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Abstract: Biocomposites based on polylactic acid (PLA), tall wheatgrass (TWG), and hemp (H) were
made by injection molding. The article discusses the impact of the agrofiller content on the composite
properties, including thermal (DSC, DMA, and TG) and mechanical characteristics (tensile modulus,
tensile strength, and impact strength). Generally, the introduction of a plant filler into the polylactide
matrix reduced the thermal resistance of the resulting composites. Plant fillers influenced primarily
the cold crystallization process, probably due to their nucleating properties. The addition of fillers to
the PLA matrix resulted in an increased storage modulus across all tested temperatures compared to
pure PLA. In the case of a composite with 50% of plant fillers, it was almost 118%. The mechanical
properties of the tested composites depended significantly on the amount of plant filler used. It
was observed that adding 50% of plant filler to PLA led to a twofold increase in tensile modulus
and a decrease in tensile strength and impact strength by an average of 23 and 70%, respectively. It
was determined that composites incorporating tall wheatgrass (TWG) particles exhibited a slightly
elevated tensile modulus while showcasing a marginally reduced strength and impact resistance in
comparison to composites containing hemp (H) components.

Keywords: biocomposite; PLA; hemp; tall wheatgrass; mechanical properties; DSC; DMA; TG

1. Introduction

Despite society’s growing awareness of the detrimental environmental effects asso-
ciated with traditional plastics production, more than 98% of all plastics continue to be
derived from fossil fuels, predominantly oil and gas. Recent data reaffirm that global
plastics production in 2021 saw a notable rise compared to previous years, surpassing
390 million tons. This underscores the substantial and ongoing demand for plastics [1,2].
Hence, there is an urgent requirement for concerted efforts to decrease the manufactur-
ing of polymers and composites originating from fossil resources. Therefore, one of the
most important directions in environmental protection is replacing traditional petroleum-
based plastics with new, biodegradable materials [3–10]. One of the most famous types of
biodegradable composites are composites containing wood raw material—wood–plastic
composite (WPC). The WPC is usually produced based on the basic thermoplastic poly-
mers, e.g., polypropylene, polyethylene, polyvinyl chloride, etc., and wood particles [11–21].
Biodegradable and natural polymers are gaining significant interest in scientific circles and
an increasing one in the industrial sector due to their environmentally friendly composting
properties. To support a sustainable market economy and address current environmental
challenges, biodegradable materials should play an increasingly significant role [22,23].
One of the basic and most frequently used polymers of natural origin and completely
biodegradable is polylactic acid (PLA). It can be used without filling or be filled with raw
materials, e.g., plant fibers. In this case, a completely biodegradable composite called a
biocomposite is obtained. The possibilities of using PLA for the production of biocom-
posites have been studied many times [24–30]. Traditional WPC is manufactured using
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lignocellulosic material in the form of shredded wood. Apart from the basic form of wood
raw material, which is wood flour [31–33], larger wood chips have also been used as a filler.
Additionally, it has been shown that raw material from the wood industry is useful for
the production of WPC [34–36]. One of the clear trends currently occurring in the world
of composites is the replacement of reinforcing synthetic fibers by natural fibers. This is,
among other things, due to the good availability, high specific strength, and low cost of
natural fibers [6,37–41]. Although, traditional plant fibers have found wide application
in the textile, paper production, and packaging industries, their unique properties are
increasing their popularity in the production of biodegradable composite materials [10].
Extensive research has been conducted to explore the potential of various natural fibers
for reinforcing composites. In numerous instances, test results have revealed that com-
posites incorporating natural fibers offer numerous advantages compared to those using
synthetic fibers. These benefits encompass an abundant availability, a renewable source
of raw materials, a full biodegradability, and a high strength-to-weight ratio [9,42–51].
However, it should be remembered that the properties of composites containing natural
fibers depend on many factors. One of the basic factors influencing the properties of a
biocomposite is the content of the natural filler [52,53]. However, for various reasons,
including processing problems [7], low filling levels are usually used. In the case of bio-
composites filled with plant fibers such as hemp, linen, or jute, the amount of filler usually
does not exceed 30% [54,55]. Nonetheless, it has been shown that it is possible to produce
composites based on PLA and, for example, hemp, in which the content of plant raw
material is 40% [50,56–58]. However, few studies indicate the efficient filling of PLA with
hemp fibers at a level of 50% or higher [59]. But there are also known studies in which the
content of natural fibers is below 10%. This is often due to inappropriate analyses being
carried out [60]. In general, the connection between the reinforcing fiber and the matrix
plays a crucial role in the mechanical properties of composites. Weak bonding between
these two phases results in low mechanical and physical properties of the composite [61].
Many chemicals have been tested in laboratory experiments for their ability to improve the
fiber/matrix interface of polymer composites, such as hydroxide, sodium peroxide, organic
and inorganic acids, silane, acrylic anhydrides and monomers, and others. A beneficial
effect of this modification was demonstrated, especially on the mechanical properties of
composites with modified fiber [60–63]. It can be noted, however, that a commonly used
method of preparing plant fibers is the modification of this raw material with NaOH.
The topic of using various plants in the production of biocomposites is generally well
documented. Often, the choice of a particular raw material is influenced by geographical
factors or price. One promising approach to creating cost-effective biocomposites is using
fast-growing raw materials. However, there is a lack of reports on the potential use of tall
wheatgrass as a PLA filler for the production of biocomposites. This material or its variants
have shown promise in the production of wood-based panels [64–66]. Although it is also
mentioned in the context of other applications [8], it has not been sufficiently demonstrated
whether tall wheatgrass or a high content of this filler can be used as a PLA filler. This type
of biocomposite has the potential for a broad spectrum of uses. They can undoubtedly be
used in many sectors, e.g., the packaging industry, for disposable products and housings
of electronic products, in the furniture industry, and many others. Hence, the primary
objective of this study was to explore the feasibility of incorporating tall wheatgrass as a
reinforcing agent in PLA and to assess the characteristics of the resulting biocomposite
composed of these two components. For comparisons, we also fabricated and evaluated
biocomposites consisting of PLA and hemp fibers.

