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Abstract: The pitting corrosion of orthodontic apparatus elements in the oral environment is an
interest of both clinicians and scientists dealing with the assessment of the biocompatibility of
medical materials. This work presents a study on the effect of ready-to-use Listerine® and Meridol®

mouthwashes and sodium fluoride on the resistance of the commercial Remanium®-type orthodontic
archwire to pitting corrosion in artificial saliva at 37 ◦C. XRD, SEM, EDS, mechanical properties, and
microhardness measurements were used to characterize the archwire. The in vitro corrosion resistance
of the archwire was examined using the open-circuit potential method, electrochemical impedance
spectroscopy, and anodic polarization curves. The physicochemical characteristics confirmed the
presence of a bi-phase alloy with a mixed austenite/ferrite structure containing Fe 74.4(7) at.%, Cr
18.4(4) at.%, and Ni 7.2(4) at.%. The Fe–Cr–Ni alloy was characterized by high tensile strength and
Vickers microhardness. EIS revealed the capacitive behavior with high corrosion resistance. It was
found that the kinetics of pitting corrosion in the artificial saliva decreased in the presence of NaF and
mouthwashes. The potentiodynamic characteristics confirmed the decrease in susceptibility to pitting
corrosion after the modification of artificial saliva. The pitting corrosion mechanism of the self-passive
oxide layer on the surface of the Fe–Cr–Ni electrode in the biological environment containing chloride
ions was discussed in detail. Mechanical properties after corrosion tests were weakened.

Keywords: electrochemical impedance spectroscopy; Fe–Cr–Ni steel; pitting corrosion; Remanium
orthodontic archwire; saliva

1. Introduction

In dental prosthetics, metallic biomaterials are widely used, and include high-noble
alloys, noble alloys, and non-noble alloys [1–11]. High-noble alloys contain 60% of precious
elements such as Au, Pt, Pd, Ir, and Ru and a minimum of 40% Au [1]. Noble alloys contain
25% by weight of precious elements, not necessarily gold. Base alloys mainly contain base
metals such as nickel, chromium, cobalt, niobium, and titanium. The noble metal content
does not exceed 25% by weight of the base alloy. However, prosthetic constructions made of
dental biomaterials are subject to electrochemical phenomena in the oral cavity, which may
adversely affect the human body. Corrosion of dental biomaterials can lead to weakening
of the prosthetic restoration and, consequently, to its damage [1–8,11].

In the case of orthodontic wires working in the oral cavity environment, corrosion
is caused by the strong corrosive properties of saliva associated with the presence of
chloride ions, proteins, enzymes, and bacteria on the dental plaque [1,3]. Bacteria make
metals and their passivation alloys unable to prevent biological corrosion. Additional
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factors of corrosion are changes in pH caused by consumed foods, diseases such as gastric
hyperacidity or gastroesophageal reflux disease, changes in the temperature of drinks, and
errors made during the production of alloys and their thermal and mechanical treatment.

Metal ions are released during the corrosion process and their content in the saliva
increases over time [3,12–15]. Metal ions can also be detected in the gums and tissues
adjacent to the inserted dental alloy, they also accumulate in the stomach, liver, and
kidneys. Each metal has a critical concentration beyond which toxic and allergic reactions
occur. The degree of harmful effect of dental alloys depends mainly on the amount of
released corrosion products.

Very durable and resilient Fe–Cr–Ni Remanium® steel belongs to non-noble alloys,
which is widely used in dentistry, especially in orthodontics, jaw orthopedics, and prosthet-
ics due to its acid-resistant properties [14–16]. The content of chromium and nickel in alloys
for dental applications is regulated by the ISO 6871-2:2000 standard [17]. Both chromium
and nickel undergo self-passivation, thanks to which Fe–Cr–Ni steel shows good resistance
to quite aggressive corrosive environments of the oral cavity.

The gradient formed during corrosion at the metal-intercellular fluid interface weakens
the activity of neutrophils, macrophages, and lymphocytes, which weakens the activity
of the positive bacterial flora [14–20]. Small amounts of bioelements in the body are
needed; however, too high a level resulting especially from electrochemical corrosion can
lead to many diseases, which include electrometallosis and ion poisoning. Excess iron
formed as a result of corrosion accumulates in the tissues surrounding the alloy and in the
cells of the spleen. Iron ions destroy lysosomes, thus hindering the diffusion of enzymes
through cell membranes. The excess of iron ions leads to the formation of free radicals
and, consequently, to DNA and RNA damage, mutagenic changes, and atherosclerosis
of the vessels [18]. Chromium ions as a product of the corrosion of dental alloys, also
cause changes in the tissue in direct contact with the alloy. Their concentration may be
even 30- to 100-fold higher than that of normal tissues. The accumulation of chromium
ions causes damage to parenchymal organs, such as kidneys and liver. Excess chromium
ions are also deposited in the spleen. Chronic exposure to chromium also causes allergic
reactions, mainly in men, and carcinogenic reactions [19]. Nickel is a non-toxic element,
but nickel tetracarbonyl is highly toxic as it damages the bronchial mucosa. Nickel ions are
carcinogenic and cause allergic reactions mainly in women. Metal ions are accumulated in
the spleen and kidneys. Elevated nickel concentration is also observed in the tissues near
the alloy [20]. The listed bioelements as corrosion products in the form of ions move into
the tissues with body fluids, damaging the cell membrane, which changes the metabolic
activity of the cells. Metal ions can affect the intercellular space on cells or penetrate into
them also by phagocytosis. As a result of corrosion in soft tissues, phagocytic staining can
be observed. High corrosion resistance is a prelude to biocompatibility [21].

