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Abstract: In France, the annual volume of dredged sediments is significantly increasing, which has
become a real environmental problem. Nevertheless, these sediments can be used beneficially as
supplementary cementing material. On the other hand, external sulfate attack is one of the most
aggressive causes of deterioration that affects the durability of concrete structures. This study focused
on the valorization of river-dredged sediments from Noyelles-Sous-Lens (Hauts-de-France) as a
mineral addition in substitution of Portland cement, and it studied their impacts on the mechanical
behavior and durability of reinforced mortars. X-ray diffraction (XRD) analysis indicated the presence
of clay minerals in the raw sediment. In order to activate this clay fraction, flash calcination was
applied at a temperature of 750 ◦C. In addition, four mixed mortars were formulated by mixing a
Portland cement (CEM I 52.5 N) and the calcined sediments as a partial substitute for cement with
proportions of 0%, 15%, 20%, and 30%, then stored in water tanks at room temperature (20 ± 2 ◦C)
for 90 days in order to immerse them in a tank containing a 5% MgSO4 solution and to track the
evolution of their corrosion potential as well as their mass variations every 20 days for a period of
360 days. The following additional tests were carried out on these mortars: tests of resistance to
compression and flexion and to porosity by mercury intrusion. The results obtained from the majority
of these tests showed that the mortar containing 15% calcined sediments is as effective and durable as
the reference mortar itself. The main conclusion we can draw from these results is that the presence
of these calcined sediments improves the overall behavior of the mortar.

Keywords: calcined sediments; external sulfate attack; corrosion potential

1. Introduction

The demand for natural resources has greatly increased over the last century, especially
in the field of civil engineering, since all construction or rehabilitation projects require the
use of granular materials. Consumption amounted to 453.1 million tons in France in 2019,
with 72.3% of this total consisting of natural aggregates and 27.7% recycled aggregates
(ERMCO, 2019) [1].

Cement is one of the most commonly used construction materials in the world. Accord-
ing to ERMCO, the production of concrete in France reached 44.4 million m3 [1]. Massive
increases in construction and industrialization have created huge demands for cement and
concrete production [2]. Cement production is a process that requires natural resources
and energy. About 50% of the CO2 is then attributed to the cement production process [3],
and this production leads to the emission of more than 2.3 gigatons of CO2 worldwide [4].
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One strategy to reduce the industry’s carbon footprint is the use of blended cement,
which partially replaces ordinary Portland cement with supplementary cementitious mate-
rials (SCMs) that are also called mineral supplements. Instances of these materials are fly
ash, which is a by-product of coal-fired power plants, and ground granulated blast-furnace
slag obtained as waste from the steel industry [5]. Currently, the average clinker/cement
ratio is about 73.7% [6], but the potential for further reduction is limited as the supply of
the most desirable high-value SCMs (fly ash and blast-furnace slag) decreases [7–9]. This
demonstrates the need for new alternative sources of SCM.

The use of calcined clays as pozzolanic materials in concrete has received considerable
interest in recent years as part of a broader focus on the use of waste materials, locally
available minerals, and industrial by-products as alternative cement additives [10,11].
Calcined dredged sediments, which initially contain substantial amounts of clay minerals,
are promising new SCMs for use in concrete [12–21]. A large amount of dredged sediment is
accumulated. Every year, a total of 56 million m3 is dredged from the sea and river bottoms
in France. Currently, most of the dredged sediments are dumped at sea or deposited in
landfills, which has a negative impact on the environment [22]. The beneficial reuse of these
dredged materials as secondary raw materials can therefore provide a sustainable solution
to limit landfill waste and limit the extraction of natural resources [17]. The objective of
this paper is to study the influence of the valorization of sediments in reinforced mortars
and their beneficial uses.

