
Citation: Zhang, C.; Yu, Y.; Zhong,

M.; Zhuang, J.; Yang, H.; Lin, S.;

Zhang, Z.; Wu, Y. The Dissolution

Mechanism of Low-Molecular-Weight

Organic Acids on the Sillimanite.

Materials 2023, 16, 6663. https://

doi.org/10.3390/ma16206663

Received: 24 July 2023

Revised: 7 September 2023

Accepted: 10 October 2023

Published: 12 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

The Dissolution Mechanism of Low-Molecular-Weight Organic
Acids on the Sillimanite
Chenyang Zhang 1 , Yaling Yu 1, Mingfeng Zhong 2, Jieyi Zhuang 1, Huan Yang 1 , Shaomin Lin 1,3,*,
Zhijie Zhang 2,* and Yunying Wu 4

1 School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China;
2598@hstc.edu.cn (C.Z.); yaxiulingwu@163.com (Y.Y.); zjy15815026723@163.com (J.Z.);
yanghuan@hstc.edu.cn (H.Y.)

2 School of Materials Science and Engineering, South China University of Technology,
Guangzhou 510641, China; mfzhong@scut.edu.cn

3 Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521041, China
4 Guangdong Chaoshan Institute of Higher Education and Technology, Chaozhou 521041, China;

yunyingwu@hstc.edu.cn
* Correspondence: 19986803843@163.com or lsm678@hstc.edu.cn (S.L.); imzhang@scut.edu.cn (Z.Z.)

Abstract: The interaction between low-molecular-weight organic acids (LMWOAs) and minerals in
nature has been widely studied; however, limited research has been conducted on the dissolution
mechanism of sillimanite in the presence of different organic acids. In this study, the interaction
between the sillimanite sample and LMWOAs (citric acid, oxalic acid, and citric/oxalic mixture) at
the same pH was investigated. The dissolution rate of Si and Al was high during the initial reaction
time, then slowed down in the presence of LMWOAs. The dissolution data for Si and Al from
sillimanite in the LMWOAs fit well with the first-order equation (Ct = a(1 − exp(−kt))) (R2 > 0.991).
The dissolution process of sillimanite in the organic acids was controlled by the surface chemical
reaction step. The dissolution concentration of Si in aqueous citric acid was higher than that in
oxalic acid. In contrast, the dissolution concentration of Al in oxalic acid was more than that in
citric acid. The maximum concentrations of Si and Al in the presence of composite organic acids
were 1754 µmol/L and 3904 µmol/L. The sillimanite before and after treatment with LMWOAs
were studied using X-ray diffraction (XRD) and scan electron microscopy (SEM). These results are
explained by the characterization of the sillimanite. Under the single acid solution, the (210) crystal
plane with a high areal density of Al in sillimanite was easily dissolved by the oxalic acid, while
the (120) in sillimanite with a high areal density of Si was more easily dissolved by citric acid. In
the composite organic acids, the Si-O bond and Al-O bond in sillimanite were attacked alternately,
leading to the formation of some deeper corrosion pits on the surface of sillimanite. The results are of
interest in the dissolution mechanisms of sillimanite in the low-molecular-weight organic acids and
the environmentally friendly activation of sillimanite.

Keywords: low-molecular-weight organic acids; dissolution; mechanisms; sillimanite

1. Introduction

Sillimanite is a simple chain silicate mineral among the infinite structure silicate miner-
als. The [SiO4] tetrahedron in the chain silicate mineral skeleton is linked by shared oxygen
atoms and extends infinitely in a one-dimensional direction [1,2] Sillimanite (Al2SiO5) has
a double-stranded structure (Figure 1), in which [SiO4] and [AlO4] alternate arrangement
in the chain, sharing a cation. In the other chain, there are only [AlO6] octahedrons, and
[AlO6] shares two cations with each other, and connects with the same edge. The silliman-
ite’s crystal structure is similar to mullite. Generally, sillimanite decomposes to mullite
and silica at high temperatures, with a certain volumetric expansion [3,4]. In the industry,
sillimanite is added to other products as a raw material [5,6]. The volumetric expansion
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effect can effectively offset the volumetric shrinkage of the product at high temperatures
and improve the thermal shock resistance of the products. Sillimanite can be used as raw
materials for refractories [7], synthetic mullite [8–11], metal composites [12], construction
and building materials [13–15], and so on. Thus, sillimanite is widely used in metallurgy,
ceramics, and other fields.
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Figure 1. The crystal structure of sillimanite (yellow represents the [SiO4] and pink represents [AlO6]).

