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Abstract: Four-dimensional (4D) printing is an innovative additive manufacturing technology used
to fabricate structures that can evolve over time when exposed to a predefined environmental
stimulus. 4D printed objects are no longer static objects but programmable active structures that
accomplish their functions thanks to a change over time in their physical/chemical properties that
usually displays macroscopically as a shapeshifting in response to an external stimulus. 4D printing
is characterized by several entangled features (e.g., involved material(s), structure geometry, and
applied stimulus entities) that need to be carefully coupled to obtain a favorable fabrication and a
functioning structure. Overall, the integration of micro-/nanofabrication methods of biomaterials
with nanomaterials represents a promising approach for the development of advanced materials. The
ability to construct complex and multifunctional triggerable structures capable of being activated
allows for the control of biomedical device activity, reducing the need for invasive interventions.
Such advancements provide new tools to biomedical engineers and clinicians to design dynamically
actuated implantable devices. In this context, the aim of this review is to demonstrate the potential of
4D printing as an enabling manufacturing technology to code the environmentally triggered physical
evolution of structures and devices of biomedical interest.

Keywords: 4D printing; biomaterials; functional materials; bioengineering

1. Introduction

Additive manufacturing (AM) technologies (also known as “three-dimensional (3D)
printing”) have been widely exploited in many interdisciplinary research fields (such
as automotive, soft electronics, and bioengineering) due to their excellent repeatability
and capacity to construct complex structures with precise geometry control [1,2]. AM
processes start from a digital model, designed by computer-aided design (CAD) software
or obtained by segmentation of surfaces or tomographic scanning data, to fabricate the
desired structure layer-by-layer, i.e., adding successive layers of materials onto previously
deposited/solidified ones [3].

In the last decades, different innovations have been introduced in AM, such as multi-
material and multi-scale AM, in which different AM technologies are combined to fabricate
heterogeneous structures [4,5], in situ printing, in which material deposition occurs on
non-planar complex surfaces [6,7], and four-dimensional (4D) printing, in which active
structures are designed and manufactured [8,9].

More in detail, 4D printing was introduced in 2013 by Dr. Skyler Tibbits [10] to
denote the fabrication via AM of structures with the capability to shape transform over
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time, which represents the “fourth dimension”, under a predefined stimulus. Some of the
characteristics most frequently associated with 4D printed structures are shape-changing,
self-repairing, and self-assembly, emphasizing that these are no longer static objects but
rather programmable active structures that carry out their function by changing their phys-
ical and/or chemical properties over time in response to a predetermined stimulus [11,12].

Therefore, the key points of 4D printing are: (i) active materials (also known as
smart materials or stimuli responsive materials) or combinations of different materials;
(ii) external stimuli (e.g., temperature, humidity, electric stimulation, pH, and light); and
(iii) AM technologies, which act as an enabling tool that allows the exact positioning of a
precise quantity of one or more stimulus-responsive materials in predetermined locations
without restrictions on the complexity of the geometry [9,13,14]. The deep description of
the different AM technologies is not in the scope of this review. If the reader is interested in
this topic, we suggest the following reviews as seminal works in the field: [15,16].

Using two dimensional (2D) nanomaterials (e.g., graphene), 4D-printed nanocompos-
ites have been used to design shape-programming objects. For example, Wei et al. [17]
used 4D printing to obtain acrylonitrile–butadiene–styrene/poly(lactic acid)/graphene
composites that had a linear thermal coefficient of 75 ppm◦C−1. Moreover, laser print-
ing technology has been used in synergy with 4D printing to convert graphene oxide
into graphene-based composites [18]. This laser technique can be applied to induce the
formation of graphene on biodegradable substrates [19,20].

Using responsive materials and the related stimuli for their activation, it is possible
to physically program many morphological transformations enabled by the proper or-
ganization guaranteed by AM. However, designing a new structure via 4D printing is a
complex problem. Indeed, it is influenced by several variables (e.g., stimulus, materials,
geometries, mechanisms of interactions) that need to be properly combined to achieve a
functional structure. Moreover, the knowledge of the material’s behavior and interactions,
the correct stimulus, and the printing parameters are fundamental elements that increase
the complexity of the problem and that need to be considered and deeply understood. In
this context, mathematical modeling is a very useful tool to determine the combination
of variables that leads to the maximum and desired transformation of the 4D-printed
structures [21,22].