Several researchers are already studying the valorization of dredged sediments for
their use as raw material [23], either to replace part of the raw material in the manufacture
of Portland cement [24,25] or as a mineral addition for concrete [26,27]. Most studies
focused on the characterization of dredged sediments and their behavior in cement paste
and mortar [12,14,16–18]. The properties, pozzolanic reactivity, and hydration processes
of calcined dredged sediments were intensively studied by the authors [28,29]. Other
researchers [30] worked on low-carbon and calcined-sediment-based binders as sustainable
construction materials. They demonstrated that by substituting calcined sediments at 5%,
15%, and 25% for cement, the climate change potential indicator (which measures the
potential greenhouse gas emissions) improves. Specifically, using calcined sediments at
these percentages leads to a reduction of 10.70%, 17.84%, and 3.57%, respectively, compared
to using 100% cement. The emissions for each substitution rate are 901.73 kg CO2 eq/T,
835 kg CO2 eq/T, and 768.29 kg CO2 eq/T.

However, the durability of materials developed from sediments has been studied
only very briefly [26,27,31–33]. According to Amar [26], after studying the effect of the
partial replacement of cement with sediment calcined at a temperature of 850 ◦C for 1 h,
the results of the tests highlighted the fact that the mortar containing 10% treated sediment
is as effective and durable as the reference mortar itself. It is deduced that the presence
of these calcined sediments improves the overall behavior of the mortar. In addition,
Achour [27] found that the optimal percentage of sediment replacement by aggregate is
12.5% in order to maintain the integrity, strength, and resistance of the concrete to chemical
attack and frost action. From the perspective of this paper, the durability of mortars based
on sediments is studied in order to develop the latter’s capacity to resist physical–chemical
attacks while maintaining its desired mechanical properties. Tests of compressive strength
and flexural strength, mercury porosity, external sulfate attack, and corrosion potential (E)
were conducted on these mortars.

1.1. Materials and Methods

In this section, we will discuss the materials and equipment used during this re-
search work.

1.2. Flowchart

Figure 1 show flowchart summarizing the experimental work carried out in this article.
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1.3. Materials

The river sediment used in this study collected from Noyelles-Sous-Lens in northern
France. After reception at the laboratory, it was homogenized, quartered, and then dried
in an oven at 105 ◦C to constant mass to remove moisture. It was then ground using a
flail mill with a 250 µm grate to achieve a particle size of less than 250 µm before flash
calcination. The sediment was calcined at a temperature of 750 ◦C. The raw and calcined
sediments are named below RS and SF 750, respectively.

The cement used was an ordinary commercial Portland CEM 52.5 N (referred to as
OPC) according to the NF EN 196-1 standard [34].

The steel bars used in the manufacture of cylindrical reinforced mortars were ribbed,
with high adhesion and measuring 8 mm in diameter.

The sand used was certified according to NF EN 196-1 [34], with a grain size dis-
tribution between 0.08 and 2 mm. Table 1 contains the nomenclature of the materials in
this study.

Table 1. Nomenclature of materials used in this study.

Materials Nomenclature

Ordinary Portland cement CEM I 52.5 N OPC
Raw sediment RS

Sediment calcined flash at 750 ◦C SF 750
Witness mortar M0

Mortar with 15% sediment M1
Mortar with 20% sediment M2
Mortar with 30% sediment M3

1.4. Calcination of Sediments: “The Process”

The calcination method used was flash calcination. Flash calcination is a heat treatment
technique consisting of the rapid exposure of finely divided materials in the presence of air
at high temperatures [35]. The flash calcination technique was initially used to chemically
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activate certain clays such as kaolinite in order to give them pozzolanic properties. When
this technique was applied to specific categories of clays such as kaolins, dehydroxylation
following a dehydration process was noted [36]. This corresponds to the removal of a
hydroxyl bond (OH−) occurring between 450 and 750 ◦C [37]. Flash calcination leads to
a partial destructuration of the material, a state of amorphization, and thus, a potential
reactivity of the material [38]. The diagram of the calcination unit and the principle of the
pilot are shown in Figure 2.
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1.5. Characterization Tests