This work addresses issues that are extremely important from the application point
of view, which concern a very wide group of patients around the world who use the
Fe–Cr–Ni orthodontic archwire of the Remanium®-type exposed to aggressive factors
during the treatment process. These include the acidic pH of saliva caused by inflammation
or the intake of fluids and food, the presence of commercial water- and alcohol-based
mouthwashes, and the presence of sodium fluoride, which is the main ingredient of
toothpastes. The research undertaken was carried out in cooperation with practicing
dentists and prosthodontists. This work provides new insight into the relationship between
corrosive factors present in saliva and local pitting corrosion of commercial orthodontic
wires of the Remanium® type. In vitro corrosion resistance testing was performed using
electrochemical impedance spectroscopy (EIS) to characterize the mechanism and kinetics of
electrochemical corrosion. The assessment of corrosion damage after the potentiodynamic
measurements was carried out using scanning electron microscopy (SEM) and energy
dispersion spectroscopy (EDS). Mechanical properties and microhardness of the tested
archwire were also the subject of this study.
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2. Materials and Methods
2.1. Preparation of Samples for Testing

The research material was a commercial orthodontic archwire of the Remanium® type
(Dentaurum, Ispringen, Germany), made of Fe–Cr–Ni steel with a diameter of 0.80 mm and
a length of 20 m, which is used for ready-made wire elements for assembly in removable
orthodontic appliances (Figure 1). The round, spring-hard Remanium® archwire was cut
into 50 mm long samples. The Remanium archwire samples were also collected in graphite
using an ATM Opal 400 hot mounting press (Spectrographic Ltd., Guiseley, Leeds, UK)
using a pressure of 3.5 bars at 180 ◦C for 10 min to determine the microhardness of the
tested alloy. Then, the collected samples were ground with the metallographic grinding
and polishing machine Metkon Forcipol 102 (Metkon Instruments Inc., Bursa, Turkey)
on abrasive papers with a gradation from P320 to P2500 (Buehler Ltd., Lake Bluff, IL,
USA) and polished on felt with a colloidal SiO2 suspension (0.04 µm grain size, Struers,
Cleveland, OH, USA), until the mirror surface was obtained. All samples were degreased
in acetone (Avantor Performance Materials Poland S.A., Gliwice, Poland) for 20 min using
an ultrasonic cleaner USC-TH (VWR International, Radnor, PA, USA). In the final stage,
sonication in ultrapure water (Milli-Q Advantage A10 Water Purification System, Millipore
SAS, Molsheim, France) for 20 min was applied.
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Figure 1. Dentaurum Remanium® archwire: (a) in the orthodontic apparatus as arches [22]; (b) in
trading condition; (c) SEM image of the sample after inclusion in graphite.

The Dentaurum Remanium® archwire belonging to medical devices Class IIa was easy
to bend and could be welded [23]. Its composition was in at.%: Cr 16.0–19.0; Ni 6.0–9.5;
Si ≤ 2.0; Mn ≤ 2.0; Mo ≤ 0.8; C 0.05–0.15; N ≤ 0.11; P ≤ 0.045; S ≤ 0.015; rest Fe. The
Young’s modulus was equal to 134.24 Gpa.

2.2. Phase Composition Identification of the Fe–Cr–Ni Steel

X-ray diffractograms for the Fe–Cr–Ni steel were recorded using a Philips X’Pert
PW3050 X-ray diffractometer (Malvern Panalytical, Worcestershire, UK) supplied with a
current of 30 mA at a voltage of 40 kV, and a bent graphite monochromator. The Bragg–
Brentano geometry and CuKα radiation (λCuKα—1.54178
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) was used. The registration
was made using the step-scanning method with a step of 0.04◦ and a counting time of 4 s
in the 2θ angular range from 20 to 140◦. The slit on the incident beam was 1◦ and on the
diffracted beam 1◦. The Soller’s slits of 0.03 mm were used. The obtained diffraction pattern
was the basis for phase identification using the ICDD PDF4 database (Release 2018) [24].

2.3. Microstructure and Chemical Composition of the Fe–Cr–Ni Steel

Microstructure studies of Fe–Cr–Ni steel were performed using a JEOL JSM-6480
scanning electron microscope (SEM, Peabody, MA, USA) with a resolution of 3 nm and
an accelerating voltage of 20 kV. The analysis of the chemical composition of the samples
before and after corrosion tests was carried out using the EDS method. The study of the
surface distribution of alloying elements such as Fe, Cr, and Ni was also performed.
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2.4. The Corrosion Resistance of the Fe–Cr–Ni Steel

The in vitro corrosion resistance of the Fe–Cr–Ni steel to pitting corrosion was tested
in artificial saliva prepared according to the AFNOR/NF standard S90-701 [25] at pH 7.4(1)
and pH 5.5(1) (Table 1). Artificial saliva solutions were enriched with 0.1 M NaF and
15 mL of commercial antiseptic mouthwashes such as Listerine Total Care Teeth Protection®

(McNeil Consumer Healthcare McNeil-PPC, Inc., Fort Washington, PA, USA) based on
alcohol (21.6% v/v) and Meridol® (Colgate-Palmolive Company, New York, NY, USA)
alcohol free. For comparative purposes, corrosion resistance tests were also carried out in a
3.5% NaCl solution with pH 7.4(1) in accordance with the ISO 10271:2021 standard [26]. A
4% NaOH solution and a 1% C3H6O3 solution were used to adjust the pH of the solutions.
Ultrapure water with a resistivity of 18.2 MΩ cm and reagents pure for chemical analysis
(Avantor Performance Materials Poland S.A., Gliwice, Poland) were used to prepare all
solutions.

Table 1. Chemical composition of the artificial saliva [25].

Component Concentration [g dm−3]

Na2HPO4 0.260
KH2PO4 0.200
NaHCO3 1.500

KSCN 0.330
NaCl 6.700
KCl 1.200

In electrochemical measurements, the working electrode (WE) was a sample of the
Remanium® orthodontic archwire, and the counter electrode (CE) was a platinum foil.
Electrochemical tests were conducted against a reference electrode (RE) in the form of
a saturated calomel electrode (SCE) type R-20 (Hydromet, Gliwice, Poland), containing
a half-cell with the scheme (Pt)Hg/Hg2Cl2 with the addition of a saturated solution of
potassium chloride. RE was introduced into the electrolyte through a Luggin capillary.