Since 2013, when 4D printing was introduced, this fabrication strategy has seen fast
growth in many sectors, including smart textiles, autonomous and soft robotics, biomedical
devices, electronics, and tissue engineering (TE). This is due to its advantages over static
AM, such as the possibility of an easier fabrication of complex 3D structures that are
fabricated as flatted objects and then achieve their 3D conformation after actuation, thus
reducing the encumbrance of the objects, and the exploitation of reliable alternatives to
electrical energy (e.g., chemical potential, elastic energy), capable of remote control without
the use of cumbersome wiring, thus leading to the use of 4D printed structures in severe
environments (e.g., human body, low-resource settings).

In this review, we aim at providing an overview of 4D printing as a new additive
manufacturing technology in the biomedical field. In the first part, a brief introduction to
stimuli-responsive materials with a special focus on natural polymers and nanomaterials
will be provided, along with a description of the achievable transformations and mathe-
matical modeling. Then, applications of 4D printing in bioengineering (e.g., soft actuator
fabrication, medical device design, TE, and drug delivery) will be discussed, reporting
relevant examples from the recent literature.

2. Stimuli-Responsive Materials in 4D Printing

In many applications, 4D printing exploits active materials, namely materials that
undergo useful, predictive, reproducible, and macroscopic physical or chemical changes
in their properties as a consequence of an environmental change [2,23]. While there are
examples of active materials in all material classes (mostly metals, polymers, and ceramics),
smart polymers (such as shape memory polymers (SMPs) and liquid crystal elastomers)
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have been favored for 4D printing due to their easy processing and wide range of stimuli
that they may be used with. Smart polymers could be activated by a variety of external
stimuli, including temperature, pH, electric field, magnetic field, and light.

With the rapid progress of 4D printing, the prevalence of eco-friendly, sustainable
smart polymers from natural sources is gaining great interest in the field [24–26]. The
exploitation of natural polymers is prompted by the fact that they possess enhanced
biocompatibility and bioactivity if compared with synthetic materials, which makes it easier
for natural polymers to be interfaced with biological systems, including living cells [27].
Biocompatibility is a crucial point in biomedical applications to guarantee the safety of
patients and the vitality of cells in vitro, which currently limit the choice of materials in 4D
printing [28]. It is important to highlight that biocompatibility must also be applied to the
stimulus that is used to trigger the shape-morphing of the structures. Indeed, the materials
must react to an environmental variation that is in accordance with the target application.
For example, if the structure is designed to interface with human cells, the materials, in
addition to being biocompatible, must react to a stimulus compatible with cell wellness
(e.g., temperature between 20 ◦C and 37 ◦C, pH around 7.4).

Moreover, exploiting natural biomaterials allows for the expansion of the library of
possible bioinks/biomaterial inks, thanks to the variety of natural building blocks, such as
peptides, amino acids, and deoxyribonucleic acid (DNA) sequences.

In the following paragraphs, the active polymers, with a deep focus on natural poly-
mers, used in 4D printing will be analyzed and classified in relation to the involved stimulus.

2.1. Temperature-Responsive Materials

Currently, one of the most investigated methods to achieve shape-changing in 4D print-
ing is temperature responsiveness. A thermo-responsive material can employ exogenous
temperature changes as stimulus to achieve a particular shape transformation or can be
activated by heating through the Joule effect due to electrical current flow. The easiest form
of temperature-responsiveness is thermal expansion, which leads to the volume expansion
of a structure as a consequence of a temperature increase. In this context, there are also a
few materials that exhibit the opposite behavior, undergoing contraction with an increase in
temperature [29]. Among them, silk fibroin (SF) attracted a lot of attention from researchers
because of its extracellular matrix (ECM)-likeness, low cost, adjustable mechanical prop-
erties, controllable degradation, and good biocompatibility [30]. Moreover, the timeline
of the development of SF-based ink in 3D printing technology over the past 30 years has
witnessed great research and application value for the customized biomedical field [31].
These results encouraged further exploration of SF-based biomaterials via 4D printing.

Taking a step forward, changes in temperature can induce variations in wettability
and solubility alterations of materials, as for poly(N-isopropylacrylamide) (PNIPAAm),
poly(methyl vinyl ether), and poly(N,N-dimethylaminoethyl methacrylate) [22,32].

2.2. Humidity-Responsive Materials

An easy method that fosters the temporal shape transition of 4D-printed structures is
humidity responsiveness. The phenomenon refers to the inherent swelling feature observed
in both synthetic and natural hydrogels [33]. Hydrogels are 3D cross-linked polymeric
networks that can absorb and hold massive quantities of water [34,35]. Their ability to
absorb water without dissolving in a thermodynamically favorable solvent can be referred
to as their swelling ability. This is due to their chemically or physically cross-linked network,
which experiences a reversible volume change when dipped in a suitable solution [36].
Gelatin and collagen, among other hydrophilic natural polymers, have been utilized in 4D
printing as humidity-responsive materials [37].