All materials used were characterized by physical and chemical methods. The deter-
mination of the granulometry was carried out with a COULTER LS13320 (Beckman Coulter,
Brea, CA, USA). This laser device enables the distribution of granular particles below
1 µm to be determined. The BET (Brunauer–Emmett–Teller) method (NF EN 196-6 [39])
is an estimation of the surface area to assess fineness (NF EN ISO 18757 [40]) using an
Autopore IV 9505 from Micromeritics (Norcross, GA, USA). The organic fraction was also
determined. The specific gravity of the materials was determined via an AccuPyc1330
helium pycnometer from MICROMETRICS according to NF EN 1097-7 [41]. The porosity of
mercury was also measured using an Autopore V 9600 porosimeter (Micromeritics Instru-
ment Corporation, Norcross, GA, USA) according to the standard NF P 94-410-3 [42]. TGA
analysis is a thermal analysis method that follows the mass loss of a sample as a function of
time or temperature in a controlled atmosphere. It was performed on a NETZSCH STA 409
(Waldkraiburg, Germany) apparatus using nitrogen gas, with a ramp of 10 ◦C/min and
a temperature range of 40 to 1000 ◦C. The chemical composition was measured by X-ray
fluorescence analysis (XRF) according to the NF EN 196-2 standard with a PIONEER S4
equipped with a 4 kW generator and a rhodium anode.

Mineralogical characterization by X-ray diffraction (XRD) analysis was performed
using the apparatus (XRD Bruker D2 advanced device equipped with Cu kα. λ = 1.5406 Å)
with an acquired angle of 2θ from 5◦ to 80◦ and a 0.02 step. This identified the mineralogical
nature and crystalline phases present and was performed with a setting of 40 kV and
40 mA. This method was formerly used by several authors in the study of mortar-based
sediments [43–45]. Bending and compressive strength tests were performed using three
4 × 4 × 16 cm3 prismatic samples (NF EN 196-1 [34]).

Cubic mortar specimens 5× 5× 5 cm3 and cylindrical reinforced mortars 11.2 × 5 cm2

were prepared and cured in water for 90 days and then partially immersed in a solution
of MgSO4 for 360 days according to ASTM C1012-04 (2004) [46] in order to evaluate the
effect of sulfate attack on the hardness of these mortars. Firstly, the monitoring of the mass
variation, evolution of the compressive strength, and visual analysis of the condition of
the specimens were carried out on the cubic mortars. Then, the evolution of the corrosion
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potential of the cylindrical mortars was measured using a voltmeter and a Cu/CuSO4-
saturated copper-saturated Cu/CuSO4 copper sulfate electrode.

2. Results
2.1. Physical Properties

The physical properties of the materials used are presented in Table 2. OPC has the
highest density with 3.15 g/cm3, followed by SF 750 with 2.65 and RS with 2.48, respectively.
SFC has the highest specific surface (27.49 m2/g).

Table 2. Physical properties of materials.

Materials CEM I 52.5 N
(OPC)

Raw Sediment
(RS)

Flash Calcined
Sediment
(SF 750)

Natural
Sand (NS)

Density (g/cm3) 3.15 2.48 2.65 —
BET (m2/g) 1.06 7.32 27.49 —

LOI (%) 1.90 16.10 4.35 —
D10 (µm) 1.02 0.69 1.22 —
D50 (µm) 8.62 3.99 8.03 —
D90 (µm) 27.00 15.84 25.39 —

2.2. Granulometry

The particle size results are presented in Figure 3. The results show that the cal-
cined flash sediment (D90 = 25 µm) has a coarser particle size than the raw sediment
(D90 = 15 µm). The calcination contributes to the sintering of the particles, which thus
forms larger particles. However, some of these particles may have internal nanoporosity,
which allows for increased reactivity [28]. For cement-based binders and sediments, the
particle size is almost the same as the individual materials.
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Figure 3. Granulometric analysis.

2.3. Thermogravimetric Analysis (TGA)

The results of the thermogravimetric analysis are presented in Figure 4. The results
show three main distinct phases. Up to 600 degrees, the loss of mass corresponds to
the elimination of organic matter and the dehydroxylation of clays such as kaolinite.
Between 600 and 850 degrees, we observe decalcification and the formation of lime (CaO),
and this drop is due to the decomposition of CaCO3 into solid CaO and gaseous CO2.
Finally, beyond that, there is recrystallization and, in some cases, the late dehydroxylation
of montmorillonite.
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2.4. Chemical and Mineralogical Analysis
2.4.1. Chemical Composition FX

The results of the X-ray fluorescence analysis enable us to determine the different
oxides present in the three materials used (Table 3). The major oxides are silica (SiO2),
lime (CaO), alumina (Al2O3), and iron oxide (Fe2O3). In addition, minor oxides such as
MgO, Na2O, SO3, and ZnO are detected, and their presence could have an impact on the
hydration and properties of the mortar. Chemical composition shows that the content of
four main oxides (SiO2 + CaO + Al2O3 + Fe2O3) in the calcined sediments is equal to 74.1%,
which is in accordance with the ASTM C 618 standard [47] specification for coal fly ash and
raw or calcined natural pozzolans to be used in concrete. According to this specification,
the calcined waste should have the following composition: SiO2 + Al2O3 + Fe2O3 ≥ 70%
and 15% < CaO < 20%.

