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Abstract: The paper presents research on multicomponent glasses obtained from natural and sec-
ondary raw materials, i.e., basalt, amphibolite, and cullet. The raw materials were used as potential
sets to produce mineral fibres or glass-ceramic materials. FTIR spectroscopy and XRD studies were
carried out to identify the composition of the phase type in the glass sets. The results were supported
by SEM-EDS microstructural studies of the obtained materials. The ability of the melts to crystallize
and their basic properties required in producing mineral fibres, i.e., the hardness and the acidity mod-
ulus, were also determined. In the glass samples after the crystallization process, the spectroscopic
studies revealed an increase in the half-width of the band at 1200–800 cm−1 and splitting at the values
of about 870 cm−1 and 970 cm−1. These changes probably indicate the formation of pyroxene-type
crystalline phases. Moreover, based on the XRD results, it was confirmed that the obtained materials
were fully amorphous. After annealing at 800 ◦C for 2 h, the materials show a small proportion of
crystalline phases. For the materials annealed at higher temperatures, clear peaks from the crystalline
phases were represented mainly by pyroxenes. The proportion of crystalline phases in the samples
was also found to rise with increasing temperature, and the hardness values for the basalt glasses
and glasses after crystallization rose from 753 to 946 HV0.05. Such an effect positively affects the
properties of the obtained glass-ceramic materials based on the proposed sets. However, in the case
of mineral fibres, crystallization at early 2 h at 800 ◦C can be a disadvantageous feature from the
point of view of their application because crystalline phases can lead to fibre damage after a short
period of operation; this will be confirmed in this study.

Keywords: multicomponent glasses; pyroxenes; glass-ceramic materials; FTIR spectroscopy; mineral
fibres

1. Introduction

The fast development of glass materials technology and more innovative solutions
in building insulation systems to obtain adequate acoustic levels, construction fire, and
thermal insulation requires using novel mineral fibre elements and manufacturing new
glass or glass-ceramic materials [1–3]. The most commonly used material for mineral wool
is basalt, which is a mafic, extrusive rock that makes up more than 90% of all volcanic rocks.
It has a crystalline structure that changes depending on the specific conditions of the lava
flow. Basalts mainly consist of three minerals—pyroxene, olivine, and plagioclase [4,5]. This
raw material is mainly used as road aggregate and for producing plates and tiles, linings for
steel pipes, etc. In recent years, basalts have also been used to produce bricks and mineral
basalt fibres, which, recently, with great success, have even found architectural applications
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as well. Mineral fibres are non-flammable, do not react toxically with water and air, are
highly resistant to strong alkalis compared to glass fibres, and have even better mechanical
and physical properties than carbon or silicon carbide fibres [5–8]. Mineral basalt fibres are
used to produce materials that require resistance to high temperatures, acids, and solvents
but that also need to be durable, mechanically robust, and exhibit low absorbency [9–11].
Mineral fibres are mainly produced using cupola technology and blowing/duplex. Basalt
fibre production technology is similar to glass fibres but requires less energy. The abundant
availability of raw materials worldwide makes it possible to achieve lower production costs
than glass fibres [10]. The modification of mineral fibres by using mixtures containing other
mineral raw materials or secondary ones (for example, amphibolite, gabbro, glass cullet, fly
ash, and blast furnace slag) allows the technological requirements of the defibering process
to be met and ensures the quality of the produced fibres. However, for fibres to meet
their functions, they must complete basic requirements, such as the appropriate chemical
composition of the set and the resulting melt, which should be homogeneous, with optimal
viscosity, which is in the range of 0.5–2.5 Pa·s during the defibering process, and a melting
point that should be below 1500 ◦C [12–15]. On the other hand, glass-ceramic (GC) materials
are inorganic silicate materials characterized by the presence of crystals corresponding to
one or more phases embedded in a glass (amorphous) matrix. They are mainly obtained
through the controlled crystallization of adequately prepared glass compositions [16].
Glass-ceramic products can also be produced through the controlled cooling of molten
glass or through the sintering and crystallizing of glass powders. The latter method
involves compacting the powders at relatively low temperatures in combination with
viscous flow [17]. The literature shows that current technologies can convert complex
chemical compositions (derived from minerals or silicate waste) into functional glass or
glass-ceramic materials [18,19]. However, designing multicomponent sets to develop glass-
ceramics requires careful chemical and phase composition control. They will determine
the physicochemical and mechanical properties of the materials. In particular, oxides are
required that act as network-forming substances, silicon oxide (SiO2) and phosphorus oxide
(P2O5), as well as network-modifying oxides, such as sodium oxide (Na2O), potassium
oxide (K2O), magnesium oxide (MgO), and calcium oxide (CaO). Also, oxides acting as
crystallization nuclei are needed, e.g., titanium oxide (TiO2) or iron oxide (Fe2O3) [20].
According to Erol et al., a significant amount of Fe2O3 can be used as a nucleating agent in
producing glass-ceramic materials, providing an essential advantage in developing a wide
variety of microstructures with different morphological conformations [21,22].

