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Abstract: The purpose of this research was the analysis of the stability of compressed thin-walled
composite columns with closed rectangular cross-sections, subjected to axial load. The test specimens
(made of carbon–epoxy composite) were characterized by different lay-ups of the composite material.
Experimental tests were carried out using a universal testing machine and other interdisciplinary
testing techniques, such as an optical strain measurement system. Simultaneously with the exper-
imental studies, numerical simulations were carried out using the finite element method. In the
case of FEA simulations, original numerical models were derived. In the case of both experimental
research and FEM simulations, an in-depth investigation of buckling states was carried out. The
measurable effect of the research was to determine both the influence of the cross-sectional shape and
the lay-up of the composite layers on the stability of the structure. The novelty of the present paper is
the use of interdisciplinary research techniques in order to determine the critical state of compressed
thin-walled composite structures with closed sections. An additional novelty is the object of study
itself—that is, thin-walled composite columns with closed sections.

Keywords: buckling; closed composite profiles; experimental studies; numerical simulations;
axial compression

1. Introduction

Thin-walled composite materials—carbon-epoxy laminates—are a special group of
structures that are used in the aerospace, automotive, or construction industries. Most often,
these thin composite materials are made using carbon fiber–epoxy resin (CFRP) [1,2] or glass
fiber–epoxy resin (GFRP) [3,4] configurations and are characterized by both open [5,6] and
closed cross sections [7–11]. The above-mentioned composite materials are characterized
by a certain behavior that occurs due to compression load [12,13]. The issue is commonly
known as loss of stability (buckling) [14,15] associated with the accompanying deformation
of the column. It is possible to distinguish several stages of compression of thin-walled
columns made of composites. Initially, the walls of the construction are only compressed
(pre-buckling stage), after which buckling occurs due to further loading (buckling stage),
and then, when the equilibrium path is stable, increasing loading is accompanied by an
increase in deflection (post-buckling stage) [16]. The issue of loss of stability has been
addressed in many scientific papers and is still relevant due to the possibility of modifying
the properties of the composite material [17–19].

Analysis of the critical state shows that the values of the failure load can even be
several times higher than the critical load [20–22]. The correct orientation of the fibers and
the number of layers can provide the thin-walled composite materials with a different range
of stiffness, which translates into the behavior characteristics of the construction [23–25].
Accurate analysis of the critical state allows us to determine the form of buckling and the
corresponding value of the critical load. In experimental studies, the value of critical load is
determined based on approximation methods presented in many scientific papers [26,27].
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These methods involve estimating the value of the critical load on the basis of experimental
equilibrium post-buckling paths. A detailed description of the methods for determining
the approximate value of the critical load is presented in many scientific papers, where a
group of results and the methods of analysis are presented [28]. For numerical simulations,
the critical load and the form of buckling are determined from the linear eigenproblem
solution [27].

The aim of analyzing the process of axial compression of composite columns with
closed cross-sections requires the use of several independent test methods. The evaluation
of the behavior of the structure in the case of experimental testing was based on a universal
testing machine, an acoustic emission testing system, and an optical system for measuring
the deformation of thin-walled composite materials [29,30]. Coupled tests based on several
independent methods make it possible to determine the limit states of the construction, the
deformations obtained, and the values of critical forces [31,32]. The current paper contains
a comparative stability analysis of two types of columns with closed cross-sections.

The novelty of the present research mainly includes:

• The use of interdisciplinary testing methods for structural stability assessment (testing
machine, optical deformation measurement system, numerical FEA simulations);

• Manufacture of a new object of research in the form of thin-walled carbon-epoxy
composite materials with closed sections;

• Study of the influence of the lay-up of the composite layers and the shape of the
cross-section of the composite materials on the critical state.

The manufactured thin-walled composite materials with closed sections made of
CFRP composite were developed through a project from the National Science Centre
(Poland)—project number 2021/41/B/ST8/00148.