Table 3. Results of FX analysis.

Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 Fe2O3 ZnO

RS (%) 0.45 0.75 8.65 33.25 1.36 0.26 1.49 13.10 0.42 3.89 0.17
SF750 (%) 0.63 0.91 10.30 43.45 1.56 0.32 1.84 15.40 0.54 4.95 0.25
OPC (%) 0.79 0.90 5.30 19.54 — 3.61 0.83 64.02 — 3.15 —

2.4.2. X-ray Mineralogy

The mineralogical analysis corresponds to the identification of the mineral phases
present. The results show the dominant presence of quartz (SiO2) and calcite (CaCO3) but
also other phases such as illite or kaolinite.

The results of the XRD analysis performed on the sediments treated with the raw
materials are presented in Figure 5. They also indicate important crystalline modifications
with either the disappearance or the appearance of new peaks. The XRD clearly shows a
decrease in the appearance of crystalline phases such as calcite due to the decarbonization
phase. Furthermore, clay phases like kaolinite are transformed into reactive metakaolin.
Moreover, additions with a high calcite (CaCO3) content would enhance the hydration
of alite (C3S) [48] but are strongly unfavorable for C3A [49]. This effect is all the more
accentuated as the calcite content is high and the granularity fine.
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3. Study of Formulation and Characterization of Mortars
3.1. Formulation

In order to evaluate the flexural and compressive strength of the mortars, prismatic
specimens of size 4 × 4 × 16 cm were prepared according to [34]. The specimens were
prepared by partially substituting the calcined sediment with cement with different per-
centages: 0%, 15%, 20%, and 30%. The rate of mixing water was kept constant for all
batches: W/C = 0.5. Prismatic test specimens were taken to study compression and bend-
ing tests over 2, 7, 14, 28, and 90 days, respectively. For corrosion potential measurements,
cylindrical mortars were prepared using a 5.6 cm diameter by 11.2 cm cylindrical mold
in accordance with ASTM C470/C470M-15 [50]. A total of 12 reinforced mortar samples
were cast with the same proportions mentioned above. Prior to casting the mortars, ribbed
steel bars (high bond) with a diameter of 8 mm and a length of 100 mm were prepared.
For each bar, two parts were considered: one measuring 50 mm in length was protected
by a resin while the other was exposed to corrosion after being placed in the mold. In
addition, 5 × 5 × 5 cm3 cubic-shaped mortars were prepared in order to measure the mass
variation and the evolution of the compressive strength. Table 4 shows the composition of
each mortar. Initially, the samples were placed in a temperature-controlled room with an
average temperature of 20± 1 ◦C. They were demolded after 24 h and cured in conditioned
water at 20 ± 1 ◦C until the age specified for the tests. In substitution, the densities of
cement and calcined sediments were determined by volume substitution.

Table 4. Composition of the different mortar formulations (values given in grams).

Materials M0 M1 M2 M3

Sand 1350 1350 1350 1350
OPC 450 391.44 371.31 330.09
SF750 — 58.55 78.68 119.91
Water 225 225 225 225

3.2. Compressive Strength of Mortars

The results of the evolution of the compressive strength of the formulated mortars are
presented in Figure 6. The results illustrated here indicate a linear increase in compressive
strengths up to 90 days for the different types of mortars. The strengths decrease with
the increasing substitution rate. At 90 days, the compressive strengths of M0 and M1 are
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60.03 MPa and 55.05, respectively, which means that M1 has a similar overall performance
to M0. This suggests that a 15% substitution seems optimal. It should be noted that the
presence of calcined sediment creates additional strength, which may be related to certain
physical and chemical activities. These results seem to underline the fact that the presence
of sediment has an impact on the behavior of the mortar, as determined by [26,27,31].
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3.3. Flexural Strength of Mortars

