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Abstract: Although Lamb waves have found extensive use in structural damage detection, their
practical applications remain limited. This limitation primarily arises from the intricate nature of
Lamb wave propagation modes and the effect of temperature variations. Therefore, rather than
directly inspecting and interpreting Lamb wave responses for insights into the structural health, this
study proposes a novel approach, based on a two-step cointegration-based computation procedure,
for structural damage evaluation using Lamb wave data represented as time series that exhibit some
common trends. The first step involves the composition of Lamb wave series sharing a common
upward (or downward) trend of temperature. In the second step, the cointegration analysis is
applied for each group of Lamb wave series, which represents a certain condition of damage. So,
a cointegration analysis model of Lamb wave series is created for each damage condition. The
geometrical and statistical features of Lamb wave series and cointegration residual series are used
for detecting and distinguishing damage conditions. These features include the shape, peak-to-peak
amplitude, and variance of the series. The validity of this method is confirmed through its application
to the Lamb wave data collected from both undamaged and damaged aluminium plates subjected to
temperature fluctuations. The proposed approach can find its application not only in Lamb wave-
based damage detection, but also in other structural health monitoring (SHM) systems where the
data can be arranged in the form of sharing common environmental and/or operational trends.

Keywords: structural health monitoring; damage detection; aluminium plate; Lamb waves;
temperature effect; cointegration; time series analysis

1. Introduction

Structural Health Monitoring (SHM) is a cutting-edge technology that plays a crucial
role in ensuring the safety and longevity of various structures, ranging from bridges and
buildings to aerospace components and mechanical systems. It involves the integration of
advanced sensor technologies and data analytics to continuously assess the condition and
performance of these structures in real-time [1]. Damage detection typically comprises three
key stages [2]: (1) gathering data from the target structure through periodic measurements
of dynamic response; (2) identifying damage-sensitive features from the collected data; and
(3) determining the current condition of the structure by conducting statistical analysis
on these features. Guided wave-based SHM techniques have obtained much interest for
structural damage monitoring and detection in thin-plate structures for many years due
to their ability to travel over long distances, detect damages of small sizes, and quickly
examine large areas of a structure with few transducers [3–15]. Lamb waves are generated
in a structure by applying electrical voltage to the transducers. The propagation of Lamb
waves interacts with damage and can be recorded by either the same transducers (in a
pulse-echo setup) or different transducers (in a pitch-catch arrangement) [16]. Damage-
induced disruptions in the sensing path scatter the propagating wave, leading to alterations
in the characteristics of the current Lamb wave response when compared to the original
response obtained from the baseline data collected when the structure was in its undamaged
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state [3,16]. Lamb waves are known to be sensitive to numerous types of damage including
cracks, corrosion, and delamination [4,6].

One of the major challenges and difficulties with Lamb wave-based SHM systems is
that the method is highly prone to contamination by changing environmental and opera-
tional conditions (EOCs). Especially, variations in temperature have significant impacts
on the propagation of Lamb waves, which can consequently impose severe limitations on
the efficiency of Lamb wave-based damage detection [5]. Various experimental studies
have reported the dominant influence of temperature on Lamb wave propagation. The
study in [6] showed that the signal alteration caused by temperature variations is more pro-
nounced than that induced by damage. It was reported in [17] that high temperature causes
a considerable impact on the adhesive bond between transducers and structure, which can
significantly modify the amplitude and phase of signals. A recent review in [18] presented
a survey on the effects of varying EOCs on Lamb waves. The review has also highlighted
many effective strategies for compensating and/or eliminating the effects of EOCs in Lamb
wave-based SHM systems. Another major challenge associated with Lamb wave-based
SHM systems is the intricate nature of Lamb wave propagation, which can be attributed to
two fundamental reasons, as discussed in [19–21]. Firstly, there exists the possibility for an
infinite quantity of distinct modes to concurrently appear and propagate within a structure.
Secondly, these modes may exhibit dispersion characteristics and overlap in both time and
frequency domains. Many solutions were developed for the separation of overlapping
Lamb wave signatures, as presented in [4,19–21]. However, the results attained have not
met the expectation.