In situ corrosion resistance tests were carried out in thermostatic conditions at 37(2) ◦C.
Each solution was deaerated in 99.9999% pure argon for 30 min before measurement. The
Autolab/PGSTAT12 (Metrohm Autolab B.V., Utrecht, The Netherlands) was used for the
corrosion tests. The measurement using the open-circuit potential and the polarization
curve method was performed by the ISO 10271:2021 standard [26]. The open-circuit
potential (EOC) was recorded for a time (t) of 2 h.

EIS measurements were carried out at the EOC in the frequency (f) range from 20 kHz
to 10 mHz using the sinusoidal signal amplitude of 10 mV. EIS data were analyzed based
on electrical equivalent circuits using the EQUIVCRT program and the complex non-linear
least squares (CNLS) method. Equivalent circuits were defined according to the circuit
description code proposed by Boukamp [27].

The anodic polarization curves were recorded from a potential 150 mV lower than the
stabilized Eoc with a polarization rate of 1 mVs–1 to the value of 1 V.

2.5. Mechanical Properties of the Fe–Cr–Ni Steel

The mechanical properties of the Fe–Cr–Ni steel were investigated before and after
corrosion investigations in the tensile test at ambient temperature using an Instron 1195 uni-
versal testing machine (Instron, Norwood, MA, USA) equipped with a video extensometer.
The samples were 25 mm long and had a diameter of 0.80 mm. The beam displaced was at
a rate of 1 mm min–1.

The micromechanical properties of the Fe–Cr–Ni steel were studied in the microhard-
ness test using a Wilson®–WolpertTM Microindentation Tester 401MVD (Wilson Instru-
ments, LLC, Carthage, TX, USA). The Vickers method with a hardness scale of HV = 0.1 and
a Vickers indenter in the form of a square-based pyramidal-shaped diamond indenter with
face angles of 136◦ was used according to the ISO 6507-1:2018 standard [28]. The maximum
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indentation load was 0.3 N for 10 to 15 s. For checking and calibrating the microhardness
tester, indenter, and diagonal length of the measuring system, a direct method was used,
which is described in the ISO 6507-2:2018 standard [29].

3. Results and Discussion
3.1. Physicochemical Characteristics of the Fe–Cr–Ni Steel

To confirm the phase composition of the Fe–Cr–Ni steel used for the production of
the Remanium®-type orthodontic archwire, an X-ray structural analysis was conducted.
Figure 2 presents an exemplary XRD diffractogram in the Bragg–Brentano geometry ob-
tained for the commercial sample of the Fe–Cr–Ni steel. The phase identification carried
out revealed that the registered diffraction lines are characteristic of ferrite Fe(Cr) (ICDD
00-041-1466) and austenite Fe(Ni) (ICDD 00-047-1417). Based on the X-ray analysis, it was
found that the tested Fe–Cr–Ni steel is a bi-phase alloy with a mixed austenitic/ferritic
(γ/δ) structure.
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Figure 2. XRD diffractogram of the commercial Fe–Cr–Ni steel.

The obtained results suggest that the examined Fe–Cr–Ni still will maintain high
resistance to pitting, intercrystalline, atmospheric, and stress corrosion, maintaining the
high level of strength properties of ferritic stainless steel and a relatively low heat expansion
coefficient compared to austenitic stainless steel, together with less tendency to grain
growth [30].

The control analysis of the local chemical composition on the surface of the studied
steel was carried out by the EDS method in selected microregions at 10 measuring points
(Figure 3a). The exemplary EDS spectrum is shown in Figure 3b. Qualitative EDS analysis
carried out based on the binding energy of characteristic peaks allowed to identification the
presence of elements of an atomic number equal to 24, 26, and 28, i.e., chromium, iron, and
nickel, respectively. Quantitative EDS analysis for the Fe–Cr–Ni steel showed the content
of Fe 74.4(7) at.%, Cr 18.4(4) at.%, and Ni 7.2(4) at.%. The obtained results remain in very
good compliance with the chemical composition given by the steel manufacturer.

Maps of the surface distribution of the identified elements are presented in Figure 3c–e.
The obtained maps indicate that in the observed microregions Fe, Cr, and Ni are evenly
distributed on the surface of the steel. Fe appears in the largest amount and Ni in the
smallest one. There is also a lack of microcracks, scratches, or other damage on the surface
of the Fe–Cr–Ni steel, in which corrosion cells could be initiated.
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(b) EDS spectrum in the examined microregion; (c) surface distribution map of Fe; (d) surface
distribution map of Cr; (e) surface distribution map of Ni.

3.2. Micromechanical Properties of the Fe–Cr–Ni Steel

The Vickers microhardness measurements were carried out on two samples of the
Fe–Cr–Ni steel 25 mm long at six measuring points, and the obtained results are shown in
Table 2.

Table 2. Results of the Vickers microhardness for the Dentaurum Remanium® archwire.

Measurement Number Sample 1
[µHV0.3]

Sample 2
[µHV0.3]

1 413.0 467.0
2 555.4 593.5
3 542.8 579.5
4 534.7 574.3
5 596.7 604.4
6 518.8 506.9

Average value 540.6

Standard deviation 19.4



Materials 2023, 16, 6791 7 of 24

The average Vickers microhardness value for the Dentaurum Remanium® archwire is
540.6 µHV0.3. Analysis of the Vickers microhardness of selected orthodontic archwires in the
literature showed comparable values for stainless steel like GAC® (578.56 µHV0.2), Ortho
Organizers® (555.67 µHV0.2), Ormco® (609.78 µHV0.2), Dentaurum® (579.33 µHV0.2), and
3M Unitek® (555.33 µHV0.2) [31]. A much smaller value of 340.22 µHV0.2 was determined
in the case of β-titanium alloy (TMA, Ormco®), similarly as for Ni–Ti alloys like Neo
Sentalloy® GAC (316.33 µHV0.2), Nitanium Ortho Organizers® (403.22 µHV0.2), Ni–Ti
Ormco® (419.78 µHV0.2), Remetitan Dentaurum® (400.22 µHV0.2), and Nitinol Classic
3M Unitek® (444.22 µHV0.2). The obtained results show that the tested Fe–Cr–Ni steel is
characterized by higher resistance to scratching and abrasive wear in comparison with
β−titanium and Ni–Ti alloys. The strong correlation between microhardness and strength
can be also expected. The micromechanical properties of the tested steel confirm the
usefulness of the Dentaurum Remanium® archwire in orthodontic treatment.