2. Subject of the Study

The study focused on thin-walled composite profiles made of carbon fiber-reinforced
polymer (CFRP). Each profile consisted of eight layers of CFRP [33]. This paper de-
scribes two different types of profiles, denoted as B and C, with the following dimensions:
30 mm × 50 mm and 20 mm × 60 mm, respectively, with a wall thickness of 1.2 mm. The
profiles had a maximum height of 200 mm. The following stacking sequences were utilized:
B1/C1—[0◦/45◦/−45◦/90◦]s, B2/C2—[0◦/90◦/0◦/90◦]s, B3/C3—[45◦/−45◦/90◦/0◦]s,
B4/C4—[90◦/−45◦/45◦/0◦]s. The sequences of layer configurations were derived from
preliminary numerical simulations (which made it possible to predetermine critical loads
and the form of buckling in order to preserve variety in the study of construction stability).
For each of the layup configurations, three specimens were made. Note that every layout
was symmetrical with respect to the center surface, as indicated by the subscripts next to the
layout of the layer sequence. The columns were manufactured with autoclave technology
using prepreg tapes with the trade name: CYCOM 985-42%-HS-135-305 (Solvay, Tempe,
AZ, USA). For the production of the prepreg, epoxy resin type 985 was used, while the
reinforcement was high-strength (HS) carbon fibers with a density of 135 g/m2. The volume
fraction of the resin in the prefabricated material was 42%. Profiles were made by winding
a 305 mm wide prepreg tape at the desired angle, corresponding to the sequence of layers
in the final product, on a properly prepared inner core. The parameters of the autoclaving
curing process were set at a temperature of 177 ◦C and a pressure of 0.6 MPa and monitored
throughout the course of the process. The production of the profiles was carried out by an
external company specializing in making composite parts using an autoclave technique.
The expertise of the contractor resulted in top-quality profiles with high repeatability of
mechanical properties and dimensions. The quality of the profile fabrication was checked
by using several techniques, including the use of the Keyence VHX 970F digital microscope
(Keyence, Mechelen, Belgium) [34]. This microscope, equipped with a dedicated mobile
head, allowed thorough observation of the structure and digital image capture. Figure 1
shows examples of ready-made profiles for experimental studies.
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Figure 1. Experimental specimens: (a) B—column, (b) C—column.

To obtain the material properties of the CFRP, test specimens for the determination
of material data were made in accordance with the ISO standards [35]. Static tensile tests
were carried out under the requirements and restrictions outlined in PN-EN ISO 527-5
(of 2010) [36] of which ASTM D 3039 [37] was the equivalent. Subsequent tests were
performed as static shear tests based on PN-EN ISO 14129 (of 2000) [38]—the equivalent of
ASTM D 3518 [39]. Finally, static compression tests were performed in accordance with
PN-EN ISO 14126 (of 2002) [40]; the American Standard equivalent was ASTM D 3410 [41].
The process of manufacturing the specimens, their preparation for testing, and the tests
themselves are described in detail in the paper [42]. The above-mentioned paper presents
the methodology for determining the required material parameters of CFRP extensively.
The data derived from these tests are shown in Table 1 [42,43].

Table 1. Material properties of the carbon–epoxy composite—average values (with standard deviation).

Mechanical Parameters Strength Parameters

Young’s modulus E1 [MPa] 103,014.11
(2145.73) Tensile Strength FTU (0◦) [MPa] 1277.41

(56.23)

Young’s modulus E2 [MPa] 7361.45
(307.97)

Compressive Strength FCU
(0◦) [MPa]

572.44
(46.20)

Poisson’s ratio v12 [-] 0.37
(0.17) Tensile Strength FTU (90◦) [MPa] 31.46

(9.64)

Kirchhoff modulus
G12 [MPa]

4040.53
(167.35)

Compressive Strength FCU
(90◦) [MPa]

104.04
(7.34)

- - Shear Strength FSU (45◦) [MPa] 134.48
(2.71)