2. Materials and Methods
2.1. Materials

In the studies, two types of lignocellulosic plant material, tall wheatgrass (Agropyron
elongatum) (TWG) and hemp (Cannabis sativa L.) (H) particles were used. Plant particles
were produced by grinding whole stems, without separating the fiber fraction. Technical
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raw plant fibers (length 5 mm, dimension 0.25 mm) were obtained from Research &
Development Centre for Wood-Based Panels Sp. z o. o. in Czarna Woda. The fibrous
components were additionally screened (through an analytical LAB-11-200/UP sieve shaker
using 35 mesh sieves) to obtain a repeatable material. As a matrix, the PLA 2003D was used
in a granule form obtained from NatureWorks LLC. Minnetonka, MN, USA with a density
of 1240 kg/m3 and melt flow index of 5.92 g/10 min (190 ◦C/2.16 kg). The TWG and H
were treated with 5% NaOH to remove surface impurities, then washed using distilled
water and dried to a moisture of 6%. The raw materials were mixed in proper proportions
as shown in Table 1.

Table 1. Experimental design.

Composite Code Filler Content (%) Filler

PLA 0 -
H_90_10 10 H

TWG_90_10 10 TWG
H_70_30 30 H

TWG_70_30 30 TWG
H_50_50 50 H

TWG_50_50 50 TWG

2.2. Samples Preparation

Test specimens were made by injection molding using a screw injection molding
machine Wh-80 Ap. The temperature profile was 160, 170, and 180 ◦C. The injection
pressure time, hold pressure time, and cooling time were 3, 6, and 40 s, respectively.
The specimens were made according to EN ISO 527-2 [67]. After processing, specimens
were stored under controlled conditions (50% relative humidity and 23 ◦C) for 2 weeks
before testing.