Figure 7 clearly shows the effect of flexural strength on the mixed mortar samples. It
is easy to observe a steady increase in flexural strength over time for all mortars and no
decrease in flexural strength after 7 days from the start of experiment. Our study shows
that the addition of calcined sediment beyond 7 days has a limited impact on flexural
strength, regardless of the replacement rate.
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3.4. Microstructural Study

The characterization of porosity by mercury intrusion represents an important study
of the internal structure of mortars. This study, as an overall result (total porosity), provides
an index of material quality correlated to compressive strength and also the durability
index [51]. The mercury pressure range reaches 30,000 psi (206 MPa) using this method.

A porosity study for the four mortars was carried out in order to determine the
influence of the added sediments on the properties of the pore network. This parameter
determines the main physical–chemical and mechanical properties of a mortar [26]. The
samples were subjected to a porosity measurement after a 60-day cure, for 28-, 60-, and
90-day maturities. The results are presented in Figure 8.
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Figure 8. Evolution of pore size distribution.

Two effects are discussed in this porosity analysis, namely, the evolution of porosity
over time and the addition of sediment to the cementitious matrix. For all mix compositions
(i.e., incorporating 0, 15, 20, and 30% sediment), a refinement of pore size was observed
over time. That is, the more advanced the hydration kinetics, the finer the pore size. This
phenomenon is explained by the partial filling of the pores by hydration products. The
same observation was made by Kourtaa et al. in their study of lime–pozzolan mixtures
(natural and artificial) [52]. The hydration products formed in these types of mixtures are
based on lime or cement, with or without mineral addition, filling the pores and at the
same time densifying the granular skeleton, which then results in a change in compressive
strength. Like fly ash or blast-furnace slag, dredged sediments have also been used as a
mineral addition to reduce the use of cement while increasing the mechanical strength and
durability of concrete [27,53,54]. They can act as fillers in the cementitious matrix, reducing
void volume and increasing overall compactness and density. The ratios studied here have
no significant effect on the evolution of pore diameters, since they occupy an equivalent
volume which remains negligible for the analysis of mortar porosity.
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3.5. Resistance to External Sulfate Attack

The tests used to study the resistance of concrete to sulfate attack are quite varied [55].
The mechanism of external sulfate attack (ESA) on a cementitious material associated with
Mg2+ follows the following four steps, presented in Figure 9.
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First step: The initial stage is initiated by the leaching of portlandite (CH), whereby
sulfate (SO4

2−) and calcium ions (Ca2+) combine to form secondary gypsum and CSH2
ions. In addition, magnesium ions (Mg2+) react with hydroxide ions (OH−) to produce
brucite (Mg(OH)2). The solubility of brucite is very low, around 0.01 g/L, and its presence
lowers the pH of the interstitial solution to values close to 10.5, subsequently inducing the
decomposition of CSH [57].

CH + MS + 2H→ CSH2 + MH (1)

Second step: The secondary gypsum CSH2 resulting from Equation (1) reacts with the
tricalcium aluminates C3A to form the secondary ettringite according to Equation (2), a
highly expansive product [58].

C3A + 3CSH2 + 26H20→ C6AS3H32 (2)

Third step: During the consumption of the portlandite (CH), the pH of the interstitial
solution drops, which triggers the decalcification of the C-S-H. Then, the ions (Mg2+)
and (SO4

2−) react to produce gypsum, brucite (B), and silica gel (S2H), as shown in
Equation (3) [59–61].

CxSyHz + xMS + (3x + 0.5y− z)H→ xCSH2 + xMH + 0.5yS2H (3)
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Fourth step: The brucite formed (B) reacts with hydrosilicates (S2H), producing
hydrated magnesium silicate (M-S-H), which has no binding properties and leads to the
disintegration of the paste (Equation (4)) [31].

4MH + SHn→ M4SH8.5 + (n− 4.5)H (4)

In this study, immersion tests in a magnesium sulfate (MgSO4) solution were carried
out according to ASTM C1012-04 (2004). The pH of the sulfated solution must be between
6 and 8 and the solution must be renewed every week, which requires considerable quan-
tities of magnesium sulfate. For this purpose, we adopted Mehta’s method [62], which
recommends the correction of the solution already used by adding a quantity of sulfuric
acid (0.1 N H2SO4) until the pH of the starting solution is reached (between 6 and 8). The
correction is made daily during the first 2 weeks of the test and is then carried out weekly.
The solutions are renewed every 20 days.