This paper presents research on multicomponent melted basalt–amphibolite materials
with the addition of packaging. It has been demonstrated that glass-ceramic materials
formed from multicomponent sets containing waste raw materials have the potential to
compete with products made exclusively from natural raw materials, especially considering
mechanical properties [23]. Ayala Valderrama et al. [24] presented the results of a study in
which they demonstrated the influence of crystalline phases on the mechanical properties
of the obtained glass-crystalline materials. They showed that the presence of crystalline
phases, such as diopside 73% and 27% anorthite, gives strengths of about 10 MPa. In
contrast, other phases, such as enstatite, wollastonite, and anorthite, show lower strength
values of glass-crystalline ceramics [25,26]. The authors of the work suggest that diopsite
is the most favourable or preferred crystalline phase in CAS glass ceramics. ASTM C28
(2015) [27] indicates that values in the 3.1–8.3 MPa range are relevant for gypsum material
applications in construction and concrete [28].

Recently, interesting research results have been presented regarding using granite
waste to produce glass-ceramic materials, too. The authors [29] showed that the increase in
the Si:O ratio causes the crystallization of wollastonite, not diopside. For 40% granite waste
content, the crystal structure of glass ceramics is moderate, the bulk density is 3.0207 g/cm3,
and the microhardness is 8.6 GPa, which shows that the obtained glass-ceramic materials
are perfectly suitable for architectural decorations. Luo et al. [30] used granite waste as the
primary raw material for producing glass-ceramics with a bending strength above 200 MPa.
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However, the production of glass-ceramics required the use of nucleating agents. Using
these agents undoubtedly increases the cost of glass-ceramics production and reduces its
commercial profitability, transportation, and stone processing. In the case of a glass cullet,
it can be recycled entirely to exploit alternatives to its final disposal. They could be used as
additives in asphalt and concrete production [31,32]. As a technical alternative, the author’s
research works have glass cullet used in obtaining glass-ceramics, bearing in mind that
these materials may have attractive properties for applications in several industrial sectors.

Additionally, glass-ceramic technology represents a versatile (materials science) ap-
proach to immobilizing various radioactive and dangerous wastes. However, due to the
high melting temperatures and special heat treatment conditions required to reach ad-
equate properties of glass-ceramics, waste can only be justified if high-value products
with suitable properties for industrial applications can be developed [33,34]. Savvilotidou
et al. [35] presented a study that investigates an innovative approach for valorizing specific
wastes generated from the energy sector and producing glass-ceramics. The wastes used
were photovoltaic (P/V) glass, produced from the renewable energy sector, and lignite
fly ash, produced from the conventional energy sector. The process first involved the
production of glass after melting specific mixtures of wastes, namely (i) 70% P/V glass
and 30% lignite fly ash and (ii) 80% P/V glass and 20% lignite fly ash at 1200 ◦C for 1 h,
as revealed through the use of a heating microscope. The results indicated that the P/V
glass, as a sodium–potassium-rich inorganic waste, reduces the energy requirements of the
melting process. The produced glass was then used for the production of glass-ceramics.
Dense and homogeneous glass-ceramics, exhibiting high chemical stability and no toxicity,
were produced after controlled thermal treatment of glass at 800 ◦C. The properties of the
produced glass-ceramics (namely, water absorption and compressive strength) render them
suitable for applications in the construction industry. The waste valorization approach
followed in this study aligns with the circular economy principles. The possibility of using
the proposed glass sets to produce mineral fibres or glass-ceramic materials was verified
through a glass melting process in an electric furnace at 1450 ◦C for 2 h and determination
of fundamental properties, such as the crystallization ability, microstructure, mechanical
properties, and the acidity modulus.

