under tensile
loading, as shown in Figure 12. The 6400 elements represent 6400 cells in the cellular
material, indicating the high computation burden.

Like the random model with 200 elements in Figure 11, the random equivalent ma-
terial model with 6400 elements is built by combining the finite element software and
Python scripts, as shown in Appendix A. The ratio of the three types of unit cells in the
random equivalent material with 6400 elements is the same as that with 200 elements. The
randomness increases with the number of unit cells. The loading conditions and mate-
rial parameters are the same as those in Section 3. The simulated results are shown in
Figure 13. From Figure 13a, it can be obtained that the average deviation between the force–
displacement curve of the random model with 200 elements and that with 6400 elements is
1.819%. It indicates that the equivalent method can reasonably describe their mechanical
properties. Also, it infers that the influence of the random distribution of unit cells on
the macro mechanical properties can be neglected under the same unit cells. However,
the size of the micro-structure can affect the macro mechanical properties [14,27]. From
Figure 13b,c, the deformation model presents uniform deformation macroscopically and
non-uniform deformation microscopically. Compared with the stress and strain distribu-
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tions in Figure 11b,c, the greater the number of elements, the stronger the randomness is,
and the better the uniformity.
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Figure 12. The model of an equivalent material with 6400 (40 × 80 × 2) elements for calculating the
deformation behaviors of a random cellular material. The green, white, and red codes denote the
equivalent cells with pore diameters of 0.4, 0.6, and 0.8 mm, respectively.
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4.2. The Computational Efficiency between the Cellular and Their Equivalent Materials

The computational efficiency under tension loading is concluded in Table 1 to clarify
the advantage of the equivalent method. The number of elements, the size of the calculated
results, and the computing time of the job are discussed. It can be seen from Table 1 that,
compared with the cellular material, the number of elements in the equivalent materials
is averagely reduced by 99.78%, the size of calculated results in the equivalent material
is averagely reduced by 99.62%, and the computing time in the equivalent material is
averagely reduced by 99.78%. The above results indicate that the computing efficiency
of the equivalent method has been greatly improved. Comparing the results of cellular
materials and equivalent materials, the average deviation for cellular materials with a
uniform distribution is 0.002%, which approaches zero. The average deviation for cellular
materials with other deformation features is 0.492% under tensile loading and 8.32% under
shearing loading. These low deviations also indicate that the equivalent method can
improve the computational efficiency of cellular materials.

In finite element modeling, the selection of the constitutive model is key. Based on
the hyper-elastic PDMS and its cellular material, this method selects the hyper-elastic and
hyper-foam models to simulate the mechanical properties of the PDMS and the equivalent
material of the cellular material. Whether this method suits the mechanical properties of
other materials, such as viscoelastic material, elastic-plastic material, visco-plastic material,
and so on, still needs further verification. Additionally, the anisotropic responses in cellular
materials may be a difficult problem for applications and should be considered further
in the constitutive model. For the different cells, the mechanical properties are different.
Completing equivalence through the material parameters is still a key and a difficulty. In
this study, the pore and topology of the unit cell are regular, and the equivalent method is
easy to operate. However, in the equivalent calculation of the irregular cellular material, the
randomness of the pore, including the pore diameter and distribution, could increase the
difficulty of determining the RVE. In general, this proposed equivalent approach achieves
the aim of equivalently calculating. By employing the equivalent approach in practical
applications, we first predict the macroscopic mechanical behaviors and obtain the total
force–displacement curves. After obtaining a holistic understanding, we examine the
local deformation in detail, paying special attention to regions that exhibit significant
strain distributions and also assessing the correction between the maximum and ultimate
strains of the basis material. The results of these calculations can serve as a foundation for
prompt decision-making since they are characterized by high efficiency. If more intricate
calculations and detailed results are desired, localized, meticulous computations become
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necessary. Overall, this approach conveniently provides preliminary assessments for
engineering applications.

5. Conclusions

This study proposes a novel and straightforward equivalent method for computing
the mechanical properties of random and ordered hyper-elastic cellular materials with
regular unit cells. This equivalent method is realized by integrating the finite element
method with the distribution characteristic of pores. The efficacy of the proposed method
is verified by comparing the simulated results of cellular materials with those of equivalent
materials. The main conclusions are obtained as follows:

(1) The equivalent calculation method can reasonably compute the macroscopic force-
displacement curves of the random and ordered cellular materials with different
deformation features. The average deviation is 1.67% when contrasting the results of
the cellular materials and equivalent materials. The deviation is more pronounced in
random cellular materials than ordered cellular materials due to intricate deforma-
tions arising from neighboring pores. Shearing loading produces a more noticeable
deviation than tensile loading owing to the complex shearing deformation endured
by pore walls.

(2) The equivalent calculation method can reasonably describe the stress and strain dis-
tributions. Equivalent materials exhibit localized strains in regions with distinctive
deformation features, with cellular material strains closely approximating their equiv-
alent counterparts. Moreover, the equivalent material model can predict the cellular
material’s stress distribution in reverse. Notably, the region of maximum stress dis-
tribution in cellular material corresponds to the minimum stress distribution in the
equivalent material, a result of the smaller equivalent modulus within the deformation
feature zone. Discrepancies between cellular and equivalent material contours stem
from surrounding structural influences.

(3) The equivalent calculation method saves huge computational burdens. Compared
with the results of the cellular materials, equivalent materials showcase a substantial
reduction, presenting 99.78% in element count, 99.62% in result size, and 99.78% in
computation time.

The equivalent method will be expected to be applied to the pre-simulation of the
prototype, providing a reference for the final configuration of the structure.
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Appendix A. Python Script for Establishing the Random Equivalent Material

In order to establish the random equivalent material, the randomness can be realized
using a Python script. The main processes of finite element modeling using a Python script
are shown in Figure A1. First, establish the model in the ABAQUS and then mesh it. Next,
set the material parameters for each element using a Python script. An equivalent model
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with different material parameters is obtained. Finally, the loading conditions are applied
to the model. The corresponding Python script is given as follows:
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We only set material parameters for each element using a Python script, and other
operations are completed in the finite element software ABAQUS. The script fits the random
materials with 200 elements and 6400 elements.

The Python script is given as follows:

from abaqus import *
from abaqus Constants import *
import random
myModel = mdb.models[“Model-random”]
myPart = myModel.parts[‘Part-1’]
myElement = myPart.elements
for iter in range(len(myElement)):

randNum = random.randint(1, 3)
setName = ‘Set-{0}’.format(iter)
myPart.Set(elements=myElement[iter:iter+1], name=setName)
myPart.SectionAssignment(region=myPart.sets[setName],

sectionName=‘Section-{0}’.format(randNum), offset=0.0,
offsetType=MIDDLE_SURFACE, offsetField=”,
thicknessAssignment=FROM_SECTION)

Appendix B. The Hyperelastic Ogden Model

The energy potential of the Ogden model is as follows:
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where µi and αi denote the material parameters, K is the bulk modulus, J is volumetric
strain, and λ1, λ2, λ3 denote the principal stretch ratio.

The stress-strain relations can be derived as follows:
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Appendix C. Experimental Method and Results

This study uses a hyper-elastic polydimethylsiloxane (PDMS) as the basis material for
the cellular materials. In order to obtain the basic material parameter for the finite element
modeling, a specimen with a diameter of 10 mm and a height of 10 mm is used to conduct
the axial compression experiment with a loading rate of 1 mm/min. A material testing
machine with a maximum load of 1 kN was used. The experimental true stress-strain curve
is given in Figure A2.
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