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Abstract: In this paper, the CQN_Chen function is used to characterize the plastic anisotropic
evolution of 304 stainless steel (SS304). The uniaxial tensile tests along different loading directions
are conducted to experimentally investigate the anisotropic hardening behavior for SS304. The
experimental data indicates that the anisotropy of SS304 is weak. The convexity analysis is carried
out by the geometry-inspired numerical convex analysis method for the CQN_Chen yield locus
during plastic deformation. The Hill48, SY2009 and CQN functions are used as the comparison to
evaluate the accuracy of the CQN_Chen function in characterizing plastic evolution. The predicted
values are compared with the experimental data. The comparison demonstrates that the CQN_Chen
function can accurately characterize anisotropic hardening behavior under uniaxial tension along
distinct loading directions and equibiaxial tension. Simultaneously, the CQN_Chen model has the
capacity to adjust the yield surface shape between uniaxial tension and equibiaxial tension. The
CQN_Chen model is recommended to characterize plastic evolving behavior under uniaxial tension
along different directions and equibiaxial tension.

Keywords: anisotropic hardening; plastic evolution; convex

1. Introduction

Due to carbon neutrality, lightweight materials are widely used to reduce weight,
such as aluminum alloy, magnesium alloy and stainless steel [1]. During the rolling
forming process, the textures of these sheet metals form preferred orientation, which leads
to anisotropy. It is vital to accurately characterize the plastic anisotropic evolution in
sheet-metal forming numerical simulation.

The Hill48 function was the pioneer of anisotropic yield functions [2]. However, the
Hill48 function cannot distinguish the difference of yield surface of metals with different
crystal structures because of its quadratic form. Hosford [3,4] combined the exponent with
the yield surface shapes for body-centered cubic (BCC) and face-centered cubic (FCC) met-
als. Barlat et al. [5] extended the isotropic function to anisotropy by introducing anisotropic
coefficients through a linear transformed tensor. More anisotropic coefficients were intro-
duced through two linear transformed tensors to characterize strongly anisotropic metals
and consider r-values, such as Yld2000-2d [6] and Yld2004-18p [7]. Cazacu et al. [8] in-
troduced an orthotropic yield criterion in the form of the principal values of the stress
deviator to capture the anisotropy and the asymmetry between tension and compression.
He et al. [9] proposed an enhanced constitutive model based on the Yld2000-2d model.
Recently, many yield functions were developed based on stress invariants. Cazacu and Bar-
lat [10] extended the isotropic Drucker [11] function to orthotropy. Cazacu and Barlat [12]
modelled the asymmetry and anisotropy for pressure insensitive metals. Gao et al. [13]
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developed a plasticity model with the form of the hydrostatic stress as well as the second
and third invariants of the stress deviator. Aretz and Barlat [14] developed a very flexible
anisotropic yield function with 27 anisotropic parameters. Yoshida et al. [15] developed
an anisotropic yield function in a form of the stress invariants. Hu et al. [16] proposed a
normalized stress invariant-based yield criterion to describe both asymmetry and Lankford
coefficients. Lou et al. [17] extended the Drucker yield function to anisotropy by linear
transformed tensor, and calibrated the yield surface shape control parameters for BCC
and FCC materials. When a linear transformed tensor is used to introduce anisotropic
coefficients, it is generally necessary to use an optimization algorithm to optimize error
functions to calibrate anisotropic coefficients under specific plastic work. Xu et al. [18]
reduced the Yld2011-27p function to decrease the number of experiments for the calibration
of anisotropic parameters. Therefore, the anisotropic yield functions commonly cannot
accurately describe the change of the yield surface with increasing plastic strain under the
isotropic hardening.