To overcome the above-discussed problems this research has investigated an alter-
native approach, that is, in place of using Lamb waves directly for damage detection, we
first analyse Lamb wave signals using an appropriate statistics-based signal processing
technique and then interpret the damage-sensitive features obtained. A similar approach
was employed in [22], in which a stationarity-based method was developed for Lamb wave-
based structural damage detection. The method is based on the analysis of the stationary
statistical characteristics of Lamb waves and its relations with damage. Another potential
solution considered in this study is the application of the cointegration theory [23,24] for the
analysis of Lamb waves. Cointegration is an established technique originally developed in
the field of econometrics and statistics. The cointegration-based approach has been applied
to SHM in the last few years as a potential data normalisation tool for the removal of
long-term common trends, caused by the effects of variability in EOCs, from the measured
data. Some selected applications of cointegration-based approaches for SHM can be found
in [25–37]. Since cointegration can efficiently eliminate the impact of EOCs from the SHM
data, one obtains cointegration residuals that maintain their sensitivity to damage while
becoming independent of EOCs.

In [28], the authors applied cointegration to analyse the data of modal frequencies
acquired from a long-span arch bridge in the presence of EOCs. The results have shown that
the cointegration-based method could detect structural damage with different degrees of
severity. Monitoring techniques based on cointegration were developed for assessing rolling
bearings operating under time-varying operational conditions [29], and for local damage
detection in gearboxes [30]. In [31], cointegration analysis was utilized in nonlinear vibro-
acoustic wave modulations to compensate for the influence of the load variations associated
with the vibration excitation. This method was applied to detect damage in a laminated
composite plate and a composite sandwich panel. In [33], the authors used cointegration-
based strategies to remove the environmental effects from vibration data collected from a
historical building. The work in [34] investigated cointegration for the data collected from
a full-scale helicopter tail boom subject to fatigue crack growth. The cointegration-based
algorithm successfully mitigated temperature-induced strain variations and demonstrated
the capability to detect damage growth. In [35], a frequency adjustment technique for
continuous beam bridges was introduced, utilizing cointegration analysis while accounting
for the influence of temperature and humidity. In [36], cointegration analysis was employed
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to mitigate the influence of environmental factors in the experimental data gathered from a
cable-stayed bridge. This approach enabled early-stage damage detection in the suspension
systems of the bridge. Recently, the work in [37] has applied the cointegration-based
technique to the challenging case of a large-scale structure, that is, the steel roof of the G.
Meazza stadium. The results confirm that the effects of the environmental and operational
variables were suppressed, while the presence of anomalies in the structure remained
evident and could be identified clearly. The cointegration technique was also employed
in [38,39] for wind turbine health monitoring and anomaly detection. In [40], the authors
applied the cointegration analysis to detect structural damage in a wind turbine blade.
Cointegration was used in combination with nonstationarity tests for monitoring and
detecting faults in nonstationary dynamic industrial processes, as reported in [41]. Recently,
the study in [42] proposed a Bayesian multivariate cointegration technique for the detection
of damage in the blades of a wind turbine. To gain insight into how the cointegration
procedure can eliminate common trends caused by EOCs from the recorded data and how
it can be used to detect faults or damage through cointegration residuals, interested readers
are directed to the study [43].

It should be mentioned that some previous research [5,25,26] has investigated a com-
bination of the cointegration theory [23,24] and Augmented Dickey–Fuller (ADF) test [44]
for structural health assessment using Lamb waves. Nevertheless, all of these previous
studies applied cointegration directly on the Lamb waves, leading to a situation where the
cointegration residuals obtained were not indicative enough to be used as damage-sensitive
features. For that reason, the ADF test had to be employed to extract the damage-sensitive
information from the cointegration residuals. The combination of these two data analysis
techniques makes the method become more complicated, require more computing tasks,
and act less effectively in practical applications. Therefore, this study proposes a novel
approach, based on a two-step cointegration-based computation procedure, for structural
damage evaluation using Lamb wave data represented as time series that exhibit some
common trends. The first step involves the composition of Lamb wave series sharing a
common upward (or downward) trend of temperature. In the second step, the cointegration
analysis is applied for each group of Lamb wave series which represents a certain condition
of damage. The geometrical and statistical features of Lamb wave series and cointegration
residual series are used for detecting and distinguishing damage conditions. These features
include the shape, peak-to-peak amplitude, and variance of the series. The validity of this
method is confirmed through its application to the Lamb wave data collected from both
undamaged and damaged aluminium plates subjected to temperature fluctuations. To the
best of the author’s knowledge, analysing Lamb waves in the form of time series using
cointegration for damage detection has never been previously investigated in the literature.
The proposed approach can find its application not only in Lamb wave-based damage
detection, but also in other SHM systems where the data can be arranged in the form of
sharing common environmental and/or operational trends.