3.3. In Vitro Tests of Open-Circuit Potential

In vitro tests of the corrosion resistance of the Dentaurum Remanium® archwire began
with open-circuit potential measurements in the biological environment. The obtained
curves EOC = f(t) were used to pre-assess the impact of the modification of the artificial
saliva solution on the corrosion resistance of the tested archwire. Figure 4 shows the results
of measuring the EOC for the Fe–Cr–Ni electrode in the solution of artificial saliva with
physiological and acidic pH before and after modification with Listerine® and Meridol®

mouthwashes and sodium fluoride. Comparatively, the curve showing the EOC dependence
on the time of immersion in the saline solution is also included.
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Figure 4. Open-circuit potential for the Fe–Cr–Ni electrode in the biological environment at 37 ◦C.

After 7200 s from the immersion of the Fe–Cr–Ni electrode in the biological environ-
ment, the ion–electron equilibrium at the interface of electrode|electrolyte is observed.
The obtained results indicate that the modification of the artificial saliva solution with
mouthwashes and NaF increases the EOC value compared to the solution of artificial saliva
with both physiological and acidic pH. Moreover, the effect of fluoride ions originating from
NaF on an increase in EOC is higher compared to both types of mouthwashes used. The
highest value EOC equal to –47(5) mV is determined in the solution of artificial saliva with
pH = 7.4 after adding sodium fluoride. The open-circuit potential value is the smallest for
the Fe–Cr–Ni electrode in the saline solution, EOC = –160(7) mV. The stable EOC values were
considered in further electrochemical measurements as approximate corrosion potential
(Ecor) values.



Materials 2023, 16, 6791 8 of 24

3.4. Mechanism and Kinetics of Pitting Corrosion

Alternating current (AC) measurements by the EIS method were performed to deter-
mine the effect of modifying the artificial saliva solution on the mechanism and kinetics
of electrochemical corrosion of the Remanium®-type orthodontic archwire. To explain the
impedance behavior of the examined Fe–Cr–Ni steel, the concept of equivalent electrical
circuits was used. In the approximation procedure, the capacitor has been replaced by a
constant phase element (CPE) representing a “leaky” capacitor, which has a non-zero real
and imaginary component. The CPE impedance (ẐCPE) is defined as [32]:

ẐCPE =
1

T(jω)φ
. (1)

In Equation (1), T expressed in F cm−2 sφ−1 is a capacitive parameter, which depends
on the potential of the electrode, and φ corresponds to the angle of rotation of the purely
capacitive line on the plots of the complex plane, α = 90◦(1 − φ).

For the interpretation of experimental EIS spectra, for which a one-time constant was
observed in the electrical circuit, the CPE1 model presented in Figure 5a was used. The
CPE1 model is consisting of a resistor (R1) connected in series with one parallel CPE1-R2
system. This model produces one semicircle in the Nyquist diagram in the entire range of
frequencies tested [2,3,7,12,32]. In the CPE1 model, the R1 element reflects the resistance of
the electrolyte constituting the corrosion environment. CPE1 determines the capacity of the
electrical double layer for the interface of metal covered with an oxide layer and corrosion
environment. R2 resistor reproduces the resistance of the charge transfer resistance (Rct)
through this interface.
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CPEẐ ) is defined as [32]: 

)j(T

1
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environment: (a) CPE1 model; (b) CPE2 model.

CPE2 model for the pitting corrosion of Fe–Cr–Ni steel in the biological environment
shown in Figure 5b was used to interpret the experimental EIS spectra with two-time
constants in the electrical circuit. The CPE2 model is consisting of a resistor (R1) connected
in series with two consecutive parallel CPE1-R2 and CPE2-R3 systems. In the case of
the CPE2 model, two semicircles are observed as a frequency function in the Nyquist
diagram [2,7,32]. In this model, the R1 element is due to the electrolyte resistance. The
CPE1-R2 system is considered for an inner oxide layer with barrier properties. CPE1 and
R2 correspond to the capacitance and resistance of the barrier oxide layer adjacent to the
metallic substrate, respectively. The CPE2-R3 system is associated with an outer oxide layer
with the presence of pits on the surface. CPE2 denotes the pit wall capacitance. R3 is the
additional resistance of the electrolyte inside the pit.
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Figures 6 and 7 show experimental (symbols) and fitted (continuous lines) Bode
diagrams for the pitting corrosion process of Fe–Cr–Ni steel in the biological environment
at 37 ◦C. For the approximation of EIS spectra obtained in the solution of artificial saliva
before and after modification with NaF and Listerine® mouthwash, the CPE1 model was
used (see Figure 5a). Only a one-time constant was observed in those electrical circuits.
The CNLS fitting of EIS spectra recorded in the solution of artificial saliva with the addition
of Meridol® mouthwash and saline of physiological pH was carried out using the CPE2
model (see Figure 5b). Two-time constants were observed in those electrical circuits. Very
good quality of the CNLS fitting for EIS experimental data was observed. In all Bode
diagrams in the form of log|Z| = f (log f), a slope of about −1 is observed in the medium
frequency range (Figure 6). There are also slight differences in log|Z| value at the lowest
measuring frequencies, which indicates a change in the corrosion resistance of the Fe–Cr–Ni
electrode to pitting as a result of the modification of the artificial saliva solution. It can be
observed that the change trend of log|Z|at f = 10 mHz is the same as in the case of the
EOC (see Figure 4). The highest log|Z|f=10 mHz equal to 5.82(64) Ω cm2 is obtained in the
solution of artificial saliva with pH = 7.4 after modification using NaF. The log|Z|f=10 mHz
of 5.46(60) Ω cm2 takes the smallest value in the saline solution. Such a behavior of AC
impedance for the Fe–Cr–Ni electrode could be caused by an increased content of aggressive
Cl– ions, accelerating pitting corrosion.

