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Abstract: The article discusses the utilization of Pulsed Multifrequency Excitation and Spectrogram
Eddy Current Testing (PMFES-ECT) in conjunction with the supervised learning method for the
purpose of estimating defect parameters in conductive materials. To obtain estimates for these param-
eters, a three-dimensional finite element method model was developed for the sensor and specimen
containing defects. The outcomes obtained from the simulation were employed as training data for
the k-Nearest Neighbors (k-NN) algorithm. Subsequently, the k-NN algorithm was employed to
determine the defect parameters by leveraging the available measurement outcomes. The evaluation
of classification accuracy for different combinations of predictors derived from measured data is also
presented in this study.

Keywords: multifrequency excitation and spectrogram eddy current testing; nondestructive testing;
k-Nearest Neighbors (k-NN) algorithm; eddy currents; finite element analysis; numerical simulations

1. Introduction

Both nondestructive testing (NDT) and minor-destructive testing (MDT) are diagnos-
tic techniques used to evaluate the properties of materials or structures without causing
substantial harm. NDT techniques do not cause any damage to the material or structure,
whereas MDT techniques cause only minor, easily repairable damage. Visual inspection [1],
ultrasonic testing [2], magnetic particle inspection [3], radiographic testing [4], thermog-
raphy testing [5], and eddy current testing are examples of common NDT techniques.
MDT procedures include, among others, core drilling and flat-jack testing [6]. Several
industries, including construction, manufacturing, aerospace, and medicine, employ NDT
and MDT techniques. They are utilized to inspect materials for flaws, evaluate the integrity
of structures, and track the condition of materials over time.

1.1. Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing

Eddy current (EC) nondestructive testing (NDT) is a widely used technique for eval-
uating the integrity and properties of conductive materials. It is a non-invasive method
that allows for inspecting components without causing any damage. It also allows for
the inspection of elements concealed beneath a protective coating. Eddy current testing
utilizes the principles of electromagnetic induction to detect flaws, measure conductivity,
and assess material characteristics.

Eddy current testing (ETC) has been employed as a nondestructive testing technique
in various industries, including aerospace [7], petrochemical [8], and shipbuilding [9].
The application of this technology encompasses surface inspection [10], quality inspec-
tion [11], and thickness measurements [12], among other functions. The primary benefits
of this method include its capacity for accurate detection, rapid measurement capabilities,
and cost-effectiveness.
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The basic version of the ETC involves the utilization of coils as the excitation compo-
nent through a single-frequency approach, primarily due to its straightforward implemen-
tation [13]. The efficacy of the single-frequency eddy current technique, when employed
in conjunction with phase analysis, is restricted in its ability to detect surface defects in
inhomogeneous ferromagnetic materials. This is because signals resulting from cracks are
distorted by noise generated by the probe’s lift-off or local variations in the specimen’s
permeability [14]. The results of eddy current tests indicate that the phase angles between
impedance planes exhibit frequency-dependent variations, as evidenced by the impedance
plane plots.

An innovative multifrequency approach, Multifrequency Excitation and Spectrogram
Eddy Current Testing (MFES-ECT) was introduced in [15,16]. The system employed a
multitude of testing frequencies (usually above 20) and spectrograms. It has presented
novel possibilities for precisely characterizing the defects in the materials under testing.

The Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing
(PMFES-ECT) technique, an extension of Multifrequency Excitation and Spectrogram
Eddy Current Testing, is introduced as a new approach to nondestructive testing [17,18].
The novel approach employs excitation through periodically repeated pulses at a prede-
termined interval. The pulses comprise multiple waveform periods encompassing the
aggregate of sinusoids possessing a chosen frequency, amplitude, and phase. This ap-
proach maintains the benefits of multifrequency excitation while producing high-energy
pulses akin to those utilized in Pulse Eddy Current Testing (PECT) [19]. This technique
creates suitable conditions for detecting and identifying minor subsurface defects in
conductive materials.

1.2. Machine Learning and Artificial Intelligence in Eddy Current Testing

Recently, significant progress has been made in machine learning, leading to notable
advancements across multiple domains. It has resulted in a resurgence of interest in
the research of artificial intelligence (AI) and machine learning (ML). Deep learning has
garnered considerable interest due to its swift commercialization and achievements in
various domains, such as computer vision, speech recognition, gaming, and machine
translation. These accomplishments present novel opportunities to advance nondestructive
evaluation (NDE) methodologies. The authors of [20] present a comprehensive examination
of the fundamental principles underlying machine learning (ML) and its interrelation with
the field of statistics. This study investigates the historical utilization and methodologies
of machine learning (ML) in nondestructive evaluation (NDE) while acknowledging the
prevailing challenges, such as the limited availability of reliable training data. It explores
current research endeavors in machine learning for nondestructive evaluation (NDE) that
seek to tackle these aforementioned challenges.