Materials 2023, 16, 6835 4 of 18

3. Experimental Study

Interdisciplinary research methods were used to perform the experimental tests. Ex-
perimental studies were conducted in order to determine the stability of composite materi-
als [42]. All the above-mentioned tests were conducted on a Zwick Z100 universal testing
machine (ZwickRoell GmbH & Co. KG, Ulm, Germany) [22,29]. The next stage of the
research was to run axial compression tests on thin-walled composite structures at room
temperature. The crosshead of the testing machine was moving at a rate of 1 mm/min. The
effect of the tests was to obtain the critical state by observing the formation of the buckling
of the profile and the subsequent determination of the critical load using approximate
methods [16,28]. To determine the critical force, one of the approximation methods was
chosen—the method of intersection of straight lines [26]. To determine the approximate
value of the critical load using this method, a load-displacement or, in other words, a
load-shortening curve for the chosen structure was required. The chosen method involves
approximating with a linear function two appropriately selected areas of the experimental
curve, one before the point of change in “stiffness” within the force-displacement curve
and the other after the change in “stiffness”. The selected areas cannot be arbitrary; the
requirement for the correct determination of the critical force by the method of intersection
of straight lines is the selection of the areas of the force-displacement characteristics that are
most nearly aligned with the straight line. Making the convergence between the two lines
as high as possible means keeping the correlation coefficient R2 as close as possible to the
value of 1. In practice, the value of the coefficient R2 cannot decrease below 0.95. The closer
to the value of 1 one is, the better the obtained results will be. Ideally, this coefficient is 1.
In order to correctly determine the critical force, the matrix method (determinant method)
was used.

As basic geometric relationships indicate, two lines that are not parallel to each other
intersect at a certain point. The point of intersection is located on both lines at the same time,
so the coordinates must concurrently satisfy the equations of both lines. These coordinates
can be obtained by solving a simple system of two linear equations:{

A1x + B1y + C1 = 0
A2x + B2y + C2 = 0

(1)

where A1 and A2 are the values of the directional coordinates of the lines at x, B1 and B2 are
the values of the coefficients at y, while C1 and C2 are the numerical values that determine
the so-called free expression of the function.

For determining the intersection point, Equation (1) must be rearranged to the form
depicted in Equation (2): {

A1x + B1y = −C1
A2x + B2y = −C2

(2)

The system of first-degree equations in the form shown in Equation (2) with two
unknowns may be solved employing the method of determinants of matrices as follows:

W =

∣∣∣∣A1 B1
A2 B2

∣∣∣∣ = A1·B2 − A2·B1 (3)

Wx =

∣∣∣∣−C1 B1
−C2 B2

∣∣∣∣ = (−C1)·B2 − (−C2)·B1 (4)

Wy =

∣∣∣∣A1 −C1
A2 −C2

∣∣∣∣ = A1·(−C2)− A2·(−C1) (5)

Under the initial assumptions that the above-mentioned lines are nonparallel, and for
W 6= 0, the system of equations is marked and has exactly a single solution:
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{
x = Wx

W
y =

Wy
W

(6)

where x and y are the coordinates of the intersection point of two straight lines.
Consequently, the approximation method made it possible to determine the approxi-

mate value of the critical load within the experimental load-shortening curve.
Moreover, experimental studies also allow one to determine the path of post-buckling

equilibrium. Such studies are carried out until the complete failure of the specimen and
provide an opportunity to capture the ultimate failure force, i.e., the maximum load
that the profile can carry. These tests were conducted on a universal testing machine,
as mentioned elsewhere. The total number of specimens tested was 24 (12 specimens
of type B and 12 specimens of type C). Axial compression tests were performed using
special heads with flat working surfaces that were parallel to each other. These heads were
rigidly attached to the bottom of the testing machine and to the top crosshead. Figure 2a
illustrates the test stand with the heads installed on the machine. In addition, a vision-based
system for measuring the deformation of the profile at the very moment of critical load
application—the ARAMIS 2D digital image correlation system [44,45]—was used. The use
of the referred device enables, in particular, the observation and measuring of deformations
at the moment of the loss of stability of the structure (buckling). Figure 2b presents the
test stand with the vision system employed. In order to obtain valid deformation values
using the ARAMIS 2D system, dedicated non-reflective, red-colored mats were used as a
background for the tests. When too much illumination is applied to the specimen during
the test, unwanted overexposed areas appear within the composite profile, which have an
adverse effect on the deformation registration of the structure. The use of a non-reflective
background eliminated the problem with overexposed areas due to the fact that the mats
absorb excess illumination and neutralize this unwanted effect. In order to obtain accurately
captured images of profiles in the axial compression test, proper lighting is required, which
was achieved using LED lamps.
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In addition, the AMSY-5 acoustic emission measurement system was also used in
the experimental studies. By recording signals such as number of counts, number of hits,
amplitude and energy, the state of the structure and its damage could be assessed.
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Experimental studies made it possible to determine both the values of critical loads
and the structure’s buckling forms. The former was determined by means of the method of
the intersection of straight lines while the latter was established through the structure’s
deformations obtained using a digital image correlation system during the tests.