2.3. pH-Responsive Materials

Another category of active materials are pH-responsive polymers. They can vary
their rheological characteristics, such as viscosity and shear modulus, in response to
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changes in the pH or ion concentration of the surrounding environment [2,23,38]. Either
the protonation of ionizable groups or the deterioration of acid-cleavable bonds can be
responsible for this phenomenon. In more detail, the polymeric chains of those materials
can stretch to a coil form as a result of the charged functional groups’ electrostatic repulsion
or form globule structures when the charge of the functional groups is neutralized [39].
Collagen, gelatin, and keratin are only a few examples of naturally occurring polymers
that, exhibiting pH responsiveness, undergo a change in their swelling/shrinking profiles
in response to various pH environments [23,40].

Moreover, pH can be utilized to promote the self-assembly of peptide hydrogels
made of the alternation of natural amino acids, increasing the mechanical and rheolog-
ical properties of the substance by promoting the creation of intra-molecular sheets or
alpha-helices [41,42].

2.4. Light-Responsive Materials

In light-sensitive materials, the applied optical stimulation (e.g., visible, ultraviolet
(UV), and near-infrared (NIR) light) is converted into other responses, usually mechanical
ones [43]. The chromophore that is included in the materials will determine whether a light-
responsive activity is reversible or irreversible. The most commonly used chromophores
are photochromic compounds (such as azobenzene, spiropyran, and salicylideneaniline)
that change polarity and go through isomerization when exposed to light [44,45]. Light
has distinct advantages over other stimuli, such as a spatially controlled activation region
that may be achieved by using a photomask or focused light source, as well as an instant
activation that is simple to stop, pause, and resume [46]. Due to their exceptional optical
responsiveness, nanomaterials like carbon nanotubes and materials based on graphene
have recently been employed as light-sensitive components [47].

It is crucial to emphasize that in numerous works, light is employed as a substitute
technique to heat the 4D structure in specific spots. Consequently, the rise in temperature
brought on by the lights is the true stimulus that causes the shape-shifting [48,49].

2.5. Electric Field Responsive Materials

Polythiophene and poly(2-hydroxyethyl methacrylate) are some examples of electri-
cally responsive materials characterized by intrinsic electrical conductivity. Their shape
and size can be regulated by the intensity and direction of an external electric field [50,51].

Coulombic, electrophoretic, electroosmotic, and piezoelectric processes are some
examples of the electrical interactions that can take place in a material to produce electric
field responsiveness [52]. Additionally, passive polymers and electro-sensitive particles,
such as dielectric polarizable particles, can be combined to create electrically responsive
materials [53]. These particles polarize when exposed to an electric field, altering the
material structure [53].

2.6. Magnetic Field Responsive Materials

Magnetic fields, in addition to electrical fields, are frequently utilized for triggering
shape changes in 4D-printed structures. Uncontactable remote manipulation using mag-
netic fields is effective and safe [23]. Similar to electrical responsive materials, magnetic
responsive materials typically contain uniformly dispersed magnetic-sensitive particles
(such as cobalt ferrite, iron platinum, and iron oxide) in a carrier solution [52,53].

2.7. Shape Memory Polymers

SMPs are a widely utilized class of smart polymers that are crucial for 4D printing
in the biomedical industry [23,24]. Their smart behavior could be activated by different
types of stimuli, such as temperature, water, or an electric field [54]. When SMPs are
exploited, a programming phase is necessary in which the material/structure is manually
deformed by exposure to the triggering stimulus. Thus, a temporary shape is generated and
subsequently fixed by the quick removal of the stimulus. Then, the stressed polymer relaxes
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as a result of an additional exposure to the triggering stimulus, enabling the structure to
regain its original shape [21].

Polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) are the most commonly
used temperature-responsive SMPs [24,25], whereas polyurethane and poly(butanetetrol
fumarate) are the major representatives of water-responsive SMPs [55,56].

3. Achievable 4D Transformations

In the literature, there are different attempts to define a taxonomy of shape-changing
structures that can be obtained with 4D printing. Here, starting from the classification
provided by Nam and Pei [57], an advanced library of programmable transformations is
defined (Table 1).

Table 1. Classification of the most performed transformations in 4D printing. Images were adapted
with permission from [57].

Taxonomy Description Schematic Image Refs.