The k-Nearest Neighbor (k-NN) [21–24] technique is a widely employed algorithm
in machine learning and pattern recognition domains. It is a nonparametric methodology
that categorizes entities or anticipates results by evaluating their resemblance to adjacent
data points within a feature space. The k-Nearest Neighbor (k-NN) algorithm is a straight-
forward yet efficacious approach that can be utilized for both classification and regression
tasks. The k-NN method has found significant applications in material characterization due
to its simplicity, flexibility, and high accuracy. It has been employed for various purposes,
including defect identification, material classification, and quality assessment.

A novel approach for the automated assessment of defects in a manual eddy current
(EC) inspection procedure is introduced in [25]. Manual scanning is susceptible to scanning
velocity fluctuations and probe placement alterations. In order to tackle this issue, this
study introduces a resilient method for normalizing EC signals by utilizing non-linear
filtration techniques. The feature extraction process uses normalized Fourier and complex
discrete wavelet descriptors. The classification stage utilizes various classifiers, including
the k-Nearest Neighbor classifier. Evaluating the proposed system’s efficacy involves
conducting tests on two types of probes: a single-frequency device equipped with an
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absolute probe and a dual-frequency device specifically designed to test rivets in layered
structures efficiently.

The authors in [26] introduce a new application of k-Nearest Neighbor interpolation
to calibrate corrosion measurements obtained from a Magnetic Flux Leakage intelligent
system using readings from an ultrasonic testing scan device. By applying this interpolation
method, enhanced metrics are derived, which are then utilized in the integrity assessment
report of the pipeline.

According to the research conducted by the authors of [27], a technique has been
proposed to effectively determine the precise crack shape and size in conductive substances.
The methodology entails the utilization of a nondestructive instrument that works on the
principle of eddy currents in conjunction with a postprocessing system based on machine
learning. The research encompasses the phases of design and tuning, subsequently leading
to a comparative performance evaluation between two machine learning methodologies:
artificial neural network (ANN) and support vector machine (SVM).

The task of precisely determining conductive materials’ physical characteristics and
structural attributes using eddy current (EC) measurements presents a significant challenge.
The variables that substantially impact the measurements include conductivity, sample
thickness, and the distance between the sample and the EC sensor (referred to as lift-off).
One potential approach to address this issue involves utilizing machine learning techniques.
It involves training a mathematical model using data containing known responses (i.e., the
parameters of interest) and predictors (i.e., the measured EC signals). Subsequently, this
model can generate forecasts of the response values for a novel collection of measurements.
Research paper [28] presents a novel methodology that utilizes machine learning techniques
to eliminate the necessity of computationally demanding computations and empirical data
to train predictive models.

The work of [29] proposes machine learning techniques for signal inversion from
NDT-EC sensors. This study aims to accurately determine the dimensions and extent of
defects, thereby facilitating the geometric analysis by solving the inverse problem. The
impedance of the sensor-cracked part system, which represents the crack signature, was
established by creating a database using 3D finite element simulations. Experimental
validation was performed to ascertain the constructed database’s precision. The machine
learning algorithms underwent training using the provided database. The findings indicate
that the implemented methodologies can effectively measure and assess the presence
of flaws.

1.3. Novelty and Significance of the Research

The objective of this study was to assess the viability of using numerical simulations in
3D FEM software (COMSOL Multiphysics 6.1) in conjunction with the PMFES-ECT method
to gather simulated data in order to train the k-NN machine learning algorithm for quickly
estimating selected defect parameters (depth and length) in conductive materials.

Both the traditional MFES-ECT and its more recent extension, PMFES-ECT, enable
the acquisition of spectrograms, the interpretation of which is left to the operator in order
to ascertain the defect parameters. Artificial intelligence algorithms can considerably
reduce the duration required for the analysis of measurement data and the assessment of
parameters related to possible defects.

As previously indicated, the utilization of artificial algorithms in Eddy Current Testing
has already demonstrated successful implementation. One methodology involved the
utilization of artificial intelligence algorithms for the purpose of analyzing measurement
data, intending to enhance the accuracy and comprehensiveness of defect detection and
evaluation. In [30], the application of different artificial intelligence (AI) algorithms was
demonstrated for the analysis of eddy current signals. These signals were measured
under diverse experimental conditions and involved various types of discontinuities in
AISI-type 316 stainless steel sheets and plates. In a paper [31], an unbalanced weighted
k-Nearest Neighbor (k-NN) algorithm was employed, which was based on the support
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vector machine (SVM) approach, to enhance the identification of defects in pipelines. This
approach aimed to address challenges such as noise and interference that could hinder
the accuracy of defect detection. In [32], the k-Nearest Neighbors (k-NN) algorithm was
employed to evaluate the extent of the defect by utilizing a specialized arrayed uniform
eddy current probe.

In addition to the purely experimental approach, preliminary tests on the use of
numerical models were also carried out. The alternative methodology involves utilizing
the analytical model of the eddy current sensor to generate data for the purpose of training
the prediction models [27,33]. This approach enables the avoidance of computationally
intensive tasks and eliminates the need for experimental data in the training of prediction
models. Moreover, in [28], the utilization of a 3D finite element simulation for the purpose
of creating a learning database was proposed. The learning database for the multi-layer
perceptron network consisted of the impedance values of the sensor-cracked part system,
which served as the crack signature.