2. Materials and Methods

The materials used in this study were melted basalt–amphibolite samples modified
with a colorless glass cullet. Four sets of raw materials were prepared with the contents
shown in Table 1.

Table 1. Raw material sets used for melting of multicomponent glasses (%).

Sets
Raw Material (%)

Basalt Amphibolite Glass Cullet

Set 1 100 - -

Set 2 50 40 10

Set 3 50 30 20

Set 4 50 20 30

The prepared raw material sets were firstly homogenized and melted in an electric
furnace at a temperature of 1450 ◦C for 2 h to obtain homogeneous glass melts. The
obtained melts were cast directly onto a steel plate to ensure a high cooling rate. The
chemical composition of the obtained glasses was determined through XRF spectroscopy.
This study was performed using a WDXRF Axios, Malvern Panalytical Ltd., Malvern,
United Kingdom; spectrometer with a 4 kW Rh lamp, and the results are shown in Table 2.
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Table 2. Chemical composition of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent glasses after melt-
ing sets 1–4.

Glass
The Chemical Composition of the Glasses

SiO2 Al2O3 CaO MgO Fe2O3 Na2O K2O TiO2 MnO

1 40.23 13.07 9.39 10.66 10.69 5.04 0.98 2.68 0.16

2 46.80 13.16 9.28 8.12 9.60 6.33 0.85 2.06 0.15

3 48.42 11.80 9.27 7.67 8.29 7.76 0.82 1.89 0.13

4 50.04 10.43 9.26 7.22 7.31 9.20 0.79 1.71 0.11

Dilatometric studies were performed for the melted samples using a Sadamel DA-3,
automatic dilatometer (SADAMEL SA, La Chaux-de-Fonds, Switzerland), allowing Tg
transformation temperature to be determined. Structural studies were carried out using
FTIR spectroscopy and X-ray diffraction. IR spectra in the 400–4000 cm−1 range were
obtained with a Fourier spectrometer (Bruker Optics-Vertex 70V, Billerica, MA, USA).
Measurements were made employing the powder technique, and the absorption of the
spectrum was recorded with 128 scans and a resolution of 4 cm−1. The X-ray studies were
performed on a SEIFERT XRD-3003 T-T X-ray diffractometer (XRD Eigenmann GmbH,
Schnaittach, Germany) with a lamp with a wavelength of λCo = 0.17902 nm at the angle
range of 2θ 5–90◦. Microstructural studies were conducted employing a Keyence VHX-
7000N digital microscope (Keyence, Osaka, Japan) while scanning electron microscopy
SEM was performed using a JOEL JSM-6610LV microscope (Peabody, MA, USA). As part of
the research, microhardness tests were also performed (HV0.05). Hardness was measured
using a Shimadzu HMV-G20 (Kioto, Japan) microhardness tester with a Vickers indenter.
For each sample, 10 measurements in different areas of the sample were carried out, and
then the average microhardness value was determined.

3. Results and Discussion
Study of Amphibolite Glasses after the Melting Process

The first stage of this study was dilatometric tests to determine transformation temper-
ature Tg and softening temperature DTM for the obtained melts. The glass transition (Tg)
in dilatometric tests corresponds to the inflection of the curve with a significant change in
dimensions (according to ASTM E1545 [36]). The results in the form of curves are shown in
Figure 1.
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Figure 1. Dilatometric curves of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent glasses: (a) glass
1—100 wt.% basalt, (b) glass 2—50 wt.% basalt, 40 wt.% amphibolite, 10 wt.% cullet, (c) glass 3—
50 wt.% basalt, 30 wt.% amphibolite, 20 wt.% cullet, (d) glass 4—50 wt.% basalt, 20 wt.% amphibolite,
30 wt.% cullet.