Expansion and
contraction

Description: changing in length, volume, and area.
How to achieve: linear swelling and shrinking of
thermo-responsive materials after immersion in cold
and hot water.
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Description: a curve traced on a cylinder by the
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different deposition patterns and exploit the
swelling/shrinkage mismatch between materials.
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Twisting

Description: curvature created by a rotation of the
structure around a stationary point.
How to achieve: twisting can be programmed to
perform different deposition patterns and exploit the
swelling/shrinkage mismatch between materials.
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Table 1. Cont.

Taxonomy Description Schematic Image Refs.

Waving

Description: shape that has regular undulating
features or a regular wavy up-and-down form.
How to achieve: structures composed of three
materials: two active materials inside a passive matrix.
In function of the deposition pattern of the two active
materials, different waving structures can be
fabricated.
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movement of the structure.
How to achieve: actuatable units are co-joined into a
complete system and later into a much larger system
of systems.
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Compliant
mechanisms

Description: mechanism in which the motion is not
only governed by the geometry and mass distribution
but also by the forces.
How to achieve: a compliant mechanism gains its
mobility from the deformation of its flexible member.
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Non-topologically
equivalent changing

Description: non-topologically equivalent changes
occur when a construct is able to self-fill holes or
self-repair cuts.
How to achieve: exploiting the self-healing properties
of certain polymers. The increase in temperature is a
possible method to trigger non-topologically
equivalent changes.
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entity of the applied stimulus, the spatial deposition of different material(s), and their
properties. Those variables need to be carefully coupled to obtain a favorable fabrication
and a functioning structure, making the design of a new structure via 4D printing a
complex problem. In this contest, the development of an appropriate mathematical model
is essential for the success of the 4D printing process [78–80]. Mathematical models allow
for the prediction of the shape evolution of the structure over time, thus avoiding eventual
collisions between the components, facilitating the achievement of the desired movements,
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material processability; (iii) material properties and responsiveness to the applied stimulus;
and (iv) entities of the applied stimulus.

Mathematical models can be divided into two main categories: forward problems and
inverse problems. The forward problems aim at determining the final shape of the structure
and are more oriented toward discovering concepts. A glaring example of a forward
problem is the use of lumped parameter models to study the shape evolution of SMPs.
For instance, the standard linear solid model (i.e., a parallel arrangement consisting of one
elastic spring and one Maxwell element) was exploited by Yu et al. to quantitatively model
the energy storage and release process achieved during the multiple shape transformation
in SMPs [81].

In inverse problems, the final state is known, and the user aims to find out how to
obtain it by defining the initial geometries and spatial deposition of material(s) (i.e., the
printing path). Thus, inverse problems are more application-oriented. A brilliant example
of an inverse problem can be found in the study of Gladman et al. [61], in which the authors
identified the print path required to mimic the complex curvature of the calla lily flower.

Analytical models represent the mathematical formulation of a certain mechanical
or biophysical system or phenomenon, thus being extremely used in the mathematical
modeling of 4D printing [82]. Examples of analytical models in 4D printing are the beam
and plate theories (e.g., Euler–Bernoulli model and Timoshenko’s model) [83], or the spring-
mass systems (e.g., Maxwell system, standard linear solid) [84]. In the case of complex
geometries and/or motions, analytical models may not have a closed-form solution, so
numerical analyses are required. Consequently, mathematical models are implemented
via computational models that exploit computers to study and simulate complex systems
that could involve highly deformable bodies as well as multiscale and multiphasic features.
Examples of computational models for 4D printing could either rely on the Mass-Spring
System (MSS) or on Finite Element Modeling (FEM) [85–87].

5. 4D Printing in the Biomedical Field
5.1. Bioactuators

Soft actuators, also referred to as bioactuators, are highly deformable structures char-
acterized by ease of movement that can be activated by external stimuli to generate the
desired motion and forces/torques [88]. They are usually constituted by materials with low
elastic moduli (e.g., silicone, electroactive polymers) or fluids, thus the designation “soft”
actuators [89]. They present several key advantages compared to traditional rigid actuators:
(i) the possibility of miniaturization; (ii) a few components; (iii) actuation through low-
power external stimuli; (iv) deformability and complex motion; and (v) the ability to mimic
the softness and body compliance of biological systems [88,90,91]. AM technologies have
been used in several studies to fabricate soft actuators [92,93]. However, the actuation is
usually not intrinsic to the printed object but obtained by external fluids or compressed air.
In this scenario, 4D printing could offer the tools to simplify the fabrication of soft actuators
with the intrinsic capability to self-actuate under a precise stimulus, thus obviating the need
for external actuation [92]. Moreover, 4D printing can significantly reduce the fabrication
cost of soft actuators thanks to the possibility of integrating their different parts through
the stimulus-triggered self-assembly of the structure itself, thus reducing the need for strict
tolerances [93,94].