The anisotropic hardening model captures the evolution of the yield surface by analyt-
ically describing the anisotropic coefficient. Namely, the hardening curves under different
stress states are directly used to calculate the anisotropic coefficients with the increase
of the plastic deformation. The anisotropic hardening was experimentally observed by
Choi et al. [19], Khan et al. [20–22], Lou et al. [23], etc. Stoughton and Yoon [24] replaced
the anisotropic coefficients of the Hill48 function with hardening curves under uniaxial
tension along the rolling direction (RD), diagonal direction (DD) and transverse direction
(TD) as well as equibiaxial tension, which achieved the accurate description of anisotropic
hardening behavior (SY2009). The SY2009 function inherited the characteristic of the Hill48
function. Namely, the shape of the yield surface cannot be adjusted by the SY2009 model.
Lee et al. [25] multiplicatively coupled SY2009 with the Hosford72 [26] yield criteria, in
which the plastic evolution was characterized by SY2009 function, and the shape of the
yield surface was adjusted by the Hosford72 function (CQN). Chen et al. [27] coupled
SY2009 with Drucker function to characterize anisotropic hardening for BCC and FCC
metals (CQN_Chen). Hou et al. [28] coupled a quadratic asymmetric yield function with a
non-quadratic function by multiplication to characterize the anisotropic–asymmetric hard-
ening behavior and adjust the yield surface shape. Hou et al. [29] proposed an anisotropic
hardening model by coupling an asymmetric Hill48 function with an isotropic stress-
invariant-based yield function. Hu et al. [30] coupled a fourth order polynomial yield
criterion with a non-quadratic yield function under associated flow rule to describe the evo-
lution of anisotropic yielding behavior analytically. Zhang and Lou [31] characterized the
evolving plastic behavior by coupling an enhanced pDrucker function and SY2009 model.
Zhou et al. [32] proposed a new analytical asymmetric yield criterion base on the SY2009.
In addition to constructing anisotropic hardening model through multiplicative coupling
method, a direct analytical description of the yield function is developed by the hardening
curves or r-value evolution of different stress states to describe the anisotropic hardening.
Hu et al. [33] analytically described the Yoon2014 [34] function by considering anisotropic
hardening. Hu et al. [35] analytically described polynomial yield criterion by considering
both plane strain and pure shear states. Lou et al. [36] converted the stress-invariant-based
function into stress triaxiality, Lode parameter and von Mises stress forms, and analytically
described the parameters through four of the five stress states. Hou et al. [37] proposed
a constitutive model to accurately describe the anisotropic behaviors of sheet metals in
terms of the yield stress and plastic flow under plane strain loading. Lou and Yoon [38]
constructed an anisotropic-asymmetric hardening model by the additive coupling of two
Hill48 functions with Lode-dependent weight functions. The more parameters in the
analytical description of the yield function, the more anisotropic hardening behaviors of
the stress states can be characterized.
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The anisotropic models are widely used to predict the formation of sheet metals. Claus-
meyer and Svendsen [39] compared two of the models for anisotropic hardening and yield
surface evolution in BCC sheet steels. Min et al. [40] used the Yld89 [41] function to consider
anisotropic hardening and sheet anisotropy for a multi-phase 980 MPa steel. Li et al. [42]
characterized the anisotropic hardening behavior of metals using the interpolation method.
Hao and Dong [43] proposed an interpolation-based anisotropic yield and hardening
models. Fu et al. [44] proposed a method to simultaneously identify the anisotropic yield
and hardening parameters from a single test. Li et al. [45] developed an improved yield
criterion to characterize the anisotropic and tension-compression asymmetric behavior of
magnesium alloy. Lou et al. [46] developed a reduced form to the Yld2004-18p function to
decrease the experimental cost for the calibration of anisotropic parameters. Wang et al. [47]
investigated the earing characteristics of the 6K21 aluminum alloy in a circular-cup deep
drawing by virtue of experiments and multi-scale simulations. Hou et al. [48] described
the evolving yield surfaces of dual-phase steels. Mu et al. [49] characterized the anisotropic
hardening and evolution of r-values for sheet metal based on the evolving non-associated
Hill48 model. Du et al. [50] characterized the asymmetric evolving yield and flow of the
6016-T4 aluminum alloy and DP490 steel by the several existing asymmetric yield criteria
under the associated and non-associated flow rules. Mamros et al. [51] captured the plastic
anisotropy evolution of stainless steel 316L under proportional loadings. Yang et al. [52]
investigated the anisotropic plastic flow of low/medium carbon steel plates in different
loading conditions. Lee et al. [53] utilized the evolving Hill48 function to describe the evo-
lution of the distortional yield surface of the Al6014-T4 alloy. Gawad et al. [54] developed
an evolving plane stress yield criterion based on crystal plasticity virtual experiments.