The subsequent sections of the paper are structured as follows. Section 2 briefly
introduces the cointegration theory. Section 3 presents the Lamb wave experiments under
the effect of temperature variations and explains how to compose Lamb wave series which
exhibit a common upward (or downward) trend of temperature. A cointegration-based
computation procedure for the analysis of Lamb wave series sharing common trends is then
introduced. The results of damage detection using Lamb wave series under the influence
of varying temperature trends are presented in Section 4. Finally, some conclusions and
future works are given in Section 5.

2. A Brief Introduction of Cointegration Theory

In prior research [5,25,43], the fundamental principles of cointegration analysis and
related subjects, such as time series stationarity and common trend removal, were compre-
hensively elaborated. So, this paper does not delve deeply into these concepts. Interested
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readers are directed to those resources for in-depth explanations of cointegration theory.
Here, we provide only a concise introduction of cointegration.

In essence, cointegration is a phenomenon where two or more nonstationary variables
exhibit a common long-term pattern, meaning that they do not permanently diverge from
each other except for short-term fluctuations. To put it differently, when a set of nonsta-
tionary time series variables tend to establish and sustain a stable long-term equilibrium
relationship, cointegration analysis can be employed to identify and characterise this rela-
tionship. Let Yt =

(
y1t, y2t, . . . , ynt)T denote an (n × 1) vector of nonstationary time series.

This n-dimension vector is said to be linearly cointegrated if there exists a cointegrating
vector β =

(
β1, β2, . . . , βn)T such that

βTYt = β1y1t + β2y2t + · · ·+ βnynt (1)

forms a linear combination of the nonstationary time series in Yt that is stationary. This
linear combination, denoted as ut = βTYt + c, where c is a constant value, is termed as
a cointegration residual, and it signifies a long-term equilibrium relationship among the
cointegrated time series [45]. Nevertheless, it is important to note that the cointegrating
vector β is not unique, as it can be multiplied by any scalar k, resulting in the same
relationship, as shown below.

k · βTYt =
(

β∗)TYt (2)

A normalized cointegrating vector, β =
(
1,−β2, . . . ,−βn)T , can be used to uniquely

identify β [45]. With this normalization, the cointegrating relationship in Equation (1) can
be rewritten as

βTYt = y1t − β2y2t − · · · − βnynt (3)

or
y1t = β2y2t + β3y3t + · · ·+ βnynt + βTYt (4)

The cointegration residual (ut = βTYt + c) is simply formed by multiplying n vec-
tors of time series in Yt by βT . Hence, when using the cointegration method, a critical
aspect is to determine appropriate normalized cointegrating vectors, aiming to generate
stationary cointegration residuals with the common trends being eliminated. To achieve
this, Johansen’s cointegration method [24], a sequential process relying on the maximum
likelihood estimation (MLE), is commonly employed. The theory underpinning this ap-
proach is intricate and is not expounded in this paper. Those interested in the theoretical
details of Johansen’s cointegration method are directed to the original work [24], while a
more simplified explanation can be found in [5,43]. In this study, we utilized Johansen’s
cointegration procedure by employing the function ‘jcitest’ of the MATLAB Econometrics
Toolbox [46] to compute the normalized cointegrating vectors β and c.