Based on the results, it was found that the modification of basalt–amphibolite alloys
by adding a cullet lowers the transformation temperature. When analyzing the chemical
composition, it was found that as the cullet content increases and the proportion of amphi-
bolite decreases, the proportion of Na2O oxide increases, which acts as a flux that affects
the reduction of the transformation temperature from 670 ◦C (Set 1) to 633 ◦C (Set 4). The
next stage of the research was performed for samples after melting, and the crystallization
process was carried out at temperatures 800 ◦C, 900 ◦C, and 1000 ◦C for 2 h. Spectroscopic
studies performed for structure determination of the obtained materials showed that melts
contain alkali ions in their structure (Table 2), which contribute to the depolymerization of
the lattice, i.e., the breaking of Si-O-Si bridge bonds, resulting in the growth of non-bridging
Si-O- bonds [37]. The melted samples (Figure 2a) are characterized by three prominent
absorption bands, where their maxima are located at about 940, 715, and 411 cm−1. The
most intense absorption bands in the 1200–800 cm−1 range can come from the vibration
of Si-O-(Al) and Si-O-(Si) bridges. The absorption bands in the 800–650 cm−1 range, char-
acterized by lower intensity, come from symmetric bending vibrations of Si-O-Si. The
650–400 cm−1 band corresponds to O-Al-O and O-Si-O bending vibrations [38–40].

In turn, spectroscopic studies showed that the samples subjected to the crystallization
process demonstrate changes in the spectra (Figure 2b–e). In addition to the distinguished
three prominent absorption bands in the 1200–800 cm−1, 800–600 cm−1, and 600–400 cm−1

ranges, an increase in the half-width of the band in the 1200–800 cm−1 range was observed,
which confirms the depolymerization of the glass bond—a reduction in the number of
Si-O-Si, Si-O-Al bonds [40]. The band at about 870 cm−1 and 970 cm−1 is divided into
two. The change in the width of the bands and their separation may indicate the presence
of crystalline phases formed as a result of the conducted crystallization process, thereby
affecting the change in structure. This may indicate the formation of crystalline phases in
the crystallization process of glasses, mainly pyroxenes (diopside), whose bands are at a
maximum of 865 cm−1 [39,41].
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Figure 2. FTIR spectra of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent glasses: (a) glass 1–4;
(b) glass 1—100% basalt; (c) glass 2—50 wt.% basalt, 40 wt.% amphibolite, 10 wt.% cullet; (d) glass 3—
50 wt.% basalt, 30 wt.% amphibolite, 20 wt.% cullet; (e) glass 4—50 wt.% basalt, 20 wt.% amphibolite,
30 wt.% glass cullet—after crystallization process.
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The next step in this study was X-ray diffraction (XRD) phase analysis. The results ob-
tained for the glasses after melting and the crystallization process are shown in Figures 3–7.
As the same crystalline phases were present in all of the analyzed glasses, one example XRD
result is included in this paper, with reference data for basalt glass annealed at 1000◦/2 h
(Figure 3).
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Figure 7. X-ray diffraction patterns of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent glass (4—50
wt.% basalt, 20 wt.% amphibolite, 30 wt.% glass cullet), after melting and crystallization process,
Px—pyroxenes, O—olivines.

The XRD results found that the materials received after the melting process do not
show any peaks, indicating the participation of crystalline phases. Only an elevation
of the background in the range of 20–35◦ 2Θ is visible, which indicates the amorphous
structure of the obtained materials. The glasses subjected to crystallization showed the
presence of peaks originating from the forming crystalline phases. The proportion of
crystalline phases at lower processing temperatures is insignificant. The diffractograms for
the materials annealed at higher temperatures show clear, sharp peaks originating from
crystalline phases, mainly represented by pyroxenes and olivines. The obtained materials
are characterized by a high content of Ca2+, Mg2+ and Fe+, Al ions (Table 2), which
explains the crystallization of pyroxene phases (diopside, augite type) [42], as confirmed
by the results of spectroscopic studies too. The XRD results determined the proportion
of amorphous and crystalline phases for the analyzed glasses undergoing crystallization.
Rietveld analysis was used for this purpose. The results obtained are summarized in
Table 3.

Table 3. The percentage of the crystalline phase calculated according to Rietveld’s least squares
approach.