Bode diagrams presented in Figure 7 show that the highest maximum values of the
phase angle close to−80◦ are observed for the Fe–Cr–Ni electrode in the solution of artificial
saliva with pH = 7.4 with the addition of NaF. A slight decrease in the value of the phase
angle is visible in the solution of artificial saliva with pH = 7.4 before and after addition of
Listerine® and Meridol® mouthwashes, with pH = 5.5 before and after modification using
NaF, and saline with pH = 7.4. The decrease in the phase angle value indicates an increase
in the conductivity of the Fe–Cr–Ni electrode. High values of |Z| f→0 (Figure 6) and phase
angle (Figure 7) testify to the capacitive behavior of the Fe–Cr–Ni electrode, which shows
high resistance to pitting in all tested corrosive solutions.
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Figure 6. Experimental (symbols) and fitted (continuous lines) Bode diagrams in the form of
log|Z| = f(log f) for the pitting corrosion of Fe–Cr–Ni steel at 37 ◦C in: (a) saliva pH = 7.4; (b) saliva
pH = 5.5; (c) saliva pH = 7.4 + 0.1 M NaF; (d) saliva pH = 5.5 + 0.1 M NaF; (e) saliva pH = 7.4 + 15 mL
Listerine®; (f) saliva pH = 7.4 + 15 mL Meridol®; (g) saline pH = 7.4.
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Table 3 presents the average values of four parameters (R1, CPE1-T, CPE1-φ, R2)
describing the equivalent electrical circuit shown in Figure 5a, which was used for CNLS
fitting of experimental EIS data obtained at the Ecor for the Fe–Cr–Ni electrode in the
biological environment at 37 ◦C. Table 4 shows the average values of seven parameters
(R1, CPE1-T, CPE1-φ, R2, CPE2-T, CPE2-φ, R3) determined for the equivalent electrical
circuit presented in Figure 5b, which was used in the CNLS fitting procedure of EIS spectra
recorded at the Ecor for the Fe–Cr–Ni electrode in the artificial saliva of pH = 7.4 with the
addition of 15 mL Meridol® and saline of pH = 7.4 at 37 ◦C.
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Figure 7. Experimental (symbols) and fitted (continuous lines) Bode diagrams in the form of phase
angle versus frequency logarithm for the pitting corrosion of Fe–Cr–Ni steel at 37 ◦C in: (a) saliva
pH = 7.4; (b) saliva pH = 5.5; (c) saliva pH = 7.4 + 0.1 M NaF; (d) saliva pH = 5.5 + 0.1 M NaF; (e) saliva
pH = 7.4 + 15 mL Listerine®; (f) saliva pH = 7.4 + 15 mL Meridol®; (g) saline pH = 7.4.

Table 3. The average values of parameters obtained as a result of the CNLS fitting of the experimental
EIS spectra for the Fe–Cr–Ni electrode and the CPE1 model for the pitting corrosion (see Figure 5a) in
the biological environment at 37 ◦C.

Electrolyte Type R1
(Ω cm2)

CPE1-T
(F cm−2 sφ−1) CPE1-φ R2

(Ω cm2)

Saliva pH = 7.4 7.87(64) 3.03(12) × 10−5 0.855(7) 2.78(68) × 106

Saliva pH = 5.5 10.14(28) 8.23(14) × 10−5 0.826(4) 1.42(77) × 106

Saliva pH = 7.4 + 0.1 M NaF 7.94(63) 1.71(39) × 10−5 0.813(4) 7.47(18) × 106

Saliva pH = 5.5 + 0.1 M NaF 20.79(41) 2.78(23) × 10−5 0.836(2) 6.12(69) × 106

Saliva pH = 7.4 + 15 mL Listerine 15.36(23) 4.24(39) × 10−5 0.855(2) 2.97(88) × 106
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Table 4. The average values of parameters as a result of the CNLS fitting of the experimental EIS
spectra for the Fe–Cr–Ni electrode and the CPE2 model for the pitting corrosion (see Figure 5b) in the
biological environment at 37 ◦C.

Electrode Type R1
(Ω cm2)

CPE1-T
(F cm−2 sφ−1) CPE1-φ R2

(Ω cm2)
CPE2-T

(F cm−2 sφ−1) CPE2-φ R3
(Ω cm2)

Saliva pH = 7.4 + 15 mL
Meridol 4.81(36) 4.16(70) × 10−5 0.895(11) 3.01(44) × 106 1.02(59) × 10−4 0.602(6) 2.47(48) × 103

Saline pH = 7.4 4.79(24) 4.50(19) × 10−5 0.867(15) 1.28(90) × 106 9.33(15) × 10−5 0.787(7) 2.78(11) × 103

The R1 parameter depends on the chemical composition of the solution and reaches
a value in the range from 4.79(24) Ω cm2 in the saline solution with pH = 7.4 (Table 3) to
20.79(41) Ω cm2 in the solution of artificial saliva with pH = 5.5 modified using sodium
fluoride (Table 4). The capacitive behavior of the tested electrochemical systems indicates
that all values of the CPE1-T parameter are of the order of 10−5 F cm−2 sφ−1. These are
typical capacitance parameter values for metallic biomaterials in the biological environ-
ment [2,3,7,32]. The smallest value of the parameter CPE1-T of 1.71(39)× 10−5 F cm−2 sφ−1