In contrast to the aforementioned prior research, our methodology incorporates the
integration of numerical modeling and artificial intelligence algorithms to assess exper-
imentally acquired signals. In this study, we propose the combination of the Pulsed
Multifrequency Eddy Current Testing technique with the k-Nearest Neighbors (k-NN)
algorithm for the purpose of evaluating the dimensions, specifically the length and depth,
of defects in conducting plates. The acquisition of data regarding learning databases is ex-
clusively reliant upon the utilization of three-dimensional finite element method (3D FEM)
simulations. Initially, a numerical model was formulated to analyze the phenomenon under
investigation. The purpose of the model was to reconstruct the laboratory setup and also to
explore scenarios that were not tested in the experiment (namely the different lengths of the
defects) in order to evaluate the feasibility of applying the approach in a broader context.
The model comprised a replicated sensor described in previous research [15,17], in con-
junction with a simulated sample containing various defects. The modeling of the sensor’s
movement over the defect was carried out as well. The consistency between the simulation
results and the measurement results was additionally confirmed. The simulation data was
subsequently employed solely for the purpose of training the k-NN artificial intelligence
algorithm. Subsequently, the aforementioned algorithm was employed to approximate the
parameters related to defects within the material under study.

The conducted experiments demonstrated that the incorporation of defect and sensor
modeling using the Finite Element Method (FEM), coupled with the utilization of the
PMFES-ECT and k-NN techniques, can yield significant improvements in defect detection
efficiency. The utilization of a numerical model that is simple to modify offers novel oppor-
tunities. It is important to highlight that the presented method enables the identification
and assessment of naturally occurring, irregular defects (such as cracks), which can be
easily simulated numerically. Hence, this methodology exhibits considerable flexibility and
holds major practical significance.

1.4. Organization of the Paper

The article is organized as follows: first, a thorough description of the sample under
examination; second, a description of the Pulsed Multifrequency Excitation and Spectro-
gram ECT Method (PMFES-ECT); third, a thorough description and properties of the used
transducer; fourth, a description of the parameters and characteristics used for defect’s
depth and length estimation; fifth, a description of the used k-NN algorithm with its ap-
plication; and finally, results derived from the measurements and predictions of specific
defect parameters, as well as a comprehensive analysis of the results.

2. Materials and Methods

The object under examination was a plate made of INCONEL600 (Nippon Steel
Corporation, Tokyo, Japan) that had been intentionally flawed using an electric discharge
method. The plate was 1.25 mm thick, 165 mm long, and 165 mm wide. Twelve artificial
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defects were manufactured in the plate. The notches were 5 mm or 7 mm long, 0.25 mm
wide, and depth ranged from 0.125 mm to 1.25 mm. The specimen with the defects (notches)
and a close-up of the single notch with dimensions are shown in Figure 1.
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Figure 1. The view of the specimen with the notches of the length 5 mm and 7 mm (D denotes the
defect depth, L denotes the defect length).

Table 1 contains the properties of the utilized sample made of INCONEL 600.

Table 1. Properties of the INCONEL 600 sample.

Width Length Height Electrical
Conductivity

Relative
Permeability

Magnetic
Properties

165 mm 165 mm 1.25 mm 0.971 MS/m 1.01 Nonmagnetic

The defect depth is measured from the underside of the specimen. Unless the notch
was cut through, measurements were taken from the opposite side of the defect—the top
side of the plate. All parameters of the defects are listed in Table 2.

Table 2. Parameters of the defects manufactured in the INCONEL sample.

Defect Length Defect Width Defect Depths

5 mm
7 mm 0.25 mm

1.25 mm (100%, cut-through),
1.00 mm (80%),
0.75 mm (60%),
0.50 mm (40%),
0.25 mm (20%),
0.125 mm (10%)
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2.1. Pulsed Multifrequency Excitation and Spectrogram ECT Method (PMFES-ECT) and
Information Extraction

The eddy current technique is used in this work to detect and characterize defects.
The magnetic field generated in the excitation coils penetrates the subject material up to a
specific depth depending on the frequency, configuration, and material parameters. Under
the influence of this field, eddy currents are induced in the tested material, and a detectable
secondary magnetic field is produced.

A novel extension of Multifrequency and Spectrogram Eddy Current Testing [9] is
the Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing method.
Excitation in the form of pulses is used in this method. Each pulse consists of several
waveform periods. The waveform is achieved by adding sinusoids with different frequen-
cies, amplitudes, and phases. The period length was selected experimentally to eliminate
the transient state in the response signal and obtain a proper frequency resolution for
subsequent analysis.

Combining numerous sinusoidal waveforms generates an exciting multifrequency
signal. This signal general formula is as follows:

uexct(t) =
n

∑
i=1

aiUi sin(2 π fi + φi) (1)

where Ui is the amplitude of the i-th sinusoid, ai is normalization factor fi is frequency and
φi is the phase angle of i-th sinusoid. The factor φi is calculated using the formula:

φi = π
i2

N
(2)

where N is the total number of sinusoids. Setting the parameter φi reduces the crest factor
of the signal and thus improves the power delivery to excitations coils.