Excellent products require highly active sillimanite. The active sillimanite not only
reduces the decomposition temperature (~1000 ◦C) but also aids in the combination of
sillimanite with the other components. The common activation methods included mechan-
ical activation, thermal activation, and acid activation. Mechanical activation generally
uses mechanical energy to break Si-O and Al-O bonds in minerals through physical ac-
tions like collisions between particles. This increases the specific surface area and surface
defects of minerals, improving their reaction ability [16–19]. Thermal activation involves
pre-sintering mineral raw materials below the firing temperature, causing the minerals to
change from a stable and ordered crystalline state to a long-range disordered amorphous
form, enhancing the reactivity of raw materials [20–23]. However, mechanical and thermal
activation requires a large amount of energy and expensive equipment.

The acid activation process has been extensively studied, with a focus on simplifying
the process. Acid activation can be divided into two categories: inorganic activation and
organic activation. Inorganic acids with high concentrations can dissolve cations in silicate
minerals, thereby increasing their reactivity [24–26]. However, the concentrated inorganic
acids result in high consumption and disposal costs for the waste liquid.

The application of low-molecular-weight organic acids (LMWOAs) has drawn atten-
tion. The LMWOAs effectively destroyed the Si-O bond and Al-O bond in kaolinite [27].
Strongly complexing organic acids affect the stability and promote the dissolution of clay,
quartz, and feldspar to a moderate extent [28]. Organic acids and their anions may affect
the dissolution rate of feldspar by affecting the formation of A13+ speciation in the solution.
These ions themselves can affect the dissolution rate of minerals [29]. It is assumed that
LMWOAs could cause damage to the crystal structure of sillimanite, as the sillimanite
comprises only Al-O and Si-O bonds. However, the effect of LMWOAs on the dissolution
of sillimanite (Al2SiO5) was seldom reported. In this paper, the dissolution kinetics of the
framework elements (Si and Al) in LMWOAs aqueous solution were investigated, and the
crystal structure and microstructure of sillimanite in the presence of oxalic acid and citric
acid were also studied.

2. Materials and Methods
2.1. Materials

Oxalic acid (C2H2O4·2H2O, AR) and citric acid (C6H8O7·H2O, AR) were from Fuchen
Chemical Reagents Factory (Tianjin, China). The sillimanite was sourced from Guangdong
Changlong Porcelain Company Ltd. (Meizhou, China), and its median diameter was
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32.15 µm (provided by the supplier). The chemical composition of sillimanite is shown in
Table 1.

Table 1. Chemical composition (wt%) of sillimanite.

Sample SiO2 Al2O3 CaO MgO Fe2O3 Na2O K2O TiO2 P2O5 MnO LOI 1

Sillimanite 41.25 55.07 0.66 0.71 0.23 0.12 0.43 0.55 0.03 0.02 0.93

LOI 1 = Loss on ignition.

2.2. Experimental Procedure

Experimental solutions were prepared using reagent-grade chemicals and doubly
de-ionized water. Four 200 mL polyethylene bottles were filled with doubly deionized
water (blank sample), 40 mmol/L oxalic acid, 40 mmol/L citric acid, and composite acids
(20 mmol/L oxalic acid and 20 mmol/L citric acid) added to, respectively. The solution
was then adjusted to pH 4 using 0.05 M K2HPO4 and 0.05 M HCl, and the 2 mL chloroform
was added to each bottle to prevent microbial degradation of the oxalic acid and citric
acid and retard microbial growth. The final volume was adjusted to 200 mL. Next, 4.0 g
of the sillimanite powder was added to each of the prepared solutions. The solution was
stirred at 500 rpm/min for 10 min, sealed, and placed in a biochemical incubator at 25 ◦C.
At regular intervals, the plastic bottles were moved and stirred at 500 rpm/min for 2 min.
After the reaction for periods of 24 h, 48 h, 72 h, 96 h, 120 h, 480 h, 360 h, 480 h, 600 h, and
720 h, the mixtures were stirred for 3 min at the speed of 500 rpm/min, then centrifuged
and filtered through 0.45 µm nylon filters. The liquid phase was washed in triplicate and
stored for later use, and the solid phase was placed in an 80 ◦C vacuum drying oven for
48 h to remove moisture and then stored for later use.