2.3. Methods
2.3.1. Thermogravimetric Analysis

Thermogravimetric analyses were performed in a nitrogen atmosphere using a Q500
thermobalance (TA Instruments, New Castle, DE, USA). Approx. 33 mg (composites) or
11.5 mg (hemp and tall wheatgrass) of samples was tested in the temperature range from
25 to 700 ◦C with a temperature change rate of 10 ◦C/min. The T5% values corresponding
to the temperature of the loss of 5% of the initial sample mass, humidity (M), and residue
(R) were determined from the thermogravimetric curves. The value of T5% was taken as a
parameter determining the thermal resistance of the material.

2.3.2. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry studies were performed in a nitrogen atmosphere
using a Q200 scanning calorimeter (TA Instruments, New Castle, DE, USA). Approx.
12.5 mg of samples was tested in the temperature range from 0 to 200 ◦C. The temperature
change rate was 10 ◦C/min. The glass transition temperature (Tg), cold crystallization
temperature (Tcc), enthalpy change in the cold crystallization process (∆Hcc), melting
point (Tm), and enthalpy change in the melting process (∆Hm) of individual samples were
determined based on the 2nd heating curve. The degree of crystallinity (Xc) was calculated
based on Formula 1, assuming that the enthalpy change value of 100% crystalline PLA
(∆Hm100%) was 93 J/g [68].

Xc =

(
Hm − Hcc

Hm100%·(1 − x)

)
·100% (1)

where:

∆Hm—enthalpy change in the melting process;
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∆Hcc—enthalpy change in the cold crystallization process;
∆Hm100%—enthalpy change value of 100% crystalline PLA;
x—filler content.

Thermomechanical tests (DMA) were performed using a Q800 dynamic mechanical
analyzer (TA Instruments, New Castle, DE, USA). The tests were carried out in the temper-
ature range from 30 to 150 ◦C with a heating rate of 3 ◦C/min. The samples had the shape
of a cuboid with dimensions of 80 mm × 10 mm × 4 mm. The strain was 0.01% and the
strain frequency was 1 Hz.

2.3.3. Mechanical Testing

Mechanical properties of tested composites were evaluated in relation to tensile and
impact properties. Tensile tests were performed according to EN ISO 527-2 using an Instron
3367 machine. The speed of the crosshead was 2 mm/min. Unnotched Charpy impact
strength tests were conducted according to EN ISO 179-1 [69]. All tests were performed at
room temperature (23 ◦C) and constant relative humidity (50%).

2.4. Statistical Analysis

The obtained data were statistically analyzed using Statistica version 13. A one-way
analysis of variance (ANOVA) was conducted to determine the significance of the effect
of the kind and natural filler content on the WPC mechanical properties. Tukey’s test was
applied to evaluate the statistical significance between the mean values of the properties
of composites with different fillers, respectively. The same letters indicate that there is no
significant difference (at α = 0.05) for a given property between compared composites with
different kinds of composites.

3. Results

Table 2 shows the TG results of the tested materials. The temperature value of the loss
of 5% of the initial mass (T5%) was assumed as the thermal resistance of the materials.

Table 2. Results of TG tests of the tested composites.

Sample T5% (◦C) M (%) R (%)

PLA 310.2 0.0 0.0
H_90_10 299.5 0.5 3.0

TWG_P_90_10 289.7 0.5 2.7
H_70_30 286.9 0.8 8.0

TWG_70_30 259.2 1.0 8.4
H_50_50 274.1 2.0 12.6

TWG_50_50 243.9 1.6 15.7

The T5% value of pure PLA was 310.2 ◦C. The introduction of the plant filler into the
matrix resulted in a decrease in the thermal resistance of the obtained composites. The
T5% of the composite containing 10 wt.% of hemp dropped to 299.5 ◦C. The use of tall
wheatgrass resulted in an even greater reduction in the thermal resistance of the produced
composites. The obtained T5% value of the TWG_90_10 sample dropped to 289.6 ◦C, so it
was 10 ◦C lower than that of the H_90_10 sample.