The adjustment/normalization of the excitation signal is performed to ensure a con-
stant amplitude across the entire spectrum of the signal from the pickup coil. If the
amplitudes Ui of the harmonics are the same for all frequencies, then the amplitudes of suc-
cessive harmonics in the measured signal will not be constant. It results from the variable
impedance of coils at different frequencies, signal attenuation, the inductance of connection
cables, and parasitic capacities. To counteract this, we initially measured the response to
the excitation with the same amplitudes of all harmonics Ui and the transducer placed over
a homogeneous part of the material. Then, we calculated the correction coefficients ai for
successive Ui values according to the formula:

ai =
Ure f

Ui measured
(3)

where Uref is the reference value we want to acquire and Ui measured is the current value
of the amplitude of successive components. The Uref value is selected not to exceed the
maximum sensor operating current. The normalization factor (3) is then used to generate a
new final excitation signal.

Such an excitation signal driving the transducer’s excitation coils induces eddy cur-
rents in the tested sample, resulting in the appearance of a detectable secondary magnetic
field. The resulting signal acquired from the pickup coil from the transducer is subjected to
additional processing. First, the FFT decomposition was performed on each measured raw
signal, and successive frequencies’ amplitudes were determined. The differential amplitude
for each frequency and each measurement point is then computed as the difference between
the actual amplitude measured at the measurement position and the amplitude measured
at the uniform, defect-free material location:

∆U f = U f −U0, f (4)
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where U f is the signal amplitude for a given frequency f at a given measurement point
and U0, f is the signal amplitude for a given frequency f at a uniform, defect-free part of the
material. Afterward, the linear trend was eliminated from the data. Finally, a Butterworth
low-pass filter was applied to the achieved differential signals.

The presentation of the signal measured from a pickup coil as a spectrogram [9]
is a crucial aspect of the PMFES-ECT method. The spectrogram is a three-dimensional
representation of the relative amplitude of a signal’s frequency components as a function of
sensor position [9]. Selected parameters of the spectrogram can be calculated and effectively
used to evaluate the parameters of defects.

The following spectrogram parameters are used to estimate defect depth and length:

1. SMAX—a maximum value of the spectrogram,
2. XMAX—a position for which the spectrogram achieves the maximal value,
3. fMAX—a frequency for which the spectrogram achieves the maximal value.

In addition, the following spectrogram-derived features are used:

4. S( f )x=XMAX
—a frequency characteristic at the point x = XMAX, where the spectro-

gram reaches the maximal value,
5. S(x) f= f1, f2,..., f15

—an amplitude characteristic for each frequency versus sensor position,
6. L f= f1, f2, ..., f15—derived from the characteristic S(x) f= f1, f2,..., f15

, the parameter is cal-
culated using Equation (5) for each frequency.

For each successive frequency, the parameter L f= fi
is derived from the curve S(x) f= fi

using the formula:
L f = maxXf −minXf

where Xf =

{
x :

S(x) f
maxS(x) f

> 0.1
}

(5)

An example of the spectrogram is shown in Figure 2, wherein the SMAX has been
marked. The figure shows also the characteristics of S( f )x=XMAX

for the XMAX position
and S(x) f= fMAX

for the frequency fMAX with indication of the L f= fMAX parameter for this
frequency. Consequently, these parameters were utilized to predict the size of the flaw in
terms of its depth and length.

2.2. Detailed Description and Properties of the Transducer

The simplified view of the transducer [15] is provided in Figure 3a.
The pickup coil on the center column of the five-column ferrite core detects the

differential flux produced by two oppositely oriented pairs of excitation coils. Flux created
in the pickup coil by one pair of excitation coils flows in the opposite direction as flux
produced by the other pair. In the case of uniform material, the resulting flux in the pickup
coil is close to zero. A signal occurs on the measuring coil when a flaw in the tested
specimen shows up.

The relative maximum permeability of the ferrite core is µr = 1000. A multifrequency
signal generated by the arbitrary wave generator amplified by a high-frequency power
amplifier drives the exciting coils. Figure 3b show the sensor’s dimensions and Table 3
shows the transducer parameters.

Table 3. Transducer parameters.

Parameter Value

Excitation coils winding turns 25 turns, Φ 0.14 mm
Measurement coil winding turns 100 turns, Φ 0.02 mm

Core relative permeability µR = 1000
Maximum working flux density 200 mT
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Figure 2. The view of the sample spectrogram derived from measurement data, (a) the three-
dimensional representation of the spectrogram, featuring a designated point marked as SMAX ,
(b) an amplitude characteristic S(x) f= fMAX

corresponding to the frequency fMAX with respect to the
position of the sensor with the denoted L f= fMAX value (maximum distance between points that reach
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As shown in Figure 4, the transducer is positioned over the examined material, touch-
ing its surface with a lift-of equal to 0.3 mm. The XY linear positioning system moves the
transducer along the defect in increments of 0.5 mm, ranging from −20 mm to 20 mm from
the defect’s center.