A milestone example of this use of 4D printing for soft actuators is provided by
Liu et al. [95]. The authors combined a high swelling (i.e., active) and a low swelling
(i.e., passive) material in tubular geometries to achieve several different movements, such
as uniaxial elongation, radial expansion, bending, and gripping, to develop a new soft
actuator. In more detail, inspired by coral polyps, the authors designed and 4D printed
tubes with self-folding fingers at one end, exploiting extrusion-based 3D bioprinting (EBB).
PNIPAAm was used as an active thermo-responsive material and simultaneously deposited
with polyacrylamide (PAAM), used as a passive support material. In this way, the structures
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exhibit both uniaxial expansion of the tube and finger gripping when dipped in water at a
temperature higher than 35 ◦C.

Taking a step forward, Chan et al. [96] fabricated a biological machine with an actuation
module for locomotion that was produced by a cluster of viable cardiomyocytes. More in
detail, the authors first fabricated the main structure, comprising a cantilever and a base in
poly(ethylene glycol) diacrylate (PEGDA), by stereolithography (SLA). Then, the cantilever
structure was seeded with a monolayer of contractile cardiomyocytes. This biological
machine exhibited a walking motion with a maximum speed of 236 µms−1, thus possessing
a highly efficient mechanism of locomotion. This was achieved using the cell contractive
forces and the anisotropic friction of the supporting structure.

5.2. Tissue Engineering

Native tissues exhibit complex 3D structures and microarchitectures, as well as unique
functions that are achieved through dynamic changes in tissue conformation [62]. Therefore,
due to their static behaviors, 3D bioprinted scaffolds are not able to closely recapitulate
native tissue dynamics. By creating physiologically active scaffolds that can change their
shapes in response to desired stimulation, 4D printing could potentially overcome this
difficulty and emulate the movements of the actual tissue [97]. In this context, 4D printing
can be referred to as 4D bioprinting, and the biocompatibility of both materials and stimulus
is a crucial point because it must be ensured that the scaffold materials support cell growth
and tissue development without causing harm [98,99]. For this reason, the biocompatibility
of a 4D-bioprinted scaffold should be evaluated not only in vitro (cell culture) but also
in vivo. Moreover, in some cases, 4D-printed objects may incorporate living cells or other
biological agents. Ensuring the biocompatibility of these components is vital to their
integration and function within the body.

The 4D-bioprinted scaffolds can improve the functionality of the scaffold by simpli-
fying its seeding and the fabrication of structures capable of adapting to the complex 3D
shapes of the human body or providing appropriate stimuli to promote cell differentiation
and activities [100,101].

For example, in the context of bone TE, it is difficult for traditional 3D static scaffolds
to have a good match with the sharp edge shape of bone defects, thus often leading to
incomplete edge and material absorption [102,103]. In this context, 4D bioprinting can
provide a solid solution that possesses great advantages in minimally invasive surgery
and defect shape matching. With this aim, Shuai et al. [56] exploited the water-triggered
shape memory effect of thermoplastic polyurethane to fabricate smart scaffolds for bone
defect repair. More in detail, the scaffolds, fabricated via selective laser sintering, were
able to be compressed up to 67% when pre-immersed in deionized water and to maintain
this temporary shape after drying. Then, when they were re-immersed in water, the shape
recovery ratio reached 90%. In vitro biocompatibility tests showed that the shape-recovered
scaffold could promote cell adhesion and direct cell proliferation.