Increasing the content of plant fillers resulted in an even greater decrease in the thermal
resistance of composites (Figure 1).

With a maximum filler content of 50 wt.%, the T5% value of the H_50_50 sample was
274.1 ◦C, and therefore, it was 36 ◦C lower than the value obtained for pure PLA. As the
fiber content increased, the differences in the thermal resistance of composites with different
fillers increased even further. Composites containing tall wheatgrass had a significantly
lower thermal resistance compared to composites containing hemp. The T5% value of the
TWG_50_50 sample was only 243.9 ◦C, so it was 30.2 ◦C lower than the sample containing
the same amount of hemp and as much as 66.3 ◦C lower than pure PLA.
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The introduction of plant fillers in the composites caused changes in thermal resistance
and differences in TG curves compared to PLA. An additional weight loss was observed at
temperatures up to 100 ◦C, which was caused by moisture in the fillers. The weight loss
due to moisture evaporation increased with an increasing filler content from 0.5% to 2%.
This is a typical relationship: the more filler, the more water, and the greater the weight loss.
The occurrence of a small amount of moisture in materials containing plant fillers is typical
for this type of material due to the hydrophilic nature of the fillers used. Additionally, there
were no significant differences between hemp and tall wheatgrass, which shows that the
moisture absorption of these materials is at a similar level.

The introduction of fillers also resulted in the appearance of residues (R), i.e., ash re-
sulting from the degradation process. As expected, the more filler was in the composite, the
higher the R value. With filler content up to 30 wt.%, there were no significant differences
between hemp and tall wheatgrass. The recorded amounts of R ranged from approx. 3%
for materials containing 10 wt.% of filler up to approx. 8% for materials containing 30 wt.%
of filler. Only at the highest filler content was the difference in residue noticeably greater
for the composite containing tall wheatgrass (15.7% vs. 12.6%).

The reduction in the thermal resistance of composites compared to pure PLA is the
result of the introduction of plant fillers into the polymer matrix. Fillers have significantly
lower degradation temperatures compared to the PLA polymer (Table 3). Studies have
shown that hemp begins to degrade at 285.9 ◦C and tall wheatgrass at 240.5 ◦C, which are
much lower values than in the case of PLA (310.2 ◦C).

Table 3. TG results of H and TWG.

Sample T5% (◦C) M (%) R (%)

H 285.9 4.5 14.0
TWG 240.5 6.1 23.3

The degradation of composites showed differences due to the distinct degradation
curves of hemp and tall wheatgrass (Figure 2). Initially, the course of mass change (up
to 100 ◦C) was similar, which confirmed the previous statement about a similar moisture
absorption of these two materials. Above this temperature, differences began to occur. The
different nature of the degradation curves of hemp and tall wheatgrass at higher temper-
atures explains the differences observed in the degradation of the composites (Figure 2).
The lower T5% values of TWG samples resulted from the much lower thermal resistance of
tall wheatgrass than hemp. There were more residues of the degradation process in tall
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wheatgrass, which was reflected in the R value results. This was especially noticeable with
the highest filler content.
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Table 4 shows the DSC results of the tested materials. The analysis was carried out
based on the second heating curves. The first heating scans were aimed at removing the
thermal history of the materials resulting from the processing process.

Table 4. DSC test results.