This research investigates the plastic anisotropic evolution of 304 stainless steel (SS304)
by using the CQN_Chen function. The uniaxial tensile tests along RD, DD and TD are
conducted. The convex domain of CQN_Chen function is determined by the geometry-
inspired numerical convex analysis (GINCA) method with the increasing plastic evolution.
The Hill48, SY2009 and CQN models are selected as a comparison to reveal the capability
of CQN_Chen model in characterizing anisotropic hardening and adjusting yield surface
shape. The experimental yield stresses are fully compared to the predicted values by the
four models with the increase of the plastic deformation, including 3D plane stress yield
surfaces

(
σxx, σyy, σxy

)
, 2D yield locus under biaxial loading, predicted uniaxial tensile

yield stresses, and hardening curves under uniaxial tension along RD, DD and TD as well
as equibiaxial tension, which is used to evaluate the accuracy of CQN_Chen function in
describing plastic evolution.

2. CQN_Chen Anisotropic Hardening Model
2.1. CQN_Chen Anisotropic Hardening Model

The CQN_Chen function is proposed by Chen et al. [27], as shown in Equation (1). The
CQN_Chen is formulated by coupling SY2009 and Drucker function. Hence, the function
can accurately capture anisotropic hardening and adjust the yield surface shape for BCC
and FCC metals under the proportional loading conditions. Meanwhile, the function is
convenient for numerical simulation and has high simulation efficiency.
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where λ denotes the plastic compliance factor; (σ11, σ22, σ33, σ12, σ23, σ13) present Cauchy
stress components; J2 and J3 indicate the second and third invariants of stress deviator,
respectively; c controls the yield surface shape, and c = 1.5776 for BCC and c = 2.5116 for
FCC; a = 729

27−4c ; and F
(
λ
)
, G
(
λ
)
, H
(
λ
)
, L
(
λ
)
, M
(
λ
)

and N
(
λ
)

are anisotropic parameters
of the Hill48 function. The six parameters are functions of the hardening curves along
different loading directions, which is depicted as follows:
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where σ0, σ45, σ90 and σb are the yield stresses under uniaxial tension along the RD, DD and
TD as well as equibiaxial tension, respectively.

2.2. Convexity Analysis

Equations (2) and (3) observe that the c and λ values are related to the convexity of
the CQN_Chen yield surface. Namely, the c adjusts the yield surface curvature, and the
flow stresses under distinct plastic strain are obtained by the λ to compute the anisotropic
parameters of Hill48 function. The convexity of the yield locus is usually validated by
the Hessian matrix with the positive semi-definite. The Hessian matrix is obtained by
calculating the second order partial derivative of the yield function, and the convexity
of the yield surface is judged according to the eigenvalue of the Hessian matrix. It is
inconvenient and time-consuming to verify the convexity of the yield locus during the
plastic deformation process. Lou et al. [36] proposed a geometry-inspired numerical
convex analysis (GINCA) method to determine the convexity of the yield surface by
calculating the equivalent stress, as depicted in Figure 1. The points A, B and C are on
the 3D plane stress yield surface. Point D is located at the center of the infinitesimal
curved surface ÃBC. The coordinates of points A, B and C are presented as (xA, yA, zA),
(xB, yB, zB) and (xC, yC, zC), respectively. Therefore, the coordinate of point D is denoted as
((xA + xB + xC)/3, (yA + yB + yC)/3, (zA + zB + zC)/3). Due to points A, B and C being
located on the yield surface, the equivalent stresses at these points are fA = fB = fC = 1.
The equivalent stress at point D needs to be calculated to judge the convexity of the ÃBC. If
point D is located inside the curved surface ÃBC, then ÃBC is convex. Namely, the curved
surface ÃBC is convex if fD ≤ 1. On the contrary, the curved surface ÃBC is concave if
fD > 1. It is convenient to use the GINCA method to analyze the convexity of the yield
surface during the plastic evolving process. It is only necessary to calculate the equivalent
stress of the yield function without the computation of the second–order partial derivative
compared to the complicated Hessian matrix.
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Figure 1. Schematic diagram of convexity analysis of yield surface under plane stress space by
GINCA.