Moving to a diverse anatomical district, Kim et al. [62] 4D-bioprinted via digital
light processing (DLP) an in vitro trachea scaffold, exploiting methacrylated silk (Sil-MA)
(Figure 1A(i)). The authors fabricated a bilayer Sil-MA scaffold with different Sil-MA
concentrations in each layer, thus exploiting the differential swelling properties of the
two layers to obtain the self-folding of the structure, thus resembling the architecture of
native trachea (Figure 1A(ii)). Moreover, to mimic the heterogeneity of the native traches,
two types of cells were introduced in the layers: turbinate-derived mesenchymal stem
cells (TBSCs) were added in the bioink of the base layer, whereas human chondrocytes
were included in the bioink in the pattered layer, thus mimicking the hyaline cartilage
ring of the native trachea. After the manufacturing, the cell-laden bilayer structure was
immersed in culture medium and incubated to induce self-folding to the planned mor-
phology. Preliminary in vitro and in vivo studies revealed that the 4D-printed scaffold is
highly biocompatible and underwent stable integration with the host trachea, showing
regeneration performances (Figure 1A(iii)).
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Figure 1. (A) 4D bioprinted trachea scaffold developed by Kim et al. [62]. (i) Chemical structure of 
Sil-MA used to fabricate cell-laden 4D shape morphing structures by DLP. (ii) Self-shape morphing 
behavior of the Sil-MA bilayer scaffold in water due to differential swelling. (iii) Masson’s trichrome 
staining of the native trachea and trachea treated with the 4D bioprinted constructs after 8 weeks of 
surgery (scale: 1 mm; 1 cm for images in small boxes), and histological staining revealing newly 
formed respiratory epithelium 2 weeks after the implantation (scale: 0.1 mm). The engineered tra-
chea is marked with asterisks and dotted line. Newly formed respiratory epithelium was marked as 
E and short arrow. Figure reproduced with permission from [62]. (B) 4D bioprinted skeleton muscle 
scaffold developed by Yang et al. [63] (i) Schematic of the fabrication and actuation of the constructs. 
(ii) Swelling-driven self-folding ability of gelatin films. (iii) Images of the real constructs before and 
after actuation. Scanning emission microscopy images confirmed the bundle-like structure of the 
constructs. Figure reproduced with permission from [63]. 

5.3. Medical Devices 
A medical device is any article manufactured to be used in human beings with the 

final aim of diagnosis, prevention, monitoring, prediction, prognosis, treatment, or allevi-
ation of disease, injury, or disability, as proposed by the Global Harmonization Task Force 
and reported in official legislation as European Regulation 745/2017 [106,107]. 4D printing 
has the potential to drive a significant transformation in the medical devices field due to 
its potential capability to manufacture: (i) customized implants able to grow up with 

Figure 1. (A) 4D bioprinted trachea scaffold developed by Kim et al. [62]. (i) Chemical structure of
Sil-MA used to fabricate cell-laden 4D shape morphing structures by DLP. (ii) Self-shape morphing
behavior of the Sil-MA bilayer scaffold in water due to differential swelling. (iii) Masson’s trichrome
staining of the native trachea and trachea treated with the 4D bioprinted constructs after 8 weeks
of surgery (scale: 1 mm; 1 cm for images in small boxes), and histological staining revealing newly
formed respiratory epithelium 2 weeks after the implantation (scale: 0.1 mm). The engineered trachea
is marked with asterisks and dotted line. Newly formed respiratory epithelium was marked as E
and short arrow. Figure reproduced with permission from [62]. (B) 4D bioprinted skeleton muscle
scaffold developed by Yang et al. [63] (i) Schematic of the fabrication and actuation of the constructs.
(ii) Swelling-driven self-folding ability of gelatin films. (iii) Images of the real constructs before and
after actuation. Scanning emission microscopy images confirmed the bundle-like structure of the
constructs. Figure reproduced with permission from [63].

Focusing on the same tissue (e.g., cartilage) and shape-morphing strategies,
Ding et al. [104] fabricated a bilayer scaffold made of cell-laden oxidized and methacry-
lated alginate for cartilage TE. More in detail, the scaffold possesses a crosslinking gradient
that provides to the structure a differential swelling behavior, which in turn leads to the
self-folding over time. After the actuation in culture media, the scaffold obtains a C-like
shape that leads to the condensation of the cells cultured in the inner layer, which shows a
high vitality and the production of glycosaminoglycans comparable with static control.
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Taking a step forward, Yang et al. [63] fabricated a 4D bioprinted construct able to
mimic the complex structure of the perimysium of a parallel fusiform skeleton muscle,
exploiting the swelling capabilities of gelatin films (Figure 1B(i)). In more detail, firstly,
the authors fabricate via EBB gelatin films with grooves on their top. The grooves, acting
as hinges, enable the folding of the gelatin films once dipped in water-based solutions
(Figure 1B(ii)). Then, cell-laden methacrylaed gelatin (gelMA) fibers were deposited via
EBB on the gelatin film. Thus, when this planar construct is dipped in culture medium and
the gelatin film self-folds, a bundled structure comprising the cell-embedded microfibers
on its inside is created (Figure 1B(iii)).

Finally, thinking about patient-adaptable soft tissues such as blood vessels, Luo and
colleagues created an effective approach to manufacturing scaffolds with fine topologies
combining 4D printing, fused deposition modeling (FDM), and crosslinkable shape memory
linear copolyesters [105]. These 4D scaffolds demonstrated excellent biocompatibility, and
under UV-assisted irradiation, they showed incredible shape memory recovery, optical
mechanical performance, and good stability in a water environment.