Sample Tg (◦C) Tcc (◦C) ∆Hcc (J/g) Tm (◦C) ∆Hcc (J/g) Xc (%)

PLA 60.1 127.5 4.7 151.1 5.1 0.4
H_90_10 59.9 119.3 20.0 149.3 21.3 1.6
TWG_90_10 60.5 118.3 20.9 149.4 21.9 1.2
H_70_30 59.8 121.8 15.7 149.9 15.8 0.2
TWG_70_30 59.6 121.7 14.9 149.9 15.5 0.9
H_50_50 59.0 126.0 10.4 150.3 10.8 0.9
TWG_50_50 58.8 128.5 7.0 151.3 7.5 1.1

It can be concluded that the changes observed in the DSC curves were primarily influ-
enced by the content of plant fillers and not their type. Therefore, it could not be indicated
which of the tested fillers had a more significant impact on the thermal characteristics of the
tested composites. Therefore, since there were no differences between materials containing
hemp or tall wheatgrass, a further analysis is appropriate for both types of composites.

The glass transition temperature (Tg) of the tested materials was practically the same
regardless of the amount of plant filler in the PLA matrix. Although a slight decrease in the
Tg values could be observed depending on the filler content, the observed changes were
very small and did not affect the functional properties of the obtained composites. The
observed slight decreases in Tg may be the result of a faster heat transfer into the polymer
phase of the composite associated with a smaller amount of the polymer phase. Reducing
the polymer content resulted in a lower thermal lag and a lower recorded glass transition
temperature during the thermal analysis of polymers.

Plant fillers significantly impacted the cold crystallization and melting processes
(Figure 3).
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The introduction of the smallest quantity of fillers into the matrix greatly intensified
the cold crystallization process, while simultaneously shifting the process towards lower
temperatures. The enthalpy change in the cold crystallization process (∆Hcc) increased
significantly from 4.7 J/g for pure PLA to approx. 21 J/g for composites containing 10 wt.%
of fillers. At the same time, the cold crystallization temperature (Tcc) decreased from
127.5 ◦C to approximately 119 ◦C. The consequence of increasing the intensity of the cold
crystallization, and therefore increasing the amount of the crystalline phase formed, was
an increase in the intensity of the melting process in which the crystalline phase melted.
The enthalpy change in the melting process (∆Hm) increased from 5.1 J/g for pure PLA to
approximately 22 J/g for composites containing 10 wt.% of fillers. However, the melting
temperature (Tm) changed slightly, decreasing from 151.1 ◦C to 149 ◦C. The structure of
the crystalline phase of these materials was therefore practically the same, and since the
changes in Tm were similar even in the case of larger amounts of fillers, this also applied to
the remaining composites.

Increasing the filler content led to a gradual decrease in the intensity of the cold
crystallization and melting processes. With the increase in the quantity of fillers, the ∆Hcc
values decreased to approximately 15 J/g for composites containing 30 wt.% of fillers
and 7–10 J/g for composites containing 50 wt.% of fillers. Tcc values also increased to
approximately 122 and 127 ◦C, respectively. As expected, the ∆Hm values also decreased to
approximately 15 J/g for a content of 30 wt.% of fillers and 7–11 J/g for 50 wt.% of fillers.

The observed large increase in the intensity of the cold crystallization and decrease in
its temperature at a low filler content is probably caused by the nucleating properties of
the fillers. Small filler particles serve as nucleating centers, increasing the growth of the
crystalline phase. The decrease in intensity with higher filler contents may result from two
phenomena. In the first case, an increase in the amount of filler may limit the growth of the
crystalline phase due to the lack of space for the growth of crystallites, which are blocked
by the filler particles. In the second case, the decrease in the intensity of cold crystallization
may result simply from the lower content of the polymer phase in the tested composite,
which translates into lower energy effects of the cold crystallization and melting processes.

Despite the very large impact of the fillers used on the cold crystallization and melting
processes, DSC tests showed that the initial degree of crystallinity of all composites was
lower than 2%. This is because the entire crystalline phase melting during the melting
process was formed only in the cold crystallization process and was not present in the
material before the test, which was confirmed by the similar values of ∆Hcc and ∆Hm.
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Plant fillers also changed the thermomechanical characteristics of the composites. The
introduction of fillers into the matrix caused an increase in the storage modulus (E’) in the
entire tested temperature range compared to pure PLA (Table 5).