2.3. Measurement System

The measurement system (shown in Figure 5) encompasses an excitation signal gen-
erator (NI PXI 5422, manufactured by NI and based in Austin, TX, USA). This generator
possesses a sample rate of 200 MS/s, an 80 MHz bandwidth, and a 16-bit DA converter. A
power amplifier (HSA 4101, manufactured by NF Corporation and based in Yokohama,
Japan) is also used as the excitation coils’ driver. The power amplifier operates within
a frequency range of direct current (DC) to 10 MHz, with a slew rate of 5000 V/µs, a
maximum current of 1.4 A, and an amplification gain ranging from 1 to 20.
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The pickup coils of the transducer are connected to the analog-to-digital (A/D) capture
device (NI PXI 5922, manufactured by NI in Australia and the United States) via the signal
amplifier (Krohn-Hite model 3988). The highest sampling rate of the A/D converter is
15 MS/s, and its maximum resolution is 24 bits. Lastly, a personal computer (PC) equipped
with dedicated software programmed in the MATLAB environment completes the setup.

The excitation signal generator produces pulsed signals transmitted to the power
amplifier. The power amplifier then supplies these signals to the excitation coils within the
transducer, thereby generating eddy currents within the specimen undergoing testing. The
pickup coil within the transducer measures the resultant magnetic field, comprising contri-
butions from excitation signals and the eddy currents within the material being inspected.
After amplification by the signal amplifier, the A/D converter captures the voltage induced
in the measuring coil and stores it in the computer for further analysis. The transducer is
incrementally moved to the next measurement point using an XY linear positioning system,
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with steps of 0.5 mm as previously mentioned. Ultimately, the PC software (Mathworks
MATLAB R2023a with custom scripts) oversees the entire system’s operation, coordinating
the various components and managing data acquisition and processing.
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2.4. Spectrogram Parameters and Characteristics Used for Defect Depth Estimation

Four parameter groups have been proposed to estimate the depth of a defect. The data
is displayed in Table 4 as follows.

Table 4. The groups of predictors and the corresponding predictor variables utilized in each group
were used to estimate the depth of a defect.

Predictors Group Used Predictors

D-1a fMAX , SMAX
D-1b fMAX , SMAX
D-2 fMAX , log(SMAX)
D-3 α, γ

The D-1a group relies on parameters that are obtained through a direct reading of the
spectrogram ( fMAX—a frequency for which the spectrogram achieves the maximal value,
SMAX—a maximum value of the spectrogram).

The parameters in the D-1b group are achieved from interpolation. The characteristic
S( f )x=XMAX

was first approximated through a third-degree polynomial function, and
subsequently, the parameters fMAX and SMAX were extracted from the resultant curve.

The D-2 group employs identical parameters to those of D-1b, with the exception that
log(SMAX) is utilized in place of SMAX .

The depth estimation technique employed by the D-3 group involves the utiliza-
tion of α and γ parameters. The method of obtaining them involves the approximation
of the characteristic S( f )x=XMAX

through the utilization of the following approximation
function [29]:

S( f ) = α f 2e−
√

f γ (6)

A reference database for each group of predictors was calculated using simulation data
obtained from FEM analysis. The databases in question contained individual records that
included information about the length and depth of the defect, as well as the appropriate
parameters for each respective group. Ultimately, four databases were procured for each of
the groups, and each database consisted of forty-two records, encompassing seven lengths
and six depths per record.
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Similarly, a database containing measurement data for each group was created. Each
database mentioned above comprised twelve distinct records for 5 mm and 7 mm lengths
and six different depths for each length.

2.5. Spectrogram Parameters and Characteristics Used for Defect Length Estimation

Analogous to estimating depth, reference databases were also created to estimate the
length of defects. Four distinct sets of predictors were proposed to estimate the length of
defects. The groups are presented in tabular format (Table 5).

Table 5. The groups of predictors and the corresponding predictor variables utilized in each group
were used to estimate the length of a defect.

Predictors Group Used Predictors

L-1 f , L f
L-2 f , L f , D
L-3 L
L-4 L, D

The L-1 group employs the frequency f parameter and the corresponding parameter
L f for each frequency. Therefore, a single defect generates a number of distinct database
records equal to the number of used frequencies.

Similar to the L-1 group, the L-2 group employs the L f and frequency f parameters
along with the depth of the defect D. The determination of the depth of a defect D involves
an initial estimation of said depth, which is subsequently utilized as a parameter for the
estimation of its length.

As a predictor, the L-3 group employs a vector composed of Lf values for all frequencies

L =
{

L f1 , L f2 , . . . , L f15

}
that correspond to a specific defect.

The L-3 group is expanded by the defect depth parameter D to form the L-4 group.
Two reference databases were subsequently acquired. Each database record for the

L-1 and L-2 groups included the defect length, the defect depth D, the frequency f , and the
L f parameter. There were 630 records altogether in this database.