3. Lamb Wave-Based Structural Damage Detection Based on Cointegration Analysis of
Lamb Wave Series
3.1. Lamb Wave Experiments under the Effect of Temperature Variations

The data analysed in this research were obtained from Lamb wave experiments in a
pitch-catch arrangement. An aluminium plate specimen with dimensions of
200 × 150 mm and a thickness of 2 mm was used in the experimental process. Two
piezoceramic transducers were utilized in a symmetrical arrangement for the purpose of in-
strumentation. One transducer was responsible for generating Lamb waves, while the other
was tasked with capturing the propagation signals. The diameter of both transducers was
10 mm, and their thickness was 1 mm. They were bonded to the specimen’s surface using
permanent epoxy adhesive. Lamb waves were generated using a five-cycle 75 kHz cosine
burst signal with a maximum peak-to-peak amplitude of 10 V. The excitation signal was
enveloped using a half-cosine wave. A diagram depicting the experimental arrangement
employed for the Lamb wave experiments is shown in Figure 1, illustrating the specimen’s
geometry and the positions of the transducers. To introduce temperature effects into the
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Lamb wave signals, the specimen was positioned inside a controllable oven during the
experimental process. The oven was equipped with a thermal probe for recording the
temperature of the plate’s surface. Additional information regarding the experimental
configuration can be found in [5,47].
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Figure 1. Diagram depicting the experimental arrangement employed for Lamb wave experiments.

Initially, Lamb wave experiments were conducted on the intact plate. The specimen’s
temperature was systematically heated up from 35 ◦C to 70 ◦C and then gradually lowered
from 70 ◦C back to 35 ◦C, with a changing step of 5 ◦C. Subsequently, two holes, the
first one with a 1 mm diameter and then another with a 3 mm diameter, were drilled in
the center of the same specimen. The entire test procedure was then repeated to gather
experimental data for two different levels of damage severity. Consequently, three distinct
damage conditions were examined in this investigation: an undamaged plate, a plate with
minor damage severity (1 mm hole), and a plate with substantial damage severity (3 mm
hole). For each damage scenario, the Lamb wave response measurements were iterated
50 times at every temperature level, employing a sampling rate of 10 MHz. As a result, we
obtained 5000 samples (i.e., sampling points) for each response measurement.

The investigated data were strongly affected by the temperature effect, as reported
in [5,47]. As an illustrative example, Lamb wave signals representing three damage condi-
tions measured at two different temperatures (35 ◦C and 70 ◦C) are plotted in Figure 2. In
all the plots, the signals are characterised by the reflection originating from the structural
boundaries and the presence of damage and temperature. As seen in this figure, both
damage and temperature have a slight impact on the amplitudes and forms of the Lamb
wave responses. These responses encompass various wave packages, including dispersed
incident waves, reflected elements, and scattered elements of Lamb wave modes. The
alterations in all these responses are attributed to two factors, i.e., structural damage and
temperature fluctuations. Figure 2 illustrates that these influences are not readily dis-
cernible and pose challenges in their differentiation. Both factors introduce a certain trend
into these responses. Nonetheless, it is challenging to recognize those trends in the data. It
should be discussed here that the coda wave interferometry (CWI) method, which relies
on the cumulative effects of scattered and reflected waves originating from scatterers and
structural boundaries, can be used to study the temperature effect in Lamb wave signals.
The method has been known for its exceptional sensitivity in detecting small structural
damage [48,49].
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Figure 2. Illustrations of Lamb wave responses representing the intact condition, small damage
severity, and large damage severity at 35 ◦C and 70 ◦C.

3.2. Composition of Lamb Wave Series Sharing Common Trends

In this study, we introduce a new cointegration-based approach to analyse Lamb
wave data. The main idea is that instead of applying cointegration to analyse several
Lamb wave responses measured at a specific temperature, as reported in some previous
studies [5,25,26], we will use cointegration to analyse Lamb waves as time series variables
that exhibit a common trend. The common trend is created by systematically forming
the temperature variations in either increasing or decreasing tendency (or direction), as
explained below.

