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Abstract: Image analysis is a powerful tool that can be applied in scientific research, industry, and
everyday life, but still, there is more room to use it in materials science. The interdisciplinary
cooperation between materials scientists and computer scientists can unlock the potential of digital
image analysis. Traditional image analysis used in materials science, manual or computer-aided,
permits for the quantitative assessment of the coexisting components at the cross-sections, based on
stereological law. However, currently used cutting-edge tools for computer image analysis can greatly
speed up the process of microstructure analysis, e.g., via simultaneous extraction of quantitative
data of all phases in an SEM image. The dedicated digital image processing software Aphelion was
applied to develop an algorithm for the automated image analysis of multi-phase high-temperature
ceramic material. The algorithm recognizes each phase and simultaneously calculates its quantity.
In this work, we compare the traditional stereology-based methods of image analysis (linear and
planimetry) to the automated method using a developed algorithm. The analysis was performed
on a digital SEM microstructural image of high-temperature ceramic material from the Cu-Al-Fe-O
system, containing four different phase components. The results show the good agreement of data
obtained by classical stereology-based methods and the developed automated method. This presents
an opportunity for the fast extraction of both qualitative and quantitative from the SEM images.

Keywords: ceramic; spinel; copper; SEM/EDS; digital image; computer analysis; stereology

1. Introduction

Image analysis is becoming an increasingly used tool for various scientific research [1–6],
industrial [7,8] and medical [9,10] applications. Often, we are unaware that image analysis
accompanies us in our daily lives. Examples of this are traffic analysis, control of vehicle
speed, and the detection of license plates [11], or pedestrian detection [12], which all point
to smart city development [13]. Other examples of important industrial applications are
monitoring the quality of rotors in wind turbines, which allows for early fault detection [7,8],
and biometric security [14,15]. The development of image recognition algorithms by
automated methods such as in [16] can greatly increase the accuracy of images and obtain
plausible results. In particular, the application of image analysis algorithms allows for
significantly enhanced diagnostic methods in medicine. An example is the application of a
phase retrieval algorithm in an imaging method coupled with computer tomography (CT),
which improved the visibility of weakly absorbing objects, thus permitting a lower radiation
dose without loss of image quality [10]. Another example is using the 2D phase contrast
algorithm, which retrieved better X-ray images with additional information. Moreover,
coupling image detection algorithms with methods using high-energy sources, such as
synchrotron radiation (e.g., SOLARIS [6]), or facilities with a thermal neutron beam (e.g.,
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VIVALDI [17]) have recently allowed profound progress in the diagnostics of tumors in
humans [18] and large-scale research facilities have been utilized as neutron research reactor
facilities with image-plate detectors for crystallography and biology applications [19,20].
This has an extremely positive impact on both medical and industrial imaging. In this way,
image analysis algorithms have been developed to support progress into safer and more
sustainable development of nations.

Image analysis is also a powerful tool in materials science. Many instances of its
successful use have been reported so far. Digital image processing in joining technology
permitted detection of the border between the melting pool of liquid metal and adjacent
non-molten base metal despite their temperature being the same, as they are at the phase
transformation stage [1]. This research afforded the opportunity to develop a smart welding
filter equipped with augmented reality, which displays additional information to the
operator, making the joining process more precise, operator-friendly, and effective.

In materials engineering, microstructure mostly determines materials’ properties.
Modifications on the microstructural scale enable tailoring of the desired properties of
a material. Scanning electron microscopy equipped with energy (SEM/EDS) or electron
microprobe analysis with weave dispersive spectroscopy (EPMA/WDS) are common and
effective tools that permit the extraction of spectroscopic qualitative information [21]. The
obtained microstructural images can be subjected to image analysis to retrieve more data
on materials, such as the quantity of the individual phase components. Traditional methods
based on stereology rules can be applied, but they are time-consuming and less accurate
due to the occurrence of systematic errors. The application of automated, computer-based
methods has been recently developed for different kinds of materials. Binarization was
used to detect the pores in cement pastes with different W/C ratios and their further
geometrical characterization (diameter, roundness) to investigate the formation of capillary
pores [4]. Image recognition and analysis were conducted on Al2O3/WS2 coatings on Al
alloys to determine the volume share of areas of distinguishing filamentous morphology [5].
Kubinova et al. [22] compared several stereological and digital methods for estimating the
surface area and volume of cells on confocal microscopy images and discussed their pros
and cons in the context of the isotropy of the studied material.

Image analysis can be performed on different types of photographs. Different at-
tributes of every individual phase on an image can be used for the development of a robust
algorithm for color, shape, or area. The image analysis covers object detection (qualitative
information) as well as the measurement of the amounts of specific objects (quantitative
information). The human is the “link” in the analysis process and has control over the
program action, so also impacts the accuracy of the results. If input data (an image or a
series of images) are prepared inadequately in the initial stage, the output data will be
erroneous, inaccurate, and overestimated or underestimated.