4. Numerical Simulations

Numerical studies were based on the finite element method and were conducted
using Abaqus software (Abaqus 2023, Dassault Systemes Simulia Corporation, Velizy
Villacoublay, France). The numerical studies used a Lamin-type material model, the data
of which was described in more detail during the presentation of the research subject. All
numerical studies were carried out in two steps. The first stage was determining the linear
stability of the structure (buckling) within the framework of which the linear eigenproblem
was solved, based on the criterion of minimum potential energy. In view of the above,
the buckling form of the thin-walled composite column was determined, along with the
determination of the value of the critical load, corresponding to the obtained buckling form.
The value of the critical load was determined by defining the unit load of the structure,
which made it possible to determine the critical state [29]. The following is the relationship
that allows the calculation of the critical load (7), it comes directly from the documentation
of the FEM software (Abaqus 2023):(

KNM
0 + λiKNM

∆

)
vM

i = 0 (7)

where KNM
0 is structural stiffness matrix relating to the baseline (includes preload effects

PN), KNM
∆ refers to the differential matrix of initial stress and load stiffness caused by the

incremental loading pattern (QN), λi illustrates the eigenvalues, vM is the buckling mode
(known as the eigenvectors), M and N refer to degrees of freedom M and N of the whole
model, and i refers to the I th buckling mode. Furthermore, the critical buckling loads
represent then PN + λiQN. Additionally, vM is normalized vectors (do not reflect the actual
quantities of strain at critical load). They are normalized so that the maximum component
of displacement is 1.0. When all components of displacement are zero, the maximum
component of rotation is normalized to 1.0. Once damage is initiated, further loading of
the composite structure will degrade the stiffness parameters of the material.

The numerical model consisted of a composite structure and non-deformable plate
elements, which allowed correct modelling of the boundary conditions. The composite
column with rectangular cross-section consisted of eight layers of composite material
(CFRP) of equal thickness for both B- and C-type specimens. The numerical model in-
cluded four different arrangements of fiber composite orientation shown in Figure 3. The
composite structure had the same geometric parameters regardless of the arrangement
of the composite material layers used. Both experimental studies and numerical simula-
tions considered the following cases of arrangement of composite material layers: B1 and
C1—[0◦/45◦/−45◦/90◦]s, B2 and C2—[0◦/90◦/0◦/90◦]s, B3 and C3—[45◦/−45◦/90◦/0◦]s,
B4 and C4—[90◦/−45◦/45◦/0◦]s, as shown in Figure 3.

The discrete model was formulated using Continuum Shell elements (with a physical
representation of the thickness of the composite material, which included eight layers of
composite material), whereas the plate elements serving as supports were modelled using
Shell elements. The composite structure consisted of SC8R-type finite elements (8-node
quadrilateral continuous general-purpose shell in-plane, reduced integration with hour-
glass control, finite membrane deformations, having three translational degrees of freedom
per computational node). In contrast, the supports were defined by non-deformable finite
elements of type R3D4 (4-node three-dimensional rigid quadrilateral, having six degrees
of freedom (three translational and three rotational) per computational node). A mesh
density of 2 mm was used for the composite structure, while 2.5 mm was used for the
non-deformable plates. The discrete model consisted of 10,320 finite elements (9200 linear
hexahedral elements of type SC8R and 1120 linear tetrahedral elements of type R3D4).
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Contact properties representing the interaction of the contacting surfaces were reflected
by using normal and tangential contact (friction coefficient 0.2). To represent the correct
behaviors of the structure, boundary conditions were applied by assigning the load to refer-
ence points assigned to the lower and upper non-deformable plate, respectively. The upper
plate, acting as the loading element, had all degrees of freedom locked, with the exception
of the displacement relative to the Z axis, on which the load was applied. The bottom plate
serving as the base had all rotational as well as translational degrees of freedom locked.
The load was realized with a displacement relative to the Z axis. A discrete model of the
structure with defined boundary conditions is shown in Figure 4. The numerical model
presented below was used to perform a simulation using the finite element method of
stability (buckling) of thin-walled structures.
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5. Research Results

In the course of the experimental research and numerical simulations using the finite
element method, it was possible to assess the stability of thin-walled composite struc-
tures, which is important for the evaluation of composite structures for the use of such
components in the aerospace or automotive industries. Experimental research used interdis-
ciplinary testing techniques to assess the structural stability, while in the case of numerical
simulations, it was possible to determine critical (buckling) states using an advanced model
of the composite material.