The heating phase involves raising the temperature from 35 ◦C to 70 ◦C, constituting
an upward temperature trend. This trend was constructed in the way that eight Lamb
wave responses at 35 ◦C, 40 ◦C, . . ., 65 ◦C, and 70 ◦C were sequentially combined in the
order of increasing temperatures. This composition procedure resulted in a so-called Lamb
wave series, which consists of 40,000 samples. In other words, we created a time series
consisting of eight Lamb wave responses arranged in the order of rising temperature. Since
the data acquisition was iterated 50 times at every temperature level, these responses can
be arbitrarily chosen from any of the repetitions. Nevertheless, for the sake of simplicity,
we have opted to select eight Lamb wave responses from the same repetition to create one
Lamb wave series. By using this composition procedure, we can create as many Lamb
wave series as desired, which are said to exhibit a common upward temperature trend.
For cointegration analysis, it is required to have a minimum of two Lamb wave series that
exhibit a common trend. Although there is no maximum limit to the number of Lamb
wave series that can be analysed using the cointegration algorithm, including too many,
Lamb wave series in the analysis is not necessary. In this research, four Lamb wave series
have been used to form a cointegration analysis model for each case of damage condition.
Regarding the cooling phase from 70 ◦C to 35 ◦C, the same composition procedure has been
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applied to create four Lamb wave series, which exhibit a common downward temperature
trend, for each case of damage condition.

Examples of Lamb wave series for the undamaged case, small damage severity
(1 mm hole), and large damage severity (3 mm hole) in the presence of a common upward
temperature trend are plotted in Figures 3–5 respectively. Obviously, there are no clear
differences between Lamb wave series of the same damage condition as well as from
different damage conditions. In other words, it is not possible to detect the damage by
observing the shape (or form) of these Lamb wave series. The temperature effect exists
and causes contamination on the data, but the impact is not observable in these series. The
peak-to-peak amplitude and variance of Lamb wave series in Figures 3–5 were thus com-
puted for further analysis. The results obtained are the same for all series: the peak-to-peak
amplitude ~ [0.032–0.035] mV and the variance ~2.5 × 10−5. Hence, it can be inferred that
the damage cannot be detected without employing a suitable data analysis method capable
of eliminating the temperature-related trend.

3.3. Cointegration-Based Computation Procedure for the Analysis of Lamb Wave Series

Given that data measurements typically take the form of time-ordered multivariate
sequences, it can be understood that a data-based SHM process fundamentally relies
on the analysis of time series. We have proposed in this paper a general cointegration-
based computation procedure for structural damage evaluation using Lamb wave data
represented as time series that have some common trends, as shown in Figure 6.

The first step involves the composition of Lamb wave series which exhibit a common
upward (or downward) trend of temperature. This procedure has been explained in
Section 3.2. In the second step, cointegration analysis is applied for each group of Lamb
wave series which represents a certain condition of damage. In other words, we have
created a cointegration analysis model of Lamb wave series for each damage condition.
Because the methodology proposed in this study for structural damage detection is based
on time series analysis, we have opted to directly use the geometrical and statistical features
of Lamb wave series as well as cointegration residual series in order to accurately detect and
distinguish damage conditions. These features include the shape, peak-to-peak amplitude,
and variance of the time series which can be simply observed or checked visually. When
using the shape feature, it is expected that a damage can be detected by means of the
direct observation of the shape of a Lamb wave series or a cointegration residual without
any computation. In a case where the damage is not clearly noticeable by observing
the shape feature directly, then the peak-to-peak amplitude and variance of Lamb wave
series or cointegration residuals can be computed. The calculation of these values is
straightforward and does not require much computing power and time. This choice of
damage-sensitive indicators provides a Lamb wave-based damage detection approach with
minimal computation cost.
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4. Results and Discussion

The cointegration-based computation procedure, described in Section 3.3, was applied
to analyse three groups of Lamb wave series which represent three different damage
conditions. Two cases of temperature trends, i.e., an upward and a downward, were
investigated. The results are presented in the following section.