was determined in the solution of artificial saliva with pH = 7.4 after modification using
NaF (Table 3), which indicates the smallest surface of the Fe–Cr–Ni electrode, devoid of
extensive and deep pits. The CPE1-φ values reveal a significant deviation from a possible
maximum value equal to 1 (Tables 3 and 4). This empirical parameter is associated with the
presence of heterogeneities of physical, chemical, and geometrical nature [32]. All values of
the R2 are of the order of 106 Ω cm2 (Tables 3 and 4). The highest value of the R2 equal to
7.47(18) × 106 Ω cm2 was obtained in the solution of artificial saliva with pH = 7.4 enriched
with NaF (Table 3). The lowest value of this kinetic parameter equal to 1.28(90) × 106 Ω
cm2 was determined in the saline solution (Table 4). The physicochemical meaning of the
R2 is due to the ongoing pitting corrosion. It can be expected that the smaller the value of
R2, the faster the kinetics of the pitting corrosion. The obtained R2 values indicate that the
self-passive oxide layer on the surface of the Fe–Cr–Ni electrode shows the strongest barrier
properties for aggressive chloride ions in the solution of artificial saliva at physiological pH
containing F− ions. The R3 determined in the solution of saliva with pH = 7.4 modified
with Meridol® mouthwash and saline has a value of three orders lower compared to the R2
(Table 4). The corresponding CPE2-T values are increased in relation to the CPE1-T, and
the CPE2-φ are characteristic of the lower values in comparison with the CPE1-φ (Table 4).
Such behavior points that the exposed surface area of the Fe–Cr–Ni electrode increases
as a result of uncovering pits. These results confirm that the self-passive layer is more
conductive and its resistance to pitting corrosion is weakened.

3.5. Susceptibility to Pitting Corrosion

The effect of modification of the artificial saliva solution on the susceptibility of the
Dentaurum Remanium® archwire to pitting corrosion was determined based on the anodic
polarization curves recorded by the potentiodynamic method (Figure 8). Potentiodynamic
characteristics revealed the passive behavior of the Fe–Cr–Ni electrode in the biological
environment at 37 ◦C. It can be observed that the modification of artificial saliva solutions
of physiological and acidic pH causes the anodic polarization curves to shift in the direction
of anodic potentials, which indicates an increase in the corrosion resistance of the Fe–Cr–
Ni electrode. The most cathodic values of potentials testifying to the lowest corrosion
resistance of the tested electrode are observed in the case of the potentiodynamic curve,
which was registered in the saline solution of pH = 7.4.
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Figure 8. Anodic polarization curves of the Fe–Cr–Ni electrode obtained at the polarization rate of
1 mV s−1 in the biological environment at 37 ◦C.

All obtained curves log|j| = f(E) have the same shape and are characterized by the
lack of a clear area where active dissolution of the self-passive oxide layer proceeds. The
Ecor and the corresponding jcor are in the passive area of the anodic polarization curves.
The Ecor shows the same nature of changes and similar values as EOC (Table 5). The jcor
reveals values in the range from 1.35(27) to 8.13(92) × 10−9 A cm−2 (Table 5).

Table 5. The key potential-current parameters for the Fe–Cr–Ni electrode determined based on the
anodic polarization curves in the biological environment at 37 ◦C (see Figure 8).

Electrolyte Type Ecor
(mV)

jcor
(A cm−2)

Ebd
(mV)

jbd
(A cm−2)

Eprot
(mV)

jprot
(A cm−2)

Saliva pH = 7.4 –104(21) 4.68(94) × 10−9 534(11) 1.15(23) × 10−5 –205(22) 1.05(22) × 10−5

Saliva pH = 5.5 –128(26) 1.35(27) × 10−9 370(7) 2.29(46) × 10−6 –36(9) 2.09(24) × 10−7

Saliva pH = 7.4 + 0.1 M NaF –34(7) 4.66(83) × 10−9 843(17) 2.19(44) × 10−5 121(12) 2.72(25) × 10−6

Saliva pH = 5.5 + 0.1 M NaF –42(8) 8.13(92) × 10−9 732(15) 8.71(74) × 10−6 –99(13) 1.60(19) × 10−6

Saliva pH = 7.4 + 15 mL Listerine –97(19) 2.14(43) × 10−9 602(12) 2.04(41) × 10−5 –155(18) 6.92(32) × 10−6

Saliva pH = 7.4 + 15 mL Meridol –89(18) 3.98(80) × 10−9 624(13) 1.62(32) × 10−5 –162(19) 2.25(20) × 10−6

Saline pH = 7.4 –137(27) 4.17(83) × 10−9 178(4) 1.38(28) × 10−6 –210(19) 1.74(18) × 10−6

At potentials lower than the Ecor, the Fe–Cr–Ni electrode shows resistance to pitting
corrosion. At potentials above the Ecor, the process of anodic dissolving of the self-passive
oxide layer takes place. The obtained densities of passive currents are typical of metallic
biomaterials in the biological environment [2,3,7,32]. After exceeding the passive range,
a rapid increase in the density of the anodic current is observed as a result of breaking
the oxide layer. Breakdown potential (Ebd) and corresponding values of breaking current
density (jbd) are presented in Table 5. The analysis of the results obtained showed that the
Ebd takes values from 0.178(4) V in the saline solution with pH = 7.4 to 0.843(17) V in the
solution of artificial saliva with pH = 7.4 modified using sodium chloride. Thus, sodium
fluoride, which is a component of toothpaste, reduces the susceptibility of the Dentaurum
Remanium® archwire to pitting corrosion. The fastest breakdown of the oxide layer will
occur in the solution of sodium chloride with the highest content of aggressive Cl− ions.
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The protective potential (Eprot) and corresponding protective current density (jprot)
were determined using cyclic polarization curves. Figure 9 shows an exemplary cyclic
polarization curves of the Fe–Cr–Ni electrode obtained at the polarization rate of 1 mV s−1

in the artificial saliva at pH = 7.4 with the addition of 15 mL Meridol® at 37 ◦C. The
difference between Eprot and Ebd shows a strong susceptibility of the tested archwire to
pitting corrosion in each corrosion environment used (Table 5).
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3.6. Assessment of Corrosive Damage