Glass
Degree of Crystallization (%)

800 ◦C/2 h 900 ◦C/2 h 1000 ◦C/2 h

1—100% basalt 2.6 7.2 14.8

2—50% basalt, 40% amphibolite, 10% glass cullet 3.5 16.3 21.1

3—50% basalt, 30% amphibolite, 20% glass cullet 4.3 17.2 21.2

4—50% basalt, 20% amphibolite, 30% glass cullet 14.8 21.5 27.3

To confirm these findings, further microscopic observations (Digital Microscopy and
SEM/EDS) were performed to determine changes in the microstructures of the analyzed
samples before and after the crystallization process. The results are shown in Figures 8–11.
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Figure 8. Microstructure (Optical Microscopy) of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent 
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Figure 8. Microstructure (Optical Microscopy) of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent
glasses after melting: (a) glass 1—100 wt.% basalt; (b) glass 2—50 wt.% basalt, 40 wt.% amphibolite,
10 wt.% cullet; (c) glass 3—50 wt.% basalt, 30 wt.% amphibolite, 20 wt.% cullet; (d) glass 4—50 wt.%
basalt, 20 wt.% amphibolite, 30 wt.% cullet.
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Figure 9. Microstructure (Optical Microscopy) of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent
glasses after crystallization process at 800 ◦C for 2 h: (a) glass 1—100 wt.% basalt; (b) glass 2—50
wt.% basalt, 40 wt.% amphibolite, 10 wt.% cullet; (c) glass 3—50 wt.% basalt, 30 wt.% amphibolite, 20
wt.% cullet; (d) glass 4—50 wt.% basalt, 20 wt.% amphibolite, 30 wt.% cullet,.
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Figure 10. Microstructure (Optical Microscopy) of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent 

glasses after crystallization process at 900 °C for 2 h: (a) glass 1—100% basalt; (b) glass 2—50 wt.% 
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Figure 10. Microstructure (Optical Microscopy) of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent
glasses after crystallization process at 900 ◦C for 2 h: (a) glass 1—100% basalt; (b) glass 2—50 wt.%
basalt, 40 wt.% amphibolite, 10 wt.% cullet; (c) glass 3—50 wt.% basalt, 30 wt.% amphibolite, 20 wt.%
cullet; (d) glass 4—50 wt.% basalt, 20 wt.% amphibolite, 30 wt.% cullet.
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tion. Annealing the samples at 900 °C (Figure 10a–d) and 1000 °C (Figure 11a–d) for 2 h 
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glasses was observed. Microstructure studies were also performed using SEM-EDS to 
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the presence of a crystalline phase represented by pyroxenes. This is very beneficial from 

the mechanical properties point of view of the obtained glass-ceramic materials from the 

CAS system [24–26]. 

Figure 11. Microstructure (Optical Microscopy) of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent
glasses after crystallization process at 1000 ◦C for 2 h: (a) glass 1—100% basalt; (b) glass 2—50 wt.%
basalt, 40 wt.% amphibolite, 10 wt.% cullet; (c) glass 3—50 wt.% basalt, 30 wt.% amphibolite, 20 wt.%
cullet; (d) glass 4—50 wt.% basalt, 20 wt.% amphibolite, 30 wt.% cullet.

No crystalline phases were observed in the microstructure of the melted samples
for any of the sets from 1 to 4 (Figures 8a–11a). The samples produced from Set 2
(50 wt.% basalts, 40 wt.% amphibolite, 10 wt.% glass cullet) annealed at 800 ◦C for 2 h
(Figures 8b–11b) show the presence of crystalline phases, while Set 3 (50 wt.% basalt, 30
wt.% amphibolite, 20 wt.% glass cullet) and Set 4 (50 wt.% basalt, 20 wt.% wt. amphibolite,
30 wt.% glass cullet) show opacity and demixing as a first stage crystallization. Annealing
the samples at 900 ◦C (Figure 10a–d) and 1000 ◦C (Figure 11a–d) for 2 h results in the appar-
ent crystalline phases. Upon increasing the annealing temperature and time, a rise in the
proportion of crystalline phases and volumetric crystallization of the glasses was observed.
Microstructure studies were also performed using SEM-EDS to identify the crystalline
phases fully. Figure 12 shows an SEM-EDS image for glass Set 4 (50 wt.% basalt, 20 wt.%
amphibolite, 30 wt.% glass cullet.). The EDS analysis confirms the presence of a crystalline
phase represented by pyroxenes. This is very beneficial from the mechanical properties
point of view of the obtained glass-ceramic materials from the CAS system [24–26].
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Figure 12. Microstructure (SEM) and EDS analysis of SiO2-Al2O3-CaO-MgO-Fe2O3 multicomponent
glass after crystallization process by annealing at 1000 ◦C for 2 h: glass 4—50 wt.% basalt, 20 wt.%
amphibolite, 30 wt.% glass cullet.