4.1. The Case of Lamb Wave Series Exhibiting a Common Upward Trend of Temperature

Lamb wave series under the influence of an upward temperature trend plotted in
Figures 3–5 representing the intact case, the small damage severity (1 mm hole), and the
large damage severity (3 mm hole), respectively, were cointegrated. So, for each damage
condition, we have formed a cointegration analysis model of four Lamb wave series.
Johansen’s cointegration procedure was applied by employing the function ‘jcitest’ of the
MATLAB Econometrics Toolbox [46] to compute the normalized cointegrating vectors β
and the constant value c. As a result, we obtained three cointegration residuals, having the
form of ut = βTYt + c for the undamaged case (resun), small damage severity (res1mm), and
large damage severity (res3mm). These residuals are given in Equations (5)–(7).

resun = y1t − 250.7y2t + 39.2y3t − 131.2y4t + 99.4 (5)

res1mm = y1t − 125.8y2t − 108.9y3t − 111.2y4t + 173.9 (6)

res3mm = y1t − 110.9y2t − 199.2y3t − 191.1y4t + 134.5 (7)
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where y1t, y2t, y3t, y4t corresponds to the Lamb wave series in Figures 3–5.
The cointegration analysis results are presented in Figure 7. At first glance, one can

notice that all cointegration residuals have a shape (or form) that is similar to Lamb wave
series. In addition, the cointegration residual for the undamaged case has the most compact
shape, whereas the cointegration residual for the 3 mm hole case exhibits the largest shape.
In all cases of the damage conditions investigated, the cointegration analysis removed the
effect of temperature, manifested in the form of a common increasing trend of temperature,
from the analysed Lamb wave series. At the same time, the effect of damage and its
severities still remained and manifested themselves in the cointegration residuals. This is
exhibited in the way that the effect of damage and its severities progressively increased the
largeness of the cointegration residuals.
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Based on these shape differences, we can state that it is possible to detect the damage
and its development by observing the shape of cointegration residuals. To quantitatively
analyse the results of damage detection, we computed the peak-to-peak amplitude and vari-
ance values from the cointegration residuals plotted in Figure 7. The findings, as presented
in Table 1, demonstrate that the undamaged state exhibited the lowest peak-to-peak ampli-
tude and variance values, and at the same time, these values were progressively increasing
as the severity of damage increased. Hence, this quantitative analysis confirms that not
only the existence of damage was detected, but also its severity could be distinguished.

Table 1. Damage detection and discrimination indicated by the calculation results of the peak-to-peak
amplitude and variance for the cointegration residuals in Figure 7.

Damage Conditions Peak-to-Peak Amplitude Variance

Undamaged case 13.84 4.37

Small damage severity (1 mm hole) 16.02 6.23

Large damage severity (3 mm hole) 18.62 9.25
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4.2. The Case of Lamb Wave Series Exhibiting a Common Downward Trend of Temperature

Three groups of Lamb wave series under the effect of a common downward trend of
temperature, representing three different conditions of damage, were cointegrated. So, in
this case, we have also obtained three cointegration analysis models of four Lamb wave
series. The cointegration residuals, calculated using Johansen’s cointegration procedure,
are presented in Equations (8)–(10).

resun = y1t − 78.2y2t − 210.8y3t − 102.6y4t + 86.6 (8)

res1mm = y1t + 26.9y2t + 223.3y3t + 143.9y4t − 119.2 (9)

res3mm = y1t − 189.2y2t − 111.2y3t − 273.6y4t + 66.8 (10)

The cointegration analysis results are plotted in Figure 8. Again, the results show
that all cointegration residual series exhibit the shape of Lamb waves. Furthermore, the
effect of temperature, manifested in the form of a common decreasing trend of temperature,
was removed from the analysed Lamb wave series by cointegration. This resulted in three
residuals, which were free from the temperature effect, but still captured the impact of
damage and its severities. This is illustrated by the fact that the damage severity pro-
gressively increased the largeness of the cointegration residuals, as depicted in Figure 8.
Consequently, the damage and its severities could be detected by directly using the differ-
ences in the shape of these cointegration residuals. The results of damage detection have
been quantitatively confirmed by computing the peak-to-peak amplitude and variance
values from the cointegration residuals plotted in Figure 8. The results in Table 2 show the
same pattern as the case presented in Section 4.1, that is, the undamaged state exhibited the
lowest peak-to-peak amplitude and variance values, and these values gradually became
greater as the severity of damage increased. The quantitative analysis results confirm that
not only the existence of damage was detected, but also its severity was distinguished.