Microscopic observations of the surface morphology of the Dentaurum Remanium®

archwire after potentiodynamic tests in the biological environment were taken by SEM
(Figures 10–12). SEM images obtained for the Fe–Cr–Ni archwire revealed the presence
of spherical pits, which were formed in the artificial saliva solutions before and after
modification, and in the saline. The susceptibility of the examined archwire to pitting
corrosion depends on the chemical composition of the solution. A greater susceptibility to
the corrosion of the archwire was observed in the solution of artificial saliva with acidic pH
than physiological (Figure 10). It is also seen that after adding sodium fluoride (Figure 11)
and mouthwashes (Figure 12) to the artificial saliva solution (Figure 10a,b), the number
and the size of diagnosed pits on the archwire surface decreased significantly. The slightest
susceptibility to the formation of pits was demonstrated by the archwire after corrosion tests
in the solution of artificial saliva with pH = 7.4 enriched with sodium fluoride (Figure 11a).
A single, small, and shallow pit is visible in the examined microregion on the archwire
surface. The most intensive process of pitting corrosion of the archwire took place in the
solution of physiological saline, on the surface of which numerous deep pits were observed
(Figure 10c).
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Figure 12. SEM image of the Dentaurum Remanium® archwire surface after potentiodynamic tests
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The results of the quantitative analysis of the chemical composition of the Dentaurum
Remanium® archwire after corrosion resistance research obtained by the EDS method are
presented in Tables 6–12.

Table 6. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in saliva
pH = 7.4 at 37 ◦C.

Element
Saliva pH = 7.4 Standard Deviation

Sample Pit Sample Pit

Fe 73.7 64.5 0.8 5.6
Cr 19.0 17.3 1.0 0.9
Ni 7.3 6.7 0.2 0.6
O - 11.6 - 7.1

Table 7. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in saliva
pH = 5.5 at 37 ◦C.

Element
Saliva pH = 5.5 Standard Deviation

Sample Pit Sample Pit

Fe 73.8 65.0 0.1 10.5
Cr 18.7 17.6 0.1 7.0
Ni 7.5 6.3 0.1 2.5
O - 11.1 - 6.9

Table 8. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in saline
pH = 7.4 at 37 ◦C.

Element
Saline pH = 7.4 Standard Deviation

Sample Pit Sample Pit

Fe 74.2 64.3 0.2 4.7
Cr 18.5 16.9 0.2 0.8
Ni 7.3 6.1 0.1 0.2
O - 12.8 - 5.6
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Table 9. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in saliva
pH = 7.4 + 0.1 M NaF at 37 ◦C.

Element
Saliva pH = 7.4 + 0.1 M NaF Standard Deviation

Sample Pit Sample Pit

Fe 74.4 68.8 0.5 5.6
Cr 18.5 17.3 0.6 0.9
Ni 7.1 6.7 0.1 0.6
O - 7.2 - 7.1

Table 10. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in
saliva pH = 5.5 + 0.1 M NaF at 37 ◦C.

Element
Saliva pH = 5.5 + 0.1 M NaF Standard Deviation

Sample Pit Sample Pit

Fe 73.8 65.5 0.3 6.1
Cr 18.7 17.7 0.1 1.2
Ni 7.5 6.7 0.3 0.5
O - 10.1 - 7.7

Table 11. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in
saliva pH = 7.4 + 15 mL Listerine® at 37 ◦C.

Element
Saliva pH = 7.4 + 15 mL Listerine® Standard Deviation

Sample Pit Sample Pit

Fe 73.8 67.9 0.5 3.0
Cr 18.7 18.0 0.5 0.4
Ni 7.5 6.9 0.1 0.1
O - 7.2 - 3.6

Table 12. Chemical composition of the Dentaurum Remanium® archwire after corrosion tests in
saliva pH = 7.4 + 15 mL Meridol® at 37 ◦C.

Element
Saliva pH = 7.4 + 15 mL Meridol® Standard Deviation

Sample Pit Sample Pit

Fe 73.8 64.9 0.3 8.0
Cr 18.8 17.6 0.1 4.9
Ni 7.5 6.5 0.2 4.9
O - 11 - 0.9

EDS analysis showed that the greatest impoverishment of the Fe–Cr–Ni steel in Fe,
Cr, and Ni elements occurred in the saline solution as a result of the aggressive interaction
of the Cl− ions on the self-passive oxide layer (Table 8). The slightest impoverishment
in alloying elements occurs in the artificial saliva solution enriched with sodium fluoride
with pH = 7.4, which indicates the protective effect of F− ions (Table 9). It is observed that
in micro-areas with pits created, the largest reduction in iron content occurred in relation
to the remaining alloying elements (Tables 6–12). The cathodic process occurring in the
deaerated biological environment at the Ecor may be the reduction of hydrogen ions in
accordance with Equation (2):

H+ + e→ 1
2

H2. (2)

It can be assumed that the anodic process taking place at the Ecor is the dissolution of
the alloying component. Since the chromium oxidation process is at a high rate, it cannot
be a reaction that limits the rate of the anodic process. Therefore, it can be hypothesized
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that the occurring process is the dissolution of iron. This process may occur according to
the mechanism, in which the stage limiting the rate of the whole process is the stage based
on one-electron exchange in accordance with Equation (3):

Fe(OH)ads → FeOH+ + e. (3)

Oxygen, which is associated with corrosion products formed as a result of secondary
reactions, was also identified in the interior of the pits visible in Figures 10–12. It is observed
that the greater the impoverishment in the alloying elements, the greater the oxygen content
in the interior of the pit (Tables 6–12).

The mechanism of initiation and development of pits in the self-passive oxide layer
on the surface of the Dentaurum Remanium® archwire in the biological environment
containing chloride ions is schematically presented in Figure 13.
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archwire surface in a biological environment containing chloride ions.