5.3. Medical Devices

A medical device is any article manufactured to be used in human beings with the final
aim of diagnosis, prevention, monitoring, prediction, prognosis, treatment, or alleviation
of disease, injury, or disability, as proposed by the Global Harmonization Task Force and
reported in official legislation as European Regulation 745/2017 [106,107]. 4D printing
has the potential to drive a significant transformation in the medical devices field due
to its potential capability to manufacture: (i) customized implants able to grow up with
human growth; (ii) devices that allow the use of minimally invasive surgical procedures;
and (iii) active devices that perform their action without the need for electrical energy [108].
For example, Lin et al. [109] developed a 4D-printed adsorbable left atrial appendage
occluder (LAAO), a medical device that aims at reducing the risk of left atrial appendage
blood clots entering the bloodstream, thus reducing stroke occurrence. More in detail, the
device was fabricated via FDM using magnetic nanocomposite-laden PLA that possesses
shape memory properties. The addition of the magnetic nanoparticles ensured the self-
heating and the remote-control of the device 4D transformation. The 4D-printed LAAO
was programmed to a straight temporary shape with a small cross-section area to facilitate
interventional delivery and implantation. Then, upon heating, the structure opens, coming
back to its permanent open shape, thus performing its occluding function.

In previous works, we exploited the temperature responsiveness of regenerated silk
(RS) for the fabrication of two devices to be used in intestinal surgery applications [58,59].
The same combination of active (i.e., RS) and passive (i.e., poly(3-hydroxybutyrate-co-3-
hydroxyvalerate)) materials was used, as well as the same stimulus (i.e., the increase of
temperature from the room temperature to the body temperature). The different required
behaviors, dictated by the different applications (i.e., intestinal anastomosis and intestinal
distraction enterogenesis), were achieved thanks to a different spatial arrangement of
the involved materials into bilayer tubes (Figure 2A(i,ii)) and core-shell coiled structures
(Figure 2B(i,ii)), respectively. This design freedom and customization were made possible
by the use of advanced additive manufacturing technologies, namely EBB equipped with a
rotating spindle (Figure 2A(iii)) and a core-shell system integrated into a EBB alongside
gel-in-gel deposition strategies (Figure 2B(iii)). FEMs were exploited in both studies to
investigate the temperature-triggered contraction of the devices according to the RS-based
solution content (Figure 2A(iv),B(iv)). The devices were then validated experimentally.
Briefly, the clips for sutureless anastomosis were tested ex vivo on a porcine intestine
and were able to withstand a bursting pressure approximately 140% higher than the one
registered for conventional sutured samples (Figure 2A(v)). Differently, the core-shell coils
for distraction enterogenesis were tested on a porcine phantom and were able to pull the
flaps of the phantom closer as a consequence of an increase in temperature (Figure 2B(v)).
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Figure 2. (A) Four-dimensional-printed clips for intestinal anastomosis. (i) Rationale of the device;
(ii) photo of the bilayer clips, scale bar = 1 cm. (iii) An EBB equipped with a rotating spindle is
used in the work. (iv) Finite element simulation, showing the ability of the clips to contract and
compress the intestine wall with an increase in temperature. (v) Validation of the device through ex
vivo tests. Figure reproduced with permission from [58]. (B) Four-dimensional-printed core-shell
coiled structure for intestinal distraction enterogenesis. (i) Rationale of the device; (ii) photo of the
core-shell springs. (iii) An extrusion-based 3D printer equipped with a core-shell needle is used in the
work. (iv) Finite element simulation, showing the ability of the springs to torque and compress with
the increase in temperature. (v) Validation of the device through phantom tests. Figure reproduced
with permission from [59].

5.4. Drug Delivery

Drug delivery systems play a critical role in the pharmaceutical industry by ensuring
that medications are administered to patients effectively and with precise control. 4D
printing can also be applied to drug delivery systems, where printed structures release
drugs in a controlled manner. In this context, 4D printing possesses several advantages if
compared with traditional manufacturing techniques (e.g., capsule filling and tableting).
Indeed, 4D printing offers a number of benefits, including the possibility to obtain a
controllable kinetic and to achieve a time- and/or site-dependent drug release based on the
shape-shifting property of the device itself [110,111].

4D-printed structures for drug delivery systems should be biocompatible to avoid
toxicity or irritation at the delivery site. In this case, 4D-printed drug delivery systems
utilize biocompatible hydrogels or smart polymers that can change their properties in
response to environmental factors. These materials are well-suited for controlled drug
release applications. For example, a chitosan-pectin hydrogel was utilized by Long and
colleagues to print a biodegradable wound dressing for the local anaesthetic medication
lidocaine [112]. The apparatus functioned as a standard swollen polymeric system that
sorbs the solvent and desorbs the loaded medication, thus dissolving the polymeric matrix.