3. Plastic Evolution Characterization for SS304
3.1. Uniaxial Tensile Experiment

The CQN_Chen function is analytically described by the hardening curves of uniaxial
tension along the RD, DD and TD as well as equibiaxial tension for SS304 in Equations (4)–(7).
Hence, the dog–bone specimens with a thickness of 0.4 mm are cut by a laser cutting
machine along the RD, DD and TD for uniaxial tension. The dimensions of the dog–bone
specimen are shown in Figure 2. The uniaxial tensile tests are under quasi–static loading
with a tensile speed of 3.6 mm/min. The uniaxial tensile test is repeated five times in each
direction to ensure the reliability of the experimental results. The surface of the specimen
is sprayed with speckle uniformly, and the deformation process is recorded by the XTOP
digital image correction system. The virtual extensometer is set to 30 mm to obtain the
load–stroke curve in the longitudinal direction, as presented in Figure 2a.

Figure 2a shows that the load–stroke curves in the RD and DD are almost identical,
and the load–stroke curve in the TD is slightly higher than that in the RD and DD. The
engineering stress–engineering strain curve is depicted in Figure 2b. According to the
principle of plastic work equivalence, the uniaxial tensile hardening curves along different
directions are converted into functions of λ in order to calculate the parameters of the
CQN_Chen function, as shown in Figure 3. The hardening curve of TD is slightly higher
than that of RD and DD at 0.15 ≤ λ ≤ 0.35. The anisotropy is not obvious for SS304.
The equivalent strain field in Figure 3 shows that the equivalent plastic strain of SS304
at fracture is about 0.6, which indicates that SS304 has good plastic deformation capacity.
The uniaxial tensile hardening curves along the RD, DD and TD are fitted by the Hockett–
Sherby/Hollomon hardening model. The parameters of the hardening law are listed in
Table 1. The yield stress under equibiaxial tension is assumed as σb = (σ0 + 2σ45 + σ90)/4.
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curve; (b) engineering stress–engineering strain curve.
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Table 1. The parameters of the Hockett–Sherby/Hollomon hardening law for SS304 uniaxial tensile
hardening curves.