3.5.1. Visual Inspection

Visual inspection of the samples was performed every 20 days for 360 days, with
the condition of the mortars after 360 days presented in Figure 10. Samples M2 and M3
showed the first signs of corner degradation followed by cracks along the edges, and then,
by the end of the follow-up, indicated serious surface damage. Limited deterioration was
observed in the corners of sample M0, while for mortar M1, no degradation was observed.
In general, the first sign of attack was the deterioration of the corners and edges of the
mortars, accompanied by the formation of a whitish layer on the outer surface of the
samples which characterizes the onset of gypsum formation.
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Figure 10. Condition of the mortar samples before and after 360 days immersion 5% MgSO4 solution.
It can be seen that the M1 mortar has better resistance, which is why it has been marked with a green
arrow, unlike the other mortars, which have low resistance and are therefore marked with red arrows.

3.5.2. The Variation of Mass

The results of mass changes as a function of exposure time in sulfates for different
temperatures are presented in Figure 11. All mortars showed an increase in mass followed
by a significant loss of mass except for M1, which showed no loss of mass. Samples M0,
M2, and M3 indicated a mass loss of 5.14%, 6%, and 8.68%, respectively. The increase in
mass observed in the samples exposed to sulfates is mainly due to the reactions between
portlandite (CH) and MgSO4 to give two products, namely, secondary gypsum (CaSO4,
2H2O) and brucite Mg(OH)2, which are formed on the surface of samples [63]. This increase
in mass is also due to the hydration process, which is not yet complete [64]. Other research
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justifies the increase in mass in the case of the MgSO4 attack through the formation of
brucite, which is a very poorly soluble product with a low pH [65]. The products that result
from this reaction are ettringite and gypsum. The formation of ettringite is related to the
increase of eight times the initial volume [66] until the needlelike crystals have no space to
grow in the pores. Mass measurements show that the 15% sedimentation of the cement
(M1) delays the effect of deterioration due to magnesium sulfate.
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3.5.3. The Evolution of Compressive Strength

Compressive strengths were monitored on 5 × 5 × 5 cm specimens immersed in
the magnesium sulfate solution. Figure 12 shows the effect of the partial substitution of
OPC cement by calcined sediment SF750 on the evolution of the compressive strength of
mortars immersed in a 5% magnesium sulfate solution. Several studies use compressive
strength to evaluate external sulfate attacks [67–74]. In their research, Kamile Tosun-
Felekoglu [75] studied the effect of sulfate attack on cementitious materials, which was
evaluated by measuring the decrease in compressive strength. Pipilikaki [76] also used the
loss of compressive strength of mortars to evaluate sulfate damage. The results in Figure 12
indicate an increase in compressive strength for all mortars with up to 90 days of immersion.
According to several studies, this increase prior to falling at a certain age is due to the
formation of ettringite and gypsum that fill the micropores, leading to a dense structure.
Beyond a certain age, the formation of these expansive products causes the destruction
of the hardened cement paste and its cracking, which negatively affects the mechanical
characteristics of the concrete [77,78]. After 360 days, the M0, M1, M2, and M3 mortars
show a significant loss of strength of 60.94%, 54.47%, 63.71%, and 76.82%, respectively. This
is in accordance with the studies carried out by Binici [67] and Lee et al. [70], who indicated
that magnesium sulfate attack leads to a decrease in compressive strength.
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Histogram bars shows the results for compressive strength at 180 and 360 d. It can
be seen that magnesium sulfate soaking weakens the mechanical strength of all mortars
compared with mortars that have not undergone soaking. This phenomenon can be
explained by the production of expansive products such as secondary ettringite.

The compressive strength results confirm that M1 has a better strength than mortars
after 360 days of immersion in MgSO4.

3.6. Measurement of Corrosion Potential

The measurement of corrosion potential or electrode potential by means of a cor-
rosimeter is one of the most frequently used techniques in the field of nondestructive
testing in civil engineering. This method is used to determine the state of corrosion of steel
in concrete. Recommendations have been published by ASTM (C876-9) [79] and RILEM
TC154-EMC [80].