The main purpose of the research conducted was to analyze the critical state. The
research included both an experiment on physical specimens and a numerical study using
the finite element method. The analysis of the critical state for physical specimens was
carried out using a universal testing machine, where the occurring form of buckling was
observed in axial compression of the structure using an optical strain measurement system,
while the critical load values were determined based on the approximation method of
intersecting straight lines. The method of determining the critical load for the described
method is presented in Equations (1)–(6) in Section 3. The procedure for estimating the
critical load values for all experimentally tested specimens was the same. To determine
the critical load value, we relied on load-displacement curves obtained from bench tests.
The effective approximation ranges for the experimental curves (the range before and after
the change in the “stiffness” of the experimental curve) were approximated by using linear
functions while maintaining the correct correlation coefficient between the approximation
functions and the selected approximation ranges at the highest possible level of R2 ≥ 0.95.
All tested cases obtained a coefficient value that was significantly higher, oscillating above
R2 ≥ 0.99, which indicates the high accuracy of the realized tests. Therefore, linear ap-
proximating functions were determined, which allowed further calculation of approximate
values of critical forces. The value was determined by solving a system of equations, that
is, determining the point of intersection of the approximating functions. As an example of
the first sample B1_1, the methodology for determining the critical load approximation is
presented, in which two approximation functions are initially compared using a system
of equations: {

A1x + B1y + C1 = 24, 008.79x− 1y− 1622.46 = 0
A2x + B2y + C2 = 16, 798.83x− 1y + 4850.59 = 0

(8)

To determine the point of intersection, the notation resulting from Equation (8) must
be transformed to another form, consistent with the following notation (9):{

A1x + B1y = −C1 ↔ 24, 008.79x− 1y = 1622.46
A2x + B2y = −C2 ↔ 16, 798.83x− 1y = −4850.59

(9)

The obtained system of first-degree equations with two unknowns is solvable by the
matrix determinant method (10)–(12):

W =

[
A1 B1
A2 B2

]
↔
[

24, 008.79 −1
16, 798.83 −1

]
= −7209.96 (10)

Wx =

[
−C1 B1
−C2 B2

]
↔
[

1622.46 −1
−4850.59 −1

]
= −6473.05 (11)

Wy =

[
A1 −C1
A2 −C2

]
↔
[

24, 008.79 1622.46
16, 798.83 −4850.59

]
= −143, 712, 226.41 (12)
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With the initial assumption that the aforementioned lines are not parallel, with W 6= 0,
the system of equations is determined and has exactly one solution (13):{

x = Wx
W = 0.90

y =
Wy
W = 19, 932.46

(13)

With the method described above, the approximate critical load value was determined
for the first specimen of type B, designated B1_1. Thus, it was determined that the critical
load value, causing loss of stability of the thin-walled composite structure, is approximately
Pcr = 19,932 N and occurs when the structure is shortened by u = 0.90 mm (vertical displace-
ment of the crosshead of the testing machine). The above-described method was used to
derive the critical load values for all specimens in the experimental tests. Figures 5 and 6
show graphically how the critical load was determined for the six selected specimens, i.e.,
B1 and C1 (three specimens of each column type).
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B1_3.

In Figures 5 and 6, the depicted lines indicate successively: red dashed line—approximation
function, blue solid line—experimental curve, red solid line—effective range of approxima-
tion, black dashed line—line representing critical load. The determined values of critical
forces made it possible to compare the tested specimens in terms of the influence of the
arrangement of the fiber composite layers on the stability of the structure. In order to better
present the obtained experimental results, the values were presented in Tables 2 and 3 for
specimen types B and C, respectively.
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Table 2. Critical state results for column type B—experimental studies.

Specimen Type
Specimen No.

1 2 3 Average
Value

B1 19,932 N 19,716 N 19,837 N 19,829 N

B2 18,544 N 18,892 N 18,771 N 18,736 N

B3 21,654 N 22,054 N 22,133 N 21,947 N

B4 16,992 N 17,665 N 16,666 N 17,108 N
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Table 3. Critical state results for column type C—experimental studies.

Specimen Type
Specimen No.