The length, depth of the defect D, and L f parameters vector L were all included
in the reference database for groups L-3 and L-4. There were 42 records altogether in
this database.

Databases for the measured data were made similarly. This database had 180 records
(two lengths, six depths, and fifteen frequencies) for groups L-1 and L-2. The database
included 12 records for groups L-3 and L-4 (two lengths and six depths).

2.6. The k-Nearest Neighbours Algorithm

The defect parameters (depth, length) were predicted using the k-Nearest Neighbors
algorithm. For every depth predictor group (D-1a, D-1b, D-2 and D-3) and length predictor
group (L-1, L-2, L-3 and L-4) separate tables with chosen predictors were generated. The
z-score (7) was used to normalize each predictor:

z =
x− µ

σ
, (7)

where x—is a raw predictor parameter, µ is the mean of the parameter from the whole table
for the selected predictor, and σ is the standard deviation of the selected predictor.

The choice of a suitable distance metric in the k-Nearest Neighbors (k-NN) algorithm
was impacted by varied predictor variables. The suitability of the scaled Euclidean distance
measure was considered in this context. In addition, identifying the most suitable scale
parameters for each predictor and determining the optimal number of neighbors required
using Bayesian optimization methodologies.
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The training and test datasets were stratified by randomly partitioning the simulation
dataset. These partitions were then employed in k-fold cross-validation to ensure an
unbiased assessment of the classification model. The classification loss function, selected as
the misclassified rate in decimal format, served as a quantitative measure for evaluating
the model’s performance:

loss =
n

∑
k=1

wk I{ŷk 6= yk}, (8)

where ŷk is the class label corresponding to the class with the maximal score, yk is the
observed class label, wk is the normalized weight for observation k and I is an indica-
tor function.

Due to the number of used frequencies, multiple length estimates were derived for
each individual defect in the case of defect length estimations in groups L-1 and L-2.
The ultimate estimated defect length was determined as the most frequently occurring
value among these results. The loss function was computed in a manner suitable for this
particular case.

The classification model for the raw measured data was constructed using the results
obtained from the parameter optimization process, focusing on the scale and number of
neighbors. The classification outcomes for this dataset are presented in Section 5.

2.7. 3D FEM Simulation Model

In order to generate reference data for the k-Nearest Neighbors (k-NN) method, a
simulation was conducted utilizing a three-dimensional model (3D) of the eddy current
sensor and a plate containing defects of varying lengths and depths. This simulation was
performed within the COMSOL Multiphysics 6.1 software (Figure 6a), utilizing the AC/DC
module (particularly the Magnetic Fields—mf and Electrical Circuits—cir submodules). In
each separate simulation, a single defect (with a fixed depth and length) was simulated.
About 70,000 (Figure 6b) mesh elements comprised the 3D model of the sensor with the
tested specimen. The excitation and pickup coils were simulated as boundary conditions
(described as Boundary->Coil in COSMOL) on sections of the sensor. The defect was
simulated as a domain with air parameters (i.e., 1 S/m resistivity).
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The simulations were conducted in the frequency domain for specific frequencies, the
same as the actual measurements. Figure 7 illustrates a close-up of the sensor model and
the test sample.
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Figure 7. The geometry of the eddy current sensor and specimen with the defect, (a) a three-
dimensional view of the configuration, (b) a cut plane through the intersection, and a two-dimensional
view (the flaw is visible on the bottom of the specimen under the sensor).

The plate in the simulation had dimensions of 80 by 25 mm and a thickness of
1.25 mm (equivalent to the actual sample’s thickness). The plate conductivity is set to
1 MS/m, and the relative permeability is set to 1 (Table 6). The conductivity of the ferrite
core is σ = 1 S/m, while the relative magnetic permeability is µr = 1000.

Table 6. Parameters of the sample plate used in FEM analysis.

Width Length Thickness Electrical
Conductivity

Relative
Permeability

Magnetic
Properties

25 mm 80 mm 1.25 mm 1 MS/m 1.00 Nonmagnetic
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Defects ranging in length from 1 to 7 mm with 1 mm increments were simulated. For
each of these lengths, simulations were conducted for various defect depths ranging from
10% to 100%. The information is depicted in Table 7.

Table 7. Parameters of defects in the simulated sample.

Defect Length Defect Width Defect Depths

1 mm
2 mm
3 mm
4 mm
5 mm
6 mm
7 mm

0.25 mm

1.25 mm (100%, cut-through),
1.00 mm (80%),
0.75 mm (60%),
0.50 mm (40%),
0.25 mm (20%),
0.125 mm (10%)

For each defect length and depth, a series of simulations were conducted by moving
the defect relative to the sensor from −25 mm to 0 mm (the midpoint directly below the
sensor) in increments of 1 mm (in the range of −25 mm to −10 mm) and 0.5 mm (in the
remaining range).

A total of 630 simulations were performed (seven lengths, six depths, and fifteen
frequencies). Based on these data, a database containing data for the k-NN algorithm was
created (as explained in Sections 2.4 and 2.5).