Uniaxial Tension
σ(

¯
λ)=A−Bexp(−C

¯
λ

b

)+K
¯
λ

n

Fitted Error
A (MPa) B (MPa) C b K (MPa) n

RD 465.291 148.280 67.908 4.172 1499.145 0.878 8.1 × 10−4

DD 459.826 151.990 61.747 4.068 1481.643 0.866 9.1 × 10−4

TD 417.364 103.482 107.677 4.491 1577.881 0.870 5.1 × 10−4

3.2. Anisotropic Evolution Characterization of SS304

The convex domain of the CQN_Chen yield surface is investigated by using the
GINCA method under 3D–plane stress space with plastic evolution. Under the assumption
of isotropy, the CQN_Chen function is reduced to a Cazacu2018 function [55]. Hence,
the convex domain of the CQN_Chen function should be within the convex domain of
the Cazacu2018 function. The comparison between the convex domain of CQN_Chen
and the convex domain −5.4 ≤ c ≤ 3 of the Cazacu2018 function is shown in Figure 4.
The blue solid line and the red solid line in Figure 4 represent the convex domains of the
Cazacu2018 and CQN_Chen functions, respectively. The comparison indicates that the
upper and lower limits of parameter c for CQN_Chen are located in the convex domain of
Cazacu2018 function. The parameter c of the CQN_Chen function is recommended to be
1.5776 for SS304 of BCC metal. c = 1.5776 is always in the convex domain of the parameter
c at 0 ≤ λ ≤ 10. Therefore, the CQN_Chen yield surface remains convex during plastic
deformation for SS304.
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Figure 5 presents the 3D plane stress yield surfaces predicted by the CQN_Chen
function at λ = 0, 0.1, 0.15 and 0.2. The yield locus evolves with an increasing λ value. The
experimental yield stresses are precisely located on the yield surfaces for uniaxial tension
along the RD, DD and TD as well as equibiaxial tension at different λ. This is because
these yield stresses are used to analytically describe the parameters of the CQN_Chen
function. The anisotropic hardening behavior for SS304 is accurately characterized by the
CQN_Chen model.

Materials 2023, 16, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. The limit values of the parameter c of CQN_Chen function computed by GINCA method 
under biaxial loading space for SS304. 

Figure 5 presents the 3D plane stress yield surfaces predicted by the CQN_Chen func-
tion at �̅� = 0, 0.1, 0.15 and 0.2. The yield locus evolves with an increasing λ value. The 
experimental yield stresses are precisely located on the yield surfaces for uniaxial tension 
along the RD, DD and TD as well as equibiaxial tension at different λ . This is because 
these yield stresses are used to analytically describe the parameters of the CQN_Chen 
function. The anisotropic hardening behavior for SS304 is accurately characterized by the 
CQN_Chen model. 

 

2 4 6 8 10

-6

-4

-2

0

2

4

 Biaxial space

Upper bound of Cazacu2018@3.0

Lower bound of Cazacu2018@-5.4

c = 2.5116
c = 1.5776

convex inside

concave outside

c

λ

Figure 5. Cont.



Materials 2023, 16, 6828 9 of 15

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

 

 

 

Figure 5. The evolution of 3D plane stress yield surface of CQN_Chen function at different λ  for 
SS304. 

Figure 5. The evolution of 3D plane stress yield surface of CQN_Chen function at different λ for
SS304.

In order to describe the comparison more intuitively between the predicted yield
stresses and the tested values, the 2D yield surface under biaxial loading space is extracted,
which is denoted by the solid red line highlighted by <Biaxial loading along RD and TD> in



Materials 2023, 16, 6828 10 of 15

Figure 5. The Hill48 anisotropic function, SY2009 and CQN anisotropic hardening models
are selected as a comparison to evaluate the ability of the CQN_Chen model to characterize
anisotropic hardening and adjust yield surface curvature. Figure 6 shows the comparison
of 2D yield surfaces predicted by different models with experimental data under biaxial
loading space. For the Hill48 function with the assumption of isotropic hardening, only the
2D yield surface at λ = 0 accurately captures the experimental yield stresses of equibiaxial
tension and uniaxial tension along the RD, DD and TD. The uniaxial tensile yield stress
along the RD is accurately predicted as the plastic strain increases. However, the predicted
yield stresses are underestimated compared to the experimental values under unaixial
tension along the TD, and to equibiaxial tension with the increase in plastic deformation.
For the three anisotropic hardening models, the predicted yield surfaces at different plastic
strain all precisely pass the experimental yield stresses for uniaxial tension along RD and
TD as well as equibiaxial tension. The predicted yield surfaces of the CQN and CQN_Chen
functions are almost identical. Compared to the predicted yield surface of CQN and
CQN_Chen, the predicted yield stresses of SY2009 are significantly smaller than that of
CQN and CQN_Chen under plane strain tension along the RD and TD as well as shear
along DD. This is because the SY2009 function with the quadratic form cannot distinguish
the yield surface differences of metals with different crystal structures. Figure 7 presents
2D yield surface evolution predicted by the CQN_Chen function at 0 ≤ λ ≤ 0.6 with an
interval of 0.02. The predicted yield surfaces by CQN_Chen are in good agreement with
the experimental data of uniaxial tension along the RD and TD as well as the equibiaxial
tension at different λ values. The CQN_Chen function accurately modeled anisotropic
hardening behavior and adjusted the shape of the yield surface for SS304.
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The solid pink lines in Figure 5 are extracted and represents the predicted uniaxial
tensile yield stresses along the different directions. Figure 8 indicates the comparison of
experimental data with the uniaxial tensile yield stresses along distinct loading directions
predicted by the Hill48, SY2009, CQN and CQN_Chen models. The uniaxial tensile yield
stresses predicted by the four models accurately pass the experimental values of uniaxial
tension along the RD, DD and TD at λ = 0. With the increase in plastic strain, the uniaxial
tensile yield stresses along distinct loading directions predicted by the Hill48 function are
significantly lower than the tested values. However, the uniaxial tensile yield stress along
the RD can be accurately predicted by the Hill48 function. The predicted uniaxial tensile
yield stresses along different directions nearly overlap for the three anisotropic hardening
models. These three models accurately capture the experimental uniaxial tensile yield
stresses along RD, DD and TD. The uniaxial tensile yield stresses along RD, DD and TD are
precisely characterized at the different plastic strain by CQN_Chen for SS304.