As part of the research, Vickers microhardness mechanical tests were realized. The
average results from 10 measurement points are presented in Table 4. It was found that the
melt obtained from glass 1 (100% basalt) has the highest hardness. This can be explained
by the fact that glass containing 100% basalt has the highest content of MgO, which
affects the high values of glass hardness and strength [43,44]. For the melts subjected to
the crystallization process, it was observed that the microhardness of the glass-ceramic
materials grew with the increase in the annealing temperature, which was caused by the
presence and amount of crystalline phases formed in the annealed melts. The samples
annealed at 1000 ◦C have the highest microhardness values, which confirms that the formed
crystalline phases and their quantity improve the hardness of the investigated materials.
The acidity modulus (Mk), a significant factor in assessing the mineral composition of
glass and an essential parameter from the mineral fibre production point of view, makes
it possible to evaluate the basic properties of the raw material used in glass production.
This factor is determined as the weight ratio of all acidic oxides (silica, titanium oxide,
and aluminium oxide) to the sum of basic oxides (calcium, sodium, potassium, iron, and
magnesium oxide) [45,46]. The following relationship (1) was used to determine the acidity
modulus employing the determined chemical composition (Table 2). The obtained Mk
results are summarized with microhardness tests in Table 4.

Mk =
∑ SiO2, Al2O3, TiO2

∑ CaO, MgO, FeO, Na2O, K2O, Fe2O3
(1)

Table 4. Microhardness and acidity modulus Mk parameter of SiO2-Al2O3-CaO-MgO-Fe2O3 multi-
component glasses after melting and crystallization processes.

Mk Parameters

Melted Glass

Glass 1 Glass 2 Glass 3 Glass 4

1.52 1.83 1.84 1.84

Microhardness HV0.05

753 670 625 631

Annealed Glass Microhardness HV0.05

800 ◦C/2 h 835 751 659 638

900 ◦C/2 h 913 823 736 767

1000 ◦C/2 h 946 856 896 859
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The correct Mk value for mineral wool production (mineral fibres, melting, and de-
fibering) is Mk > 1.2 [39]. All of the raw material sets meet this condition, although the
variable share of amphibolite and modification with glass cullet increase the Mk. According
to a study by Du P., as the acidity factor increases, the fibre formation temperature, fibre
diameter, and the content of non-fibrous parts increase [47].

4. Conclusions

This study investigates the microstructure (SEM-EDS), phase analysis (FTIR spec-
troscopy, XRD), and mechanical properties of the SiO2-Al2O3-CaO-MgO-Fe2O3 multicom-
ponent system glass materials. Based on this research, the proposed raw material sets can
successfully find application in producing mineral fibres and novel glass-ceramic materials.
Spectroscopic studies of the melted sets revealed the presence of three leading absorption
bands in the following ranges: 1200–800 cm−1, 800–600 cm−1, and 600–400 cm−1. After
the controlled crystallization process, an increase in the half-width of the band in the
1200–800 cm−1 range was observed, confirming the depolymerization of the glass bond
and a decrease in the number of Si-O-Si, Si-O-Al bonds. In contrast, the band at about
870 cm−1 and 970 cm−1 separates in two. The change in the width of the bands and
their separation suggest the presence of crystalline phases and a change in the structure
of the materials—the formation of crystalline phases during the crystallization process
of glasses. These phases are represented by pyroxenes (diopside), whose bands are lo-
cated at a maximum of 865 cm−1, which was confirmed by X-ray and SEM/EDS phase
and microstructural results. The melt obtained from glass set 1 (100 wt.% basalt) has the
highest hardness owing to the increased CaO, MgO content. For the melts subjected to
crystallization, it was observed that the microhardness of glass-crystalline materials rises
with increasing annealing temperature. The samples annealed at 1000 ◦C have the highest
mechanical properties (microhardness), which confirms that the crystalline phases formed
and their amount improves the hardness of the studied materials. Unfortunately, due to an
excessively high acid modulus, the glasses obtained are not quite optimal materials suitable
for producing mineral fibres. However, the results obtained will be the preliminary base
for further studies in which the authors investigate the production of porous, insulating
glass-ceramics materials and mineral fibres.
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