Table 5. DMA research results.

Sample E’30 (MPa) E’50 (MPa) E’70 (MPa) E’90 (MPa) E’130 (MPa) Tg (◦C)

PLA 2625 2515 28 7 73 69.1
H_90_10 3149 3005 138 17 166 71.2
TWG_90_10 3047 2906 127 21 161 71.2
H_70_30 4243 4111 358 94 508 71.0
TWG_70_30 3984 3837 398 78 470 71.9
H_50_50 5427 5267 1384 309 1088 72.6
TWG_50_50 5716 5520 888 253 733 71.0

The E’30 value of pure PLA was 2625 MPa and increased significantly after adding
plant fillers. The observed stiffening effect is typical for this type of composites, due to
the much higher storage modulus of plant fillers compared to the storage modulus of
polymers [2,3]. Adding 10 wt.% of fillers resulted in an increase in E’30 to 3149 for hemp
and 3047 MPa for tall wheatgrass. After adding 50 wt.% of fillers, the E’30 values increased
to 5427 MPa and 5716 MPa, respectively. This dependency was valid also for modules
determined at higher temperatures.

Comparing hemp and tall wheatgrass, it can be concluded that up to 30 wt.% of
filler, composites containing hemp were characterized by slightly better thermomechanical
properties. At higher filler contents, especially at lower temperatures, composites with tall
wheatgrass had an advantage.

Noteworthy are the large differences in the E’130 value between individual composites
(Figure 4).
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Figure 4. DMA curves of selected samples.

The observed increase in E’130 was the result of the cold crystallization process. The
crystallites formed in this process were characterized by much higher values of storage
modulus, which translated into recorded changes. Interestingly, unlike DSC tests, samples
containing 50 wt.% of fillers were characterized by a greater intensity of the cold crystal-
lization process. This may therefore suggest that the decrease in the intensity of the cold
crystallization observed in the DSC curves was mainly caused by a decrease in the share of
the polymer phase in composites containing larger amounts of fillers.
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Mechanical Properties

Figures 5–7 present the results of testing the mechanical properties of the analyzed
composites. The tensile modulus (Figure 5), regardless of the type of filler, significantly
depended on the degree of filling of the composite. Adding 10 wt.% of filler to PLA caused
an increase in the tensile modulus by an average of 19.7% and 17.5% when the filler was
tall wheatgrass and hemp particles, respectively. Increasing the filling level from 10 to
30 wt.% caused an increase in the tensile modulus for both types of particles by an average
of 34.5%, and after adding 50% of the filler, the increase in the modulus was even greater
and amounted to an average of 64%. It is worth noting that PLA with 50 wt.% of hemp
and tall wheatgrass particles resulted in an average twofold increase in the tensile modulus
compared to the pure polymer.
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The effect of the amount of filler on the tensile strength (Figure 6) was not as significant
as on the tensile modulus. As expected, the tensile strength decreased as the degree of
filling the polymer with plant particles increased, and the changes in strength values for
the assumed filling levels, as well as for the tensile modulus, were generally statistically
significant. This impact also depended on the type of filler and was much smaller for
a composite containing hemp. The composite containing 10 wt.% of plant filler had an
average tensile strength of 60.1 MPa, which was 7.8% lower than pure PLA. Increasing
the amount of filler to 30 wt.% resulted in a decrease in the strength of the composite
with tall wheatgrass and hemp particles by 7.9 and 4.6%, respectively. Changing the
filler amount to 50 wt.% increased these decreases to 22.1 and 14.9%, respectively. In
relation to the pure polymer, the composite filled with 50 wt.% tall wheatgrass and hemp
particles were characterized by a reduced tensile strength by 29.1 and 20.6%, respectively,
which confirmed that adding plant particles to the polymer had a much greater impact on
increasing its stiffness than to the decrease in its tensile strength.