2.3. Characterization of the Sample

X-ray fluorescence (XRF, PANalytical Axios PW4400 spectrometer, Almelo, The Nether-
lands) was used to characterize the sillimanite [27].

For the solid characterization in this paper, the sillimanite after treatment for the
longest time (720 h) was used. X-ray powder diffraction (XRD) patterns were obtained
using an X’pertPro Panlytical diffractometer (Almelo, The Netherlands). Morphological
analysis was conducted using a Quanta 200 scanning electron microscope (SEM) equipped
with a field emission gun.

2.4. Characterization of the Sillimanite Dissolution Solutions

The Al concentrations were characterized by the graphite furnace atomic absorption
spectrometry (contrAA700, Analytik Jena AG, Jena, Germany). The concentration of Si
was obtained by the Si molybdenum blue spectrophotometric method with a visible light
spectrophotometer (722N, Yoke Instrument Co., Ltd., Shanghai, China).

The dissolution data of Si and Al extracted from sillimanite were fitted to the Parabolic
diffusion equation (Equation (1)), the Elovich equation (Equation (2)), and the first-order
equation (Equation (3)):

Ct = a + bt1/2 (1)

Ct = a + blnt (2)

Ct = a(1 − exp(−kt)) (3)

where Ct is the Si or Al concentration in the solution after treatment for t (hour), a and b
represent the kinetics parameter, and k is the rate coefficient.
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3. Results and Discussion
3.1. Dissolution Kinetics of Si and Al in Different Organic Acids

The dissolution concentration of Si and Al released from sillimanite are shown in
Figures 2 and 3. The dissolution curves of Si and Al were found to be similar, with
an increase in dissolution concentration over time. The increase rate of the Si and Al
concentrations was higher during the initial reaction time, followed by a decrease in the
presence of LMWOAs. After LMWOAs treatment for 720 h, a steady state was not obtained.
The dissolution concentrations of Si and Al in composite organic acids were more than that
in single organic acid, with maximum values of 1754 µM and 3904 µM, respectively.
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The dissolution curves of Al and Si concentrations in the presence of citric acid or
oxalic acid were different. The Si concentration in citric acid was higher than that in oxalic
acid, while the Al concentration in oxalic acid was more than that in citric acid. The largest
concentration of both Si and Al was obtained in composite acids. It was noteworthy that the
Al/Si ratio in solution with organic acids was greater than 2 (Figure 4), proving that Al was
easier to dissolve than Si in sillimanite (Al2SiO5). The results implied that the oxalic acid or
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citric acid had preferred dissolution of Al or Si. The values of the Al/Si ratio obtained for
oxalic acid were the highest, as the Al was more easily extracted from the sillimanite. In
the mixture of acids, the citric acid extracted Si from the sillimanite easily, compared with
oxalic acid. Thus, the Al/Si ratio obtained for composite acids was not the most, when
most Al and Si ions were released for a mixture of acids simultaneously.
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In the process of mineral dissolution, the leaching of cations generally undergoes the
following steps: (1) adsorption of anions onto the mineral surface; (2) chelation of surface
cations of the mineral, breaking the chemical bonds between the surface cations and the
atomic in the crystal structure of the mineral, forming independent chelate compounds;
(3) diffusion of surface chelate compounds into the liquid phase. Equations (1)–(3) were
used to fit the dissolution concentration data of Si and Al extracted from sillimanite with
the LMWOAs. The results are shown in Tables 2 and 3. The dissolution kinetics of Si and
Al in blank samples were difficult to determine because the three kinetic equations did
not fit well with the dissolution data (R2 < 0.906). The dissolution concentrations of Si
and Al fitted well with the first-order equation in the low-molecular-weight organic acids
(R2 > 0.991), indicating that step (2) in the leaching process was the slow step. Therefore,
the leaching process was controlled by the surface reaction step. The surface reaction
control model indicated that the surface chemical reaction of minerals was the rate-limiting
step of the dissolution reaction. The destruction rate of the chemical bonds during the
dissolution process influenced the reaction rate. The crystal skeleton of sillimanite was
composed of Si and Al (Figure 1), the energy required for breaking the Si-O bond and Al-O
bond was significant. A suitable direction was needed for the effective attack of sillimanite
by organic acids on the Si-O bond and Al-O bond, and the chemical bond-breaking step
required a long time.