1 2 3 Average
Value

C1 14,445 N 14,945 N 14,947 N 14,779 N

C2 13,818 N 13,352 N 13,284 N 13,485 N

C3 16,487 N 18,041 N 17,075 N 17,201 N

C4 13,864 N 13,656 N 13,091 N 13,537 N

It was determined that the highest critical load values were obtained by the B3 and C3
type profiles—characterized by composite material layer arrangements [45◦/−45◦/90◦/0◦]s,
where the average critical load value was Pcr = 21,947 N for the B3 model and Pcr = 17,201 N
for the C3 model. The composite columns with the lowest critical load were characterized
by B4 [90◦/−45◦/45◦/0◦]s and C2 [0◦/90◦/0◦/90◦]s, where the average load values were
Pcr = 17,108 N and Pcr = 13,485 N, respectively. In describing the type C column, it is
worth noting that models C2 and C4 had very similar values of critical loads. In the case
of specimens C2_3 and C4_3, it was the C4 column that obtained a lower value of critical
load, according to Table 3. Based on the results of the average values of critical load, it was
determined that specimens of type B3 showed about 1.28 times higher load than specimens



Materials 2023, 16, 6835 11 of 18

of type B4, in the case of model C it was 1.28 for specimens of type C3 and C2, respectively.
Analyzing the extreme results, i.e., the highest value of critical load (sample B3_3) and the
lowest value of critical load (sample B4_3), it was determined that the ratio of maximum
to minimum load was 1.33. A similar comparison of extreme values for column type C
showed a ratio of load values of 1.38 between samples C3_2 (Pcr = 18,041 N) and C4_3
(Pcr = 13,091 N).

It was also noted that buckling of the structure occurs at different deflection values,
i.e., in the case of type B3 profiles, it occurs when the structure is shortened by u = 0.95 mm,
while in the case of type B4 profiles, it occurs when the structure is shortened by u = 0.81,
which is about a 0.14 mm difference between the above-mentioned structure types. In the
case of the type C column, the extremes of deflection at which the loss of stability occurred
were u = 0.91 mm (C3) and u = 0.55 (C2) on average. Thus, it was concluded that the
arrangement of fiber composite layers has a major impact on the stability of thin-walled
composite structures with a closed square section. In addition, it is noticeable that there
are significant differences in the values of critical loads and deflections at which stability is
lost for the two types of columns analyzed (B and C). The thin-walled column with a cross-
section of 20 × 60 mm (type C) was characterized by a lower critical load. The described
effect is observed when comparing all layer arrangements (1–4) shown for columns B and
C of Tables 2 and 3.

In addition, a qualitative evaluation of the critical condition was carried out in the
experimental study. The study consisted of recording buckling forms obtained by capturing
images of each type of composite profile during loss of stability (buckling), as well as
recording buckling forms using an optical strain measurement system—Aramis 2D. In
the case of the Aramis 2D optical system, it was necessary to use special filters applied
directly in the software, highlighting the buckling form (registration of deformations in the
longitudinal direction of the structure with a median filter). The registered experimental
buckling forms are shown below (Figures 7 and 8).
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Figure 7. Loss of structural stability—experimental studies: (a) specimen type B1, (b) specimen type
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During the execution of the experimental tests, it was observed that for the tested
profiles there were specific numbers of half-waves in the longitudinal direction of the
column: B1—three half-waves, B2—four half-waves, B3—five half-waves, and B4—seven
half-waves. In the case of the C-type model, a different number of half-waves was observed
for specific layer arrangements, whereas the values obtained reflected the results obtained
with numerical simulations using FEM.
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For numerical simulations using FEM, the critical state analysis was carried out based
on the solution of a linear eigenproblem. During the preparation of numerical models, the
effect of mesh density on the value of critical load was made (Figure 9). The study was
carried out on a sample specimen B1 that made it possible to estimate the value of critical
load—the most consistent with experimental results (a mesh density of 2 mm was adopted).
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The study of the critical state for numerical calculations made it possible to determine
the geometric form of buckling and the corresponding critical load values for each stacking
sequence of the composite material, as shown below (Figures 10 and 11).