Pitting corrosion of the Dentaurum Remanium® archwire in the biological environ-
ment is a local type of corrosion. The emerging pits are invisible at the stage of formation.
The weight loss of the archwire is small, but progressive local damage can lead to de-
struction as a result of the perforation of the element. In the process of pitting corrosion
of the archwire, two stages one can distinguish, namely the initiation of the pit and the
growth of the existing pit. The initiation of the pit occurs at the localized areas where the
self-passive oxide layer is the weakest, i.e., at micro-areas with mechanical damage and at
the border of grains. Pit embroidery is preceded by the adsorption of aggressive chloride
ions on the surface of the Fe–Cr–Ni steel, which penetrate through the self-oxide layer. The
embryonic time depends on the quality of the material and the corrosion environment.
The pitting corrosion model of the passive stainless steel in an acidic solution containing
chloride ions was proposed by Okamoto [33]. The most important parameter responsible
for the high resistance of the tested 18-8 stainless steel to pitting corrosion is the amorphous
nature of the passive oxide layer with bound water included. In the Okamoto model, water
molecules are replaced by chloride ions and there is a combination of chloride ions with
metal, which makes it difficult to build the metal ions into the passive layer, and facilitates
their transition to the solution. The passive layer is not repassivated. The development
of the existing pit occurs through the growth of the pits arising during the incubation
period and the creation of new pits. The shape and size of the pits vary depending on the
conditions of the pitting corrosion, the type of material, and the polarization conditions.
The surface of the pit is an anode, while in the interior of the pit, the metal is dissolved.
The entertainment of the pit is a cathode, so there is an oxygen reduction or hydrogen
evolution. In the interior of the pit, the concentration of aggressive ions increases and
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the pH in the acidic direction is reduced. A layer of corrosion products is formed at the
bottom of the pit. The replacement of the electrolyte between the pit and the corrosion
environment occurs through the holes and pores of the passive layer. The composition,
thickness, and porosity of the passive layer affect the size and rate of the development of
pits. Fluoride anions facilitate the formation of the chrome oxide layer, which means that
the corrosion resistance of Cr-containing alloys in an environment containing fluoride ions
is higher [34]. Contents of 18%at. Cr in stainless steel with self-passivation ability ensures
that the Remanium®-type orthodontic archwire demonstrates corrosion resistance in the
biological environment comparable to the resistance of precious metal alloys [22].

3.7. Mechanical Properties of the Fe–Cr–Ni Steel

Figure 14 shows experimental curves illustrating the dependence of tensile stress as a
deformation function for the samples of the Dentaurum Remanium® orthodontic archwire
obtained in the tensile test before and after corrosion investigation. Good repeatability of
the results was observed.
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archwire before and after corrosion investigation in the tensile test.

Table 13 includes the values of parameters determined in the tensile test of the Den-
taurum Remanium® archwire, such as tensile strength (Rm) and deformation for Rm.

Table 13. Results obtained in the tensile test of the Dentaurum Remanium® archwire before and after
corrosion investigation.

Sample Rm
[GPa] SD Deformation for Rm

[%] SD

Saliva pH = 7.4 2.19 0.70 4.00 0.08
Saliva pH = 5.5 2.00 0.55 2.80 0.05

Saliva pH = 7.4 + 0.1M NaF 2.18 0.69 4.00 0.05
Saliva pH = 5.5 + 0.1M NaF 2.07 0.70 3.60 0.06

Saliva pH = 7.4 + 15 mL Listerine 2.00 0.68 4.60 0.08
Saliva pH = 7.4 + 15 mL Meridol 2.04 0.70 3.80 0.07

Saline pH = 7.4 2.21 0.67 3.50 0.07
Initial state 1.74 0.64 2.70 0.06
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Strength measurements in the tensile test showed that the analyzed Fe–Cr–Ni steel is
characterized by high tensile strength. This is evidenced by the Young’s modulus equal
to 134.24 GPa. This value is similar to Young’s modulus for titanium and titanium alloys
(E ≈ 105 GPa) [35]. The average deformation for Rm is 2.70% for the archwire at the
initial state. These values indicate that the Fe–Cr–Ni steel is a plastic material, undergoing
deformations and is ideally suited for use on orthodontic arches. The average deformation
for Rm determined for the same dental material after corrosion tests revealed the highest
values up to 4.00%, depending on the corrosive agent used. The obtained results indicate a
weakening of the mechanical properties of the tested archwire due to corrosion damage.

4. Conclusions

The Remanium®-type orthodontic archwire containing in its chemical composition
74.4(7) at.%, Cr 18.4(4) at.%, and Ni 7.2(4) at.% is a bi-phase alloy showing a mixed austen-
ite/ferrite structure. The analyzed Fe–Cr–Ni steel is characterized by high tensile strength
and the average Vickers microhardness, indicating that the Fe–Cr–Ni steel is a plastic
material, undergoing deformations and suited for use on orthodontic archwires.

The modification of the artificial saliva solution with sodium fluoride and mouth-
washes causes an increase in the corrosion resistance of the tested archwire in comparison
with the artificial saliva solution of both physiological and acidic pH. The highest corrosion
resistance of the self-passive oxide layer on the surface of the Fe–Cr–Ni electrode was
revealed in the solution of artificial saliva at physiological pH containing F− ions, while
the lowest kinetics of pitting corrosion was determined in the saline solution due to the
presence of aggressive chloride ions. The quantitative assessment of the resistance to
pitting corrosion based on the EIS measurements allowed to determine the impedance
of the interface Fe–Cr–Ni steel | electrolyte, which, depending on the corrosion environ-
ment, can be described with the CPE1 or CPE2 equivalent electrical circuit model. The
potentiodynamic characteristics of the Fe–Cr–Ni steel showed the passive behavior and the
decrease in susceptibility to pitting corrosion in the presence of fluoride anions facilitating
the formation of a passive layer and mouthwashes added in the artificial saliva solution.
The mechanism of initiation and growth of pits in the self-passive oxide layer on the surface
of the Fe–Cr–Ni steel in the biological environment containing chloride ions was interpreted
based on the Okamoto model. It was found that the mechanical properties of the tested
archwire after corrosion tests were weakened. The obtained results confirmed that the
Dentaurum Remanium® archwire meets the criteria of the resistance to pitting corrosion
for dental materials for orthodontic wires.
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