Table 2. Damage detection and discrimination indicated by the calculation results of the peak-to-peak
amplitude and variance for the cointegration residuals in Figure 8.

Damage Conditions Peak-to-Peak Amplitude Variance

Undamaged case 15.64 6.02

Small damage severity (1 mm hole) 17.32 7.22

Large damage severity (3 mm hole) 20.06 10.23

It is noted that all values of the peak-to-peak amplitudes and variances of the cointe-
gration residuals in Table 2 are a bit higher than the relevant ones in Table 1. It is because
of the fact that in the case of the cooling stage from 70 ◦C to 35 ◦C, the experiments started
at the temperature of 70 ◦C, rather than from 35 ◦C, as in the case of the heating phase.
Also, it is important to mention that the results presented in these two case studies are
representative of the entire data sets of the Lamb waves under investigation. The findings
obtained for other sets of Lamb wave series closely resemble those presented here.
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4.3. Discussion

In this study, the proposed two-step cointegration-based computation procedure
(shown in Figure 6) has been applied for structural damage evaluation using Lamb wave
data presented as time series with a common upward or downward temperature trend.
Since the common trend is constituted through a sequential combination of data in either
increasing or decreasing temperature order, a prerequisite for this computation proce-
dure is the availability of information about the experimental temperature at which the
Lamb wave data were measured. If temperature information is unavailable, the first step
of the computation procedure is skipped, and cointegration can be applied directly to
analyse Lamb wave responses measured at a specific temperature, as previously reported
in [5,25,26]. However, in this case, other data analysis techniques are needed to extract the
damage-sensitive information from the cointegration residuals.

5. Conclusions

Complex wave propagation phenomena cause numerous challenges and difficulties
for damage detection approaches that rely on the direct analysis and interpretation of Lamb
waves. Therefore, instead of directly inspecting and interpreting Lamb wave responses for
the purpose of structural health assessment, this study has proposed a novel approach, based
on a two-step cointegration-based computation procedure, for structural damage evaluation
using Lamb wave data formed as time series that share a common upward (or downward)
temperature trend. The experimental validation of this method was carried out using Lamb
wave data collected from both intact and damaged aluminium plates under the effect of
temperature variations. Given the results achieved, we come to the following conclusions:

• The cointegration process could efficiently remove the influence of temperature trends.
As a result, the damage can be detected by means of the direct observation of the
shapes of the cointegration residuals without any computation.

• It is possible to distinguish the severities of damage by comparing the peak-to-peak
amplitude and variance of the cointegration residuals.
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• Through the idea of creating the time series of Lamb waves in the form that they exhibit
some common trends, we have suggested a new way in applying the cointegration
technique for SHM applications.

• The proposed approach is simple and more suitable for practical applications of Lamb
wave-based methods because only cointegration is required, without the need for
other data analysis techniques.

• Since each Lamb wave series includes a common upward (or downward) trend of
temperature which involves multiple levels of temperature, the cointegration pro-
cess can remove multi-temperature effects, rather than only one temperature when
cointegration is applied to directly analyse Lamb wave responses measured at a
certain temperature.

This study serves as a feasible exploration, and the results presented in this paper
should be regarded as preliminary. Further investigations are thus necessary to vali-
date these findings, encompassing diverse specimen types, more intricate structures, and
real-world damage scenarios like fatigue cracks or delamination in metallic structures. Fur-
thermore, future research will explore both the qualitative and quantitative comparisons
between the proposed method and other established techniques.

Given that the proposed approach relies on time series cointegration analysis, it has
the potential to find applications not only in Lamb wave-based damage detection, but also
in other SHM strategies and condition monitoring systems, provided that the experimental
data can be arranged in such a way that they share some common environmental and/or
operational trends. For instance, this method can be effectively employed for an analysis of
the vibration data collected from rotating machinery under varying load, or the natural
frequencies of bridges under seasonal or daily temperature changes. It is also expected that
potential readers will find the proposed method interesting and attempt to apply it to their
own problems.
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