Figure 9 illustrates the comparison of predicted and tested values for the hardening
curves under uniaxial tension along the RD, DD and TD as well as equibiaxial tension.
The comparison demonstrates that the four hardening curves are accurately predicted
by the SY2009, CQN and CQN_Chen functions. The Hill48 function can only accurately
characterize the uniaxial tensile hardening curve along the RD under isotropic hardening.
Equation (8) is used to quantitatively evaluate the prediction accuracy of different models
for the four hardening curves, as depicted in Figure 10. Consistent with the above analysis,
the predicted errors of four hardening curves are zero for the SY2009, CQN and CQN_Chen
models. The maximum predicted error of the Hill48 function is about 0.035 for uniaxial
tension along TD. Meanwhile, the predicted errors of the Hill48 function are less than
zero for the hardening curves of uniaxial tension along the DD and TD as well as equib-
iaxial tension, which indicates that the predicted yield stresses by the Hill48 function is
underestimated under these stress states. The CQN_Chen function accurately describes the
hardening behavior for equibiaxial tension and uniaxial tension along the RD, DD and TD.

Error =

(
σpred − σexp

)
σexp

(8)

where σpred and σexp present the yield stresses of the experiment and prediction, respec-
tively.
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Figure 9. Comparison of hardening curves predicted by different models with experimental data
under equibiaxial tension and uniaxial tension along the RD, DD and TD for SS304: (a) Hill48 function;
(b) SY2009; (c) CQN; (d) CQN_Chen.
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4. Conclusions

The uniaxial tensile tests along distinct loading directions are conducted to investi-
gate the anisotropic hardening behaviors for SS304. The CQN_Chen function is used to
characterize the plastic evolution under uniaxial tension along the RD, DD and TD as
well as equibiaxial tension for SS304. The convex domain is verified by GINCA method
for the CQN_Chen yield surface. The Hill48, SY2009 and CQN models are selected as
the comparison to evaluate the accuracy of CQN_Chen function in describing anisotropic
hardening. The predicted values of the four models are compared with the experimental
data, including the 3D plane stress yield surface, 2D yield locus under biaxial loading
space, the predicted uniaxial tensile yield stresses along different loading directions and the
predicted hardening curves. The results shows that the anisotropy of SS304 is not obvious.
The CQN_Chen function can accurately model the anisotropic evolution under uniaxial
tension along the RD, DD and TD as well as equibiaxial tension with increasing plastic
strain. Meanwhile, the yield surface difference are distinguished for BCC and FCC metals.
The CQN_Chen model is recommended to characterize plastic evolving behavior for BCC
and FCC metals under proportional loading condition.
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