Table 2. The kinetic parameters of Si release from sillimanite in the different organic acids.

The Solution
Ct = a + bt1/2 Ct = a + blnt Ct = a(1−exp(−kt))

b R2 b R2 b R2

Blank 2.13 0.906 13.76 0.891 4.09 × 10−3 0.896
Oxalic acid 49.43 0.991 3.21 × 102 0.915 1.70 × 10−3 0.996
Citric acid 55.29 0.993 3.61 × 102 0.925 1.84 × 10−3 0.998

Composite acids 79.51 0.991 5.15 × 102 0.911 1.93 × 10−3 0.998
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Table 3. The kinetic parameters of Al release from sillimanite in the different organic acids.

The Solution
Ct = a + bt1/2 Ct = a + blnt Ct = a(1−exp(−kt))

b R2 b R2 b R2

Blank 4.26 0.902 27.44 0.884 4.21 × 10−3 0.882
Oxalic acid 1.24 × 102 0.993 8.09 × 102 0.922 1.86 × 10−3 0.998
Citric acid 1.22 × 102 0.993 7.32 × 102 0.918 1.78 × 10−3 0.998

Composite acids 1.75 × 102 0.992 1.14 × 103 0.913 1.97 × 10−3 0.998

3.2. Changes in the Crystal Structure of Sillimanite after Treatment with Different Organic Acids

Figure 5 shows the XRD pattern of sillimanite after treatment with different organic
acids. In the presence of the composite acids, the characteristic peak of sillimanite crystal
was the weakest, followed by oxalic acid and citric acid. The strength of the XRD pattern
diffraction peak was proportional to the completeness and symmetry of the crystal plane.
The two strongest peaks of the sillimanite were (120) and (210). The destruction mechanisms
of the sillimanite in the organic acids were discussed by comparing with the diffraction
peak intensity of (120) and (210) (I(120) and I(210)) in the paper. The higher the I(120)/I(210)
ratio, the (210) was more dissolved than (120) in sillimanite.
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Table 4 shows the I(120)/I(210) of sillimanite after treatment with various organic
acids. The order was as follows: oxalic acid > complex acids > citric acid. It can be observed
that oxalic acid had a stronger effect on the crystal plane of (210) than citric acid, and citric
acid was easier to dissolve the crystal plane of (120) than oxalic acid. After treatment with
the composite acids, the ratio of I(120)/I(210) was in the middle, which indicated that
both crystal planes were heavily damaged, and the preferred dissolution orientation was
not clear.

Table 4. The value of I(120)/I(210) of sillimanite after treatment in the different organic acids.

Samples Blank Oxalic Acid Citric Acid Composite Acids

I(120)/I(210) 1.07 1.43 1.19 1.28

The results of the XRD suggested that oxalic acid and citric acid had preferred dissolu-
tion orientation on the (210) and (120) planes, respectively. The areal density of Al in the
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(210) crystal plane was larger than that in (120) crystal faces (Figure 6), while the areal den-
sity of Si in the (120) plane was larger than that in (210). From the perspective of chemical
composition, the proportion of Al in sillimanite crystal was twice that of Si, and oxalic acid
was easier to dissolve Al than citric acid. The crystal structure of sillimanite in (210) was
destroyed easily in oxalic acid. Although the concentrations of oxalic acid or citric acid
used in complex acids were half of the single acid, the (120) and (210) surfaces dissolved
the most under the action of composite acids; moreover, the dissolution concentration of Si
and Al was the highest (Figures 2 and 3), which indicated that the presence of two organic
acids working synergistically could efficiently dissolve Si and Al in sillimanite.
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3.3. Dissolution Mechanism of Sillimanite in LMWOAs