The study of the critical state of thin-walled B- and C-type columns showed high
qualitative and quantitative convergence of the findings. The results of the numerical
analyses made it possible to determine the forms of buckling and the corresponding critical
load values. Therefore, the following results were determined for specimens with different
fiber arrangements: specimen B1—three half-waves with critical load value Pcr = 20,359 N,
specimen B2—four half-waves with critical load value Pcr = 19,556 N, specimen B3—five
half-waves with critical load value Pcr = 22,336 N, and specimen B4—seven half-waves
with critical load value Pcr = 17,753 N.
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B2, (c) specimen type B3, (d) specimen type B4.

Similar results were obtained for C-type columns. The values of the critical forces
achieved and the number of half-waves are as follows for subsequent arrangements of
composite layers: specimen C1—three half-waves with critical load value Pcr = 15,170 N,
specimen C2—three half-waves with critical load value Pcr = 14,037 N, specimen C3—five
half-waves with critical load value Pcr = 18,221 N, and specimen C4—six half-waves with
critical load value Pcr = 13,937 N. It is worth noting that the number of half-waves obtained
for layer arrangement 1 and 3 was the same; however, the loss of stability for type C
columns occurred at a critical load 4–5 kN lower than for type B columns.

Qualitatively, the experimental tests and numerical simulations showed a high level
of agreement. The high qualitative agreement between the results of numerical simulations
and bench tests is shown in Table 4.
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Based on the tests conducted, it was observed that the results of the numerical sim-
ulations slightly exceeded the value of the obtained forces in experimental tests. Higher
values of critical loads in the case of simulations were due to the fact that in numerical
simulations perfectly reflected physical models were considered but without geometric
imperfections due to manufacturing technology. These models were characterized then by
a slightly higher stiffness, which translated into the values of the obtained forces. A direct
comparison of the results of the two types of analysis showed a discrepancy in the range
of 2–6%. In the case of type C3 specimens, the critical load obtained in FEM simulations
was 1.06 times higher than that obtained from the average result (of three specimens) from
experimental tests. The remaining results had a much smaller error, indicating a high
convergence of the obtained quantitative results. The highest value of critical load was
observed for sample type B3: Pcr = 22,336 N—FEM, Pcr = 21,947 N—mean value EXP.
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Table 4. Critical state results—comparison of experimental studies and numerical simulations.

Specimen Type Average Value Pcr
(EXP) [N] Pcr (FEM) [N] FEM/EXP

B1 19,829 20,359 1.03

B2 18,736 19,556 1.04

B3 21,947 22,336 1.02

B4 17,108 17,753 1.04

C1 14,779 15,170 1.03

C2 13,485 14,037 1.04

C3 17,201 18,221 1.06

C4 13,537 13,937 1.03

The findings presented in this paper were the result of research work carried out
within the framework of a project financed with resources from the National Science Centre
with registration number 2021/41/B/ST8/00148.

6. Conclusions

The research presented in this article constitutes a buckling analysis of thin-walled
composite columns with rectangular cross-sections. The study of two types of columns
(B and C) investigated four different layer arrangements (lay-ups). The analyses carried
out involved physically manufactured structures as well as numerical simulations using
the finite element method. The research was carried out using interdisciplinary testing
techniques using a universal testing machine, an optical deformation measurement system,
and numerical simulations using FEM. Evaluation of the achieved results was conducted
qualitatively (percentage discrepancies) and quantitatively (several samples of profiles with
the same layer stacking). The study showed that the highest stability is characterized by
columns with an arrangement of layers defined by the number 3 [45◦/−45◦/90◦/0◦]s for
both type B and C columns. It is worth noting that thin-walled structures with a shape closer
to a square (type B) show higher values of the critical load at which buckling of the column
occurs. Thin-walled structures of type B showed an average of 4–5 kN higher critical load
value than type C columns. The specimens characterized by the lowest critical load values
had a lay-up of [0◦/90◦/0◦/90◦]s for the type B column and [90◦/−45◦/45◦/0◦]s for the
type C column. Noteworthy is that the type C column with a cross-section of 20 × 60 mm
had similar critical load values for the C2 and C4 systems. All the results obtained through
the numerical analyses as well as the bench tests are characterized by high quantitative and
qualitative agreement. The presented results describe the critical condition of thin-walled
composite columns, and this is the first stage of the work. The next stage of the work in
the next article will realize the study of the load capacity of the structure using numerical
simulations, taking into account the failure of composite materials such as CZM, XFEM,
PFA, or LaRC05, among others [46–49].
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