A distribution (cross-section view) of eddy currents (for the excitation frequency of
48 kHz) in the tested material without and with a defect (depth of 60%, length of 5 mm) is
shown in Figure 8.
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Figure 8. View of the distribution of eddy currents (excitation frequency 48 kHz) in the cross-section
of the sample in case of (a) no defect, (b) presence of the defect (length 5 mm, depth 60%).

Figure 9 below shows a comparison of the signals obtained from the simulation and
the signals measured for selected frequencies and depths. For the majority of depths, the
simulations accurately reflect the shape of the waveforms. Compared to simulations, real
measurements of the deepest defects exhibit a significant amount of noise and significant
waveform distortions. For a defect depth of 100% (cut-through), however, the measured
signal’s amplitude is more than twice as large as that predicted by the simulation.
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Figure 9. Comparison of measured and simulated signals for selected frequencies and defect depths.
Blue indicates simulation signals, while red indicates measured signals. The columns show frequen-
cies: (a)—48 kHz, (b)—120 kHz, (c)—192 kHz, and the rows show depths: (I)—100%, (II)—60%,
(III)—20%, (IV)—10%.

3. Experimental Results

A trained classification model was employed to predict defect parameters, precisely
the depth and length, in a plate made of INCONEL that included artificially generated
flaws, as outlined in Section 2. The measurement results are categorized according to the
defect’s depth and length.

3.1. Defect’s Depth Assessment Using the k-NN Algorithm

Cluster data plots for different groups of predictors are depicted in Figure 10. It
displays simulation data (used to train the k-NN algorithm) and measurement data plotted
for two defect length types (5 and 7 mm).
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Figure 10. View of depth estimation cluster data plots for various groups of predictors. The color
indicates the defect’s depth, while the circles (O) represent simulation (learning) data, the stars (*)
represent measured data for a 5 mm defect, and the squares (�) represent measured data for a 7 mm
defect. All presented data have been normalized by z-score.

Table 8 compares the loss function values for the cross-validation classification model
(C-V CM) and the prediction classifier losses of defect depth in the tested specimen, catego-
rized by different groups of predictors.

Table 8. Loss function values for the cross-validation classification model (C-V CM) and the prediction
classifier losses of defect depth which are categorized by different groups of predictors.

Predictors Group

D-1a D-1b D-2 D-3

C-V CM Loss 0.26 0.12 0.12 0.07
Classifier Loss 0.17 0.33 0.00 0.17

The confusion matrices for the cross-validated classification model and the trained
k-nearest neighbor classifier model are shown in Figures 11 and 12, respectively.
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Figure 11. Confusion matrices for the cross-validation classification model utilizing simulation data
for different depths and predictor groups.

Table 9 displays the R2 regression coefficient for the fitting of the curve to both simula-
tion (FEM) and measurement (MEAS) data across various depths and groups of predictors.
The predictor values were calculated using the curves per the guidelines outlined in
Section 2.4.

Table 9. The regression coefficient R2 for the fitting of the curve to both simulation (FEM) and
measurement (MEAS) data for various depths and groups of predictors.

Defect’s Depth

Predictors Group

D-1b & D-2 D-3

FEM MEAS FEM MEAS

1.0 0.99 0.99 0.97 0.76
0.8 0.99 0.99 0.96 0.73
0.6 0.99 0.99 0.94 0.80
0.4 0.99 0.99 0.94 0.87
0.2 0.99 0.99 0.94 0.87
0.1 0.99 0.97 0.93 0.72
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3.2. Defect’s Length Assessment Using the k-NN Algorithm

Figure 13 depicts cluster data plots for various groups of length predictors. It displays
simulation data (used to train the k-NN algorithm) and measurement data for two defect
length types (5 and 7 mm) plotted on a graph.

Table 10 compares the loss function values for the cross-validation classification model
(C-V CM) and the prediction classifier loss of defect length in the tested specimen, cat-
egorized by different predictors. The loss function values pertaining to each frequency,
considered a distinct record, have been presented in brackets for the L-1 and L-2 groups.
The mode of the observed frequency values was identified as the ultimate outcome of the
loss function.

Table 10. Loss function values for the cross-validation classification model (C-V CM) and the
prediction classifier losses of defect length which are categorized by different groups of predictors.
For the L-1 and L-2 groups, the values of the loss function pertaining to each frequency (treated as a
distinct record) are shown in brackets.

Predictors Group
L-1 L-2 L-3 L-4

C-V RM Loss 0.00 (0.10) 0.00 (0.05) 0.00 0.00
Classifier Loss 0.33 0.25 0.42 0.42

Figure 14 illustrates the confusion matrices for the cross-validated classification model,
while Figure 15 shows the confusion matrices for the trained k-Nearest Neighbor classi-
fier model.
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Figure 13. View of cluster data plots for length estimation for various groups of predictors. The color
represents the defect’s depth, while the circles (O) are simulation (learning) data. The asterisks (*)
represent data for a 5 mm defect, while the squares (�) represent data for a 7 mm defect. In both
groups L-1 and L-3 (a), the defect depth of 5 (*) and 7 (�) mm was equal to 40%. In the case of groups
L-2 and L-4 (b), the 5 mm (*) defect depth was 40%, whereas the 7 mm (�) defect depth was 60%.
Using z-score, all presented data have been normalized.
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4. Discussion

The examination outcomes were split into two parts: the assessment of the depth and
the assessment of the length of the defects.