In smart drug delivery system fabrication, temperature-responsive materials are care-
fully chosen based on their ability to undergo a phase transition, typically a sol-gel tran-
sition, within a specific temperature range. Common materials include thermosensitive
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polymers like PNIPAAm and its derivatives [112]. The drug to be delivered could be encap-
sulated within the temperature-responsive material during the 4D printing process [113].
This can be achieved by mixing the drug with the polymer solution before printing or by
incorporating drug-loaded microspheres or nanoparticles within the printed structure [114].
A fantastic result was recently obtained by Suryavanshi and co-workers who synthesized
a novel thermo-responsive self-folding feedstock able to carry paracetamol, a common
drug, with extraordinary efficiency [115]. In fact, an in vitro study confirmed that this
programmed 4D printer had temperature-responsive shrinkage/swelling properties and
was able to release almost 100% of the drug into the gastric pH medium within 4 h.

Moreover, 4D-printed hydrogels with antimicrobial properties have been receiving
attention in the last decade, especially for wound closure. 4D hydrogels were function-
alized with the cell-adhesive motif Arginine-Glycine-Asparagine (RGD) to enhance cell
spreading [116], and at the same time, they may show a strong antimicrobic effect against
Staphylococcus aureus and Enterococcus faecalis [117]. In fact, cells that recognize the RGD
motifs can bind to them via the sites of integrin on the cell membrane and proliferate. This
process could also be used for drug delivery in a local release region in an intelligent man-
ner, such as dental pulp [118]. Regenerative strategies for endodontics and periodontics
have received special attention recently [119,120].

Other examples were represented by 4D-printed drug-eluting stents that could release
medications gradually to prevent restenosis in blood vessels [121].

Last, but not least, 4D printing enables the fabrication of patient-specific drug delivery
systems (Figure 3). Each patient’s unique needs can be considered, and personalized drug
dosages or release patterns can be achieved. This is particularly relevant in oncology, where per-
sonalized chemotherapy delivery can reduce side effects and improve treatment efficacy [122].
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Figure 3. (A) Schematic of the application of EsoCap, which is composed of a hard gelatin capsule that
contains a sinker to decrease buoyancy and a mucoadhesive enrolled film and retainer thread, using the 3D
printed applicator. (B) A schematic presentation of the flower-shaped esophageal drug delivery system
illustrates its composition, the folded configuration prior to administration, its deployment upon reaching
the esophagus, and the recovery of its original shape upon thermal triggering of nitinol wires [121].
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Utilize 4D-printed materials to create drug delivery systems that can release chemotherapy
agents with precise control by using the right quantity of the drug at the right time. One exam-
ple is the prosthesis of paclitaxel and doxorubicin microspheres to prevent tumor recurrence and
metastasis after breast-conserving surgery designed and prepared by Hao et al. in 2021 [123].

Other examples were studied to implement real-time monitoring of treatment out-
comes and patient responses to adjust drug delivery parameters as needed [124].

For sure, to allow the use of 4D printing in clinical practice in an effectively integrated
manner, we must create multidisciplinary care teams involving oncologists, pharmacists,
nurses, and 4D printing specialists to facilitate patient-specific treatment planning and
implementation.

Finally, by designing drug delivery systems that release medication over extended
periods, patients may require fewer doses, improving compliance and reducing the risk of
medication errors. The potential for personalized drug delivery through 4D printing brings
undoubtedly with it a host of ethical and regulatory challenges. Addressing these challenges
is crucial to ensuring the safe and responsible use of this technology. First of all, personalized
drug delivery may require the collection and storage of sensitive patient data, such as
medical history and genetic information. For this reason, patients must understand and
consent to the use of their data and the personalized drug delivery approach. On the other
hand, one must implement strict data protection measures, secure storage and encryption,
and ensure compliance with data privacy laws (e.g., the General Data Protection Regulation
(GDPR) or the Healthcare Insurance Portability and Accountability Act (HIPAA)).

6. Conclusions

In conclusion, although several open challenges still must be faced (e.g., development
of accurate mathematical models and deep investigation of biocompatible active materials),
4D (bio)printing is a breakthrough technology that, thanks to the constant progress in
materials science, additive manufacturing, and biology, represents an enabling tool to
address unsolved clinical needs in tissue engineering and medical device manufacturing.
This review highlighted the importance and potentiality of 4D (bio)printing to tailor and
customize the functionalities of a device by combining active materials with appropriate
3D architectures and advanced AM technologies.
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