A significant effect of the filler was also noted for the impact strength (Figure 7), which
decreased significantly with an increase in filler amount. The differences between the
average impact strength values for individual levels of PLA filling with plant particles
were statistically significant. Filling the polymer with 10 wt.% of plant particles reduced
the impact strength compared to pure PLA by an average of 33.8%. Increasing the amount
of filler to 30 wt.% reduced the impact strength by approximately 56%, and when it was
50 wt.%, this decrease increased to approximately 71%.

The reduction in tensile strength and impact strength can be attributed to the formation
of numerous voids resulting from the addition of the plant filler. The number of voids
increased with the rise in filler content. This was likely due to the inadequate dispersion
and adhesion of the hydrophilic natural fiber within the hydrophobic polymer matrix. The
recorded reduction in mechanical properties is a typical effect of the introduction of plant
fillers, which should be taken into account when planning the use of WPC materials [70,71].

The type of plant particle added to the polymer generally has little effect on the
mechanical properties. Usually, the differences between the values for the composite
with tall wheatgrass and hemp particles do not exceed a few percent, but they are often
statistically significant (Table 6).
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Table 6. ANOVA test on the effects of the kind of natural filler content on WPC’s mechanical
properties (p-values).

Property
Filler Content (%)

10 30 50

Tensile modulus 0.026138 * 0.042118 * 0.004789 **
Tensile strength 0.000033 ** 0.071074 ns 0.007733 **
Impact strength 0.690906 ns 0.743999 ns 0.016076 *

* Significant at 0.01; ** significant at 0.05; ns, nonsignificant at 0.05.

The most significant variations were observed in composites that contained plant raw
material at the highest analyzed percentage. When comparing TWG and H, it was found
that the tensile strength and impact strength were 11% and 19% lower, respectively, in the
composites that contained TWG. No significant differences were observed in the impact
strength of 10% and 30% and tensile strength of 30% between composites containing TWG
and H.

4. Conclusions

1. The introduction of a plant filler into the polylactide matrix reduced the thermal
resistance of the resulting composites. The decrease in thermal resistance was greater
in the case of the composite containing couch grass. Additionally, it was observed that
increasing the content of plant fillers resulted in a further decrease in the degradation
temperature of the composites.

2. Plant fillers influenced primarily the cold crystallization process, probably due to
their nucleating properties. After the introduction of plant filler particles, a significant
increase in the intensity of the cold crystallization process was observed, along with a
simultaneous decrease in the temperature of this process.

3. Plant fillers change the thermomechanical characteristics of composites. The introduc-
tion of fillers into the matrix caused an increase in the storage modulus in the entire
tested temperature range compared to pure PLA.

4. Filling PLA with plant particles allows one to obtain a composite with increased
stiffness and reduced strength and impact resistance.

5. The mechanical properties of the tested composites depended significantly on the
amount of plant filler used. Increasing the amount of filler resulted in an increase
in the elastic modulus and a decrease in the elastic modulus as well as a decrease in
tensile strength and impact strength.

6. The mechanical properties of composites depended only slightly on the type of
plant particles used to produce them. Composites containing TWG particles had a
slightly higher elastic modulus and slightly lower strength and impact strength than
composites containing H.
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19. Gozdecki, C.; Kociszewski, M.; Wilczyński, A.; Zajchowski, S. Mechanical Properties of Wood-Polymer Composites with Different
Polymers. Ann. Warsaw Univ. Life Sci. For. Wood 2011, 74, 82–85.

20. Li, J.; Huo, R.; Liu, W.; Fang, H.; Jiang, L.; Zhou, D.; Li, J.; Huo, R.; Liu, W.; Fang, H.; et al. Mechanical Properties of PVC-Based
Wood-Plastic Composites Effected by Temperature. FrMat 2022, 9, 1018902. [CrossRef]
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