Before parameter estimation of the depth of natural defects, the classifier underwent
training through k-fold cross-validation. Table 8 displays the numerical output of the cost
function concerning consecutive sets of predictors. The values of groups D-1b and D-2 were
identical, while group D-3 exhibited a comparatively lower value. Figure 11 shows that even
for the simulation data cross-validation classification model, for the group of predictors
D-1a and D-1b, the correct classification of defect depth poses a significant challenge. The
D-2 group demonstrates a high level of accuracy in predicting the majority of cases while
consistently encountering an estimation challenge at every level of depth. Group D-3 is
facing a minor issue concerning estimating the deepest and cut-through defects.

Following parameter optimization of the simulation-based prediction model, it was
subsequently employed to predict actual defects in the measured sample. According
to Table 8, the D-2 group exhibited the most accurate prediction of the measurement
data, with all defect depths correctly identified. Both Group D-1a and D-3 exhibited
similar levels of accuracy in accurately categorizing defects. The confusion matrices for
the measurement data of each group are presented in Figure 12. As previously indicated,
Group D-2 accurately categorized all levels of imperfections. Despite exhibiting identical
loss function values, Groups D-1a and D-3 demonstrate distinct behaviors. Regarding the
D-1a group, the error is dispersed among the middle-depth values.
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On the other hand, in the D-3 group, the cut-through (100%) defect is inaccurately
identified, with a rate of 100%. According to Table 9, the issue with group D-3 pertains to
the approximation of measurement data to the theoretical curve outlined in Equation (6).
This problem is particularly noticeable for the most extensive defect sizes. Although there
is a high level of recognition, Table 9 indicates that the regression R2 coefficient of the
shallowest defect of 10% is low. This is attributed to the significant waveform distortions
caused by measurement noise.

Subsequently, an estimation was made regarding the extent of the defect’s length.
Analogously to the aforementioned, Table 10 displays the loss function values for the
cross-validation classification model. All predictor groups effectively classified defects
using k-fold cross-validation simulation data, as illustrated in Figure 14a. For groups L-1
and L-2, the predicted length’s ultimate value was ascertained by identifying the most
frequently occurring value within the set of lengths for subsequent frequencies. Specifically,
the length for each component frequency was estimated for a given defect, and the value
was selected from among them. The loss function values related to individual frequencies
are presented in Table 10 within parentheses and are also visually depicted in Figure 14b
(pertaining to the L-1 group) and Figure 14c (pertaining to the L-2 group). The incorporation
of the defect depth predictor, which is acquired through the preceding depth estimation
stage, is observed to result in a noteworthy improvement in the accurate recognition and
classification of length.

Regarding the estimation of length for actual measured data, it was observed that
the predictor groups L-1 and L-2 exhibited the minimum value of the loss function, which
were 0.33 and 0.25, respectively, as presented in Table 10. The confusion matrices for each
case of the predictor group are depicted in Figure 15. Incorporating the depth parameter
enhances the accurate identification of the length, as evidenced by the data presented. Even
though the loss function in the cross-validation classification model yielded a zero value,
groups L-3 and L-4 exhibited comparatively inferior classification outcomes when applied
to actual data (Figure 15).

Notably, the penetration depth of eddy currents is comparatively shallow at higher
frequencies. Shallow- and deep-seated defects exhibit minimal interaction with eddy
currents, resulting in a signal level measured by the sensor that is comparable to the noise
level. Consequently, estimating the length of these frequencies is challenging, and in some
cases, it may not be feasible. This phenomenon requests consideration in future work.

5. Conclusions

This study aimed to apply the k-Nearest Neighbor technique in conjunction with
Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing (PMFES-ECT)
to efficiently estimate defect parameters in materials. A 3D simulation model of the
measuring sensor was generated to classify defects, and simulated defects with varying
parameters, specifically depth and length, were produced. The simulation data was used
to train a classification model capable of identifying defects in the tested specimen. The
prediction models can be trained using the numerical approach without the need for
experimental data.

The findings from the measurements can be summarized as follows. Firstly, favorable
outcomes were obtained when employing parameters from groups D-2 and D-3 for depth
estimation. However, difficulties were encountered in accurately estimating the defect
depth of 100% (cut-through) within group D-3, primarily due to challenges in approxi-
mating the measured data points to the predefined function, as indicated by the low R2

coefficient of determination. Secondly, the length estimation produced the most effective re-
sults for groups L-1 and L-2. Moreover, incorporating prior depth estimation data enhanced
the accuracy of defect length recognition.

It should be noted that the sample size used in this investigation was limited. Therefore,
employing a broader range of defect types in the sample is recommended for future studies.
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Additionally, conducting computational simulations encompassing diverse defect profiles
would be essential to expand the scope of this detection approach.
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