Reinforced mortar specimens prepared for measuring the evaluation of reinforcement
corrosion were first cured in water for 90 days and then partially immersed in a 5% MgSO4
solution to allow the bar embedded in the mortar to corrode. Corrosion monitoring of
the rebar continued for 360 days, during which the corrosion potentials (i.e., half-cell
potential) were regularly measured. The corrosion potentials were measured according
to the standard [80] using a saturated Cu/CuSO4 copper sulfate electrode. The half-cell
potential (HCP) is an effective method that has been used by many researchers around the
world [81–83]. Table 5 provides guidelines for evaluating corrosion activity on standard
copper/copper sulfate half-cells.

Table 5. Predicting corrosion using Cu/CuSO4 half-cell [79].

Corrosion Risk Half-Cell Potential (Versus Cu/CuSO4)

Severe corrosion Less than −500 mV
High corrosion risk (90% probability) Between −500 mV & −350 mV

Medium corrosion risk (50% probability) Between −500 mV & −350 mV
Low corrosion risk (10% probability) Higher than −200 mV
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Figure 13 shows a schematic of the HCP measurement setup. According to [79], a
digital voltmeter was used to read the potential difference between the external reference
electrode and the steel bar. In this study, copper/copper sulfate was used as the reference
electrode. If the concrete surface is too dry, it will need to be prewetted. In order to obtain
consistent readings, a centerline was drawn on the mortar surface with three measurement
points. The potential values for these three points were recorded from the voltmeter for
each mortar.
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The corrosion potential curves of the four mixtures as a function of time are shown
in Figure 14. Corrosion potential curves were used to evaluate the corrosion onset time
of steel bars using the standard [79]. A corrosion potential of −350 mV was used as the
threshold for corrosion initiation. According to this standard, if the measured corrosion
potential is below−270 mV, there is a 90% probability that corrosion will start. No corrosion
initiation of the steel for the M0, M1, and M2 mortars was observed, while for the M3
mixture, a probability of corrosion was observed from 310 days. When 15% SF 750 was
added to the OPC mixture (M1), the corrosion resistance was significantly improved and
even higher than that of the reference mortar (M0), as shown in the corrosion potential
diagram (Figure 14).
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It can be observed that in the presence of SF 750 with a substitution total of up to 20%,
even after 300 days of exposure to a 5% MgSO4 solution, the corrosion of the steel does not
commence (i.e., the corrosion potential is less negative than the threshold limit of−350 mV).
These results confirmed the beneficial effect of the incorporation of SF 750, making the
mortar more resistant to corrosion of the reinforcement embedded in the mortar.

Finally, experimental results showed that mortars incorporating up to 15% SF 750
showed satisfactory durability for 365 days of exposure to a 5% MgSO4 solution, while in
the literature, it was noted that the substitution of 10% to 12.5% of calcined sediment is
beneficial for the mechanical properties and durability of concrete [26,27].

4. Conclusions

This study was conducted to investigate the effects of the partial replacement of
ordinary Portland cement (OPC) with calcined flash sediments (SF 750) on the mechanical
and durability properties of mortar. This study showed that the use of SF 750 as a mineral
addition is beneficial and promotive. The conclusions drawn from the results of this study
are as follows:

The mortar mix with 30% OPC replaced by SF 750 indicated the lowest compressive
strength. The M1 has a compressive strength almost similar to that of the M0, with a slight
superiority in the latter.

The resistance of the M1 mortar mix to sulfate attack was higher than that of other mixes.
A 30% replacement of cement by calcined flash sediment has a negative effect on

corrosion in the sulfate environment.
Replacing 15% of the cement with the calcined flash sediment resulted in a reduction

in the corrosion rate (decrease in corrosion rate) in an environment containing 5% MgSO4
for 365 days.

Finally, it can be concluded that the use of 15% SF 750 as a mineral addition has a very
beneficial effect on the overall performance of concrete, including strength and durability.
This study, therefore, resulted in the formulation of a mortar mix with an optimal binder
combination, 75% OPC–15% SF 750, that can be produced with technical, economic, and
environmental benefits.
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