The morphology of sillimanite before and after treatment with the composite acids is
shown in Figure 7. The sillimanite surface appeared non-porous (Figure 7b), indicating the
rapid migration of organic acid anions to the surface of sillimanite. After a reaction time of
720 h, nano-etch pits were observed on the surface (Figure 7d). These observations support
the surface reaction control model for the dissolution of sillimanite and are consistent with
the analysis of dissolution curves present in Tables 2 and 3.

The dissolution mechanism of composite acids on sillimanite minerals can be described
as follows: (1) oxalic acid and citric acid in solution approached the Si and Al reaction sites
of sillimanite (Figure 8a). (2) The weak Al-O bond in the crystal structure of [AlO6] and
[AlO4] made them susceptible to attack by the organic acids. Citric acid was more likely
to attack Si-O bonds than oxalic acid (Figure 8b). (3) As the reaction progresses, Si and
Al diffuse from the mineral surface to the liquid phase in a composite acid solution. The
Al-rich crystal surface of (210) was more susceptible to oxalic acid attack, while the Si-rich
crystal plane of (120) was more susceptible to citric acid attack. Through the synergistic
effect of the two acids, citric acid, and oxalic acid alternately attacked the Si-O bond and
Al-O bond, resulting in the effective dissolution of minerals (Figure 8c). (4) With increasing
time, triangular-shaped corrosion pits emerged on the surface of sillimanite treated by
composite organic acids, and even some small fragments of sillimanite detached from the
edge of the mineral (Figure 8d). This indicates that the dissolution process of sillimanite by
composite acid was controlled by the surface chemical reaction step.
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Figure 8. The schematic diagram of the dissolution mechanisms of sillimanite in the presence of
composite organic acids. (a) oxalic acid and citric acid in solution (right in the image) approached the
Si and Al reaction sites of sillimanite (left in the image); (b) The Al-O and Si-O bonds was attacked by
the organic acids;. (c) Si and Al diffuse from the mineral surface to the liquid phase in a composite
acid solution; (d) triangular-shaped corrosion pits emerged on the surface of sillimanite, and even
some small fragments of sillimanite detached after composite acid treatment.
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4. Conclusions

The dissolution behavior of sillimanite in the presence of low-molecular-weight or-
ganic acids was studied by analyzing the solid and liquid phases. The rate of dissolution
was high initially and then reduced in the presence of low-molecular-weight organic acids.
The dissolution data of Si and Al in sillimanite were well-described by the first-order
equation after treatment with organic acids (R2 > 0.991). The surface chemical reaction step
controlled the sillimanite dissolution process in organic acids.

The maximum concentration of Si and Al, reaching values of 1754 µM and 3904 µM,
respectively, was observed in the presence of composite organic acids (oxalic acid and citric
acid), compared to using oxalic acid or citric acid alone. In single acid solutions, oxalic acid
dissolved Al more easily, while citric acid preferentially attacked the Si site. The analysis
of the solid phase suggested that the oxalic acid had a stronger effect on the crystal plane
(210) in sillimanite with a high areal density of Al, while the (120) in sillimanite with a
high areal density of Si was easier to be dissolved by citric acid. In the composite organic
acids solution, the synergistic effect of oxalic acid and citric acid was evident, and the
Si-O bond and Al-O bond were attacked alternately, enhancing the release of Si and Al in
sillimanite. The dissolution of a large amount of Si and Al was attributed to the jagged
edges of sillimanite and the formation of deeper triangle corrosion pits. The adsorption
process of low-molecular-weight organic acids on the sillimanite surface and the break
mechanism of Si-O and Al-O bonds in sillimanite is unclear and needs further study. These
results are interesting in terms of understanding the dissolution mechanisms of sillimanite
in LMWOAs and producing environmentally friendly high-activity sillimanite powder.
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