Comparison of traditional (manual/computer-aided) to automated computer mea-
surements pros and cons can be performed. A computer will not count anything on its own,
while a human must control a machine. Based on knowledge and experience, a human
must precisely determine what shall be counted and assess whether the result is correct. As
measurements are performed after binarization of the original image (Figure 1), preceded
by various operations, a representative and good-quality image is of crucial significance.
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One of the most common problems in image analysis is uneven background, which
derives from the unequal lightening of the objects. This occurs especially in optical mi-
croscopy and may be a serious problem in appropriate object recognition, especially for
low-contrast images. Often, it is not visible to the human eye, which leads to unreliable
quantification and misinterpretation. A new method for shade correction in optical mi-
croscopy images, developed by Gądek et al. [23], was based on the simulation of the image
background in which pixel values represent smooth grey-level changes. In contrast, Biżan-
towicz [24] developed a focus stacking algorithm for SEM images, which eliminates the
adverse features of SEM photos, such as drifts or changes in geometry, and allowed for an
increase in the depth of field (DoF) via digital image correction combined with assembling
a series of photographs into one image.

Currently, in the characterization of ceramic materials, the most common technique
of microstructural analysis is the SEM/EDS technique, which is widely available both at
universities and in numerous R&D departments of industrial companies. The method
requires a small sample of about 1 cm2 area and provides a wide range of enlargements.
However, mostly qualitative information is retrieved from these images, while quantitative
data are determined from manual or computer-aided calculations based on stereology
laws, or, using complementary methods, e.g., refinement of X-ray patterns; these are both,
in fact, laborious and time-consuming. In this work, we compare classical stereology-
based vs. automated computer analysis of grey SEM microstructural images of high-
temperature ceramic material from the Cu-Al-Fe-O system. Starting from showing versatile
transformations, which enable increased image quality, we finally present the algorithm
permitting for retrieving reliable quantitative data on the amounts of the microstructural
phase objects present in the analyzed material. The application of this kind of algorithm
can greatly enhance the extraction of additional data from a single SEM image; thus, it can
make R&D activities more effective and sustainable.

2. Methods and Materials

The material taken for the image analysis was ceramic oxide material, produced
via the arc melting technique [25] that was previously used successfully for the syn-
thesis of numerous high-temperature spinel compounds [26–28] and high-temperature
materials [29,30]. The starting materials were analytical grade powders of Fe2O3, CuO, and
Al2O3 (Sigma Aldrich) mixed in the molar proportions 0.25:0.5:1 and homogenized in a
ball mill. The sample for arc-melting was prepared in the form of a cylindrical-shaped disc
of 20 mm diameter and 10 mm height. The arc-melted material was observed using a scan-
ning electron microscope (Nova NanoSEM200 (FEI)) equipped with an energy-dispersive
spectrometer (EDX). The imaging was performed in back-scattered electron (BSE) mode,
using an accelerating voltage of 18 kV and 2000× magnification.

Most SEM microscopes detect two types of electrons, namely back-scattered electrons
(BSE) and secondary electrons (SE). The former are produced due to elastic scattering of
beam electrons from the atomic nucleus of the sample and are derived from the deeper
parts of materials (100–1000 Å); the latter come from the sample and are produced as
a result of bombarding of the surface atoms (10–300 Å) by beam electrons [21,31]. The
detectors used for BE (passive detectors, scintillation detectors, semiconductor BSE detector)
and SE (Everhart–Thornley detector, through-the-kens electron detectors) were described
in [21]. Detection of the BSE signal produces images, in which contrast depends on relative
differences in atomic numbers, in contrast to secondary electrons detection mode, which
provides information only about the topography of the specimen. In general, the brighter
the microarea, the higher its atomic mass. In contrast, the darker microareas indicate lower
atomic mass, or resin-filled porosity. Thanks to these signals, the determination of phase
composition can be postulated.

The cross-section sample for SEM observation was prepared by a ceramographic
technique. First, the sample was embedded in an ambient cure two-component epoxy resin.
Then, the resin-embedded cross-sectioned sample proceeded with rough grounding and
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fine polishing. The impregnated sample was coated with carbon in a vacuum to enable
the charge transfer of SEM beam electrons at the ceramic, electrically isolated specimen.
Finally, the sample was mounted on the SEM microscope table using carbon tape.

For the quantitative analysis of the image, proper preparation of the sample is cru-
cial [32]. Additionally, the number of images captured should be enough to retrieve the
representative information, and will be greater for higher-magnification photographs.
Based on experience, the approximate number of images that should be taken to obtain
reliable information on a sample is 20–40, which, specifically, depends on the analyzed
sample (larger for anisotropic materials). The average time of such analysis, together with
EDS measurements, is 1–2 h.

Figure 2a presents a greyscale SEM microstructure image of the studied, melted
ceramic material, which is composed of four distinct phases, determined based on the
chemical EDS analysis. The darkest phase, which created a specific pattern, is Al2O3 with
a slight amount of Fe (0.9, point 1). Between alumina grains, three phases of different
intensities of grey are observed. The lightest-color phase is copper oxide, CuOx (point 2).
The rest phases, lighter-grey (point 3) and darker-grey (point 4), are spinel compounds of
different stoichiometry, namely, Cu-rich and Fe-rich spinels, respectively. The EDS spectra
for the discussed points are presented in Figure 2b, and the results are included in Table 1.

Materials 2023, 16, x FOR PEER REVIEW 4 of 26 
 

 

described in [21]. Detection of the BSE signal produces images, in which contrast de-

pends on relative differences in atomic numbers, in contrast to secondary electrons de-

tection mode, which provides information only about the topography of the specimen. In 

general, the brighter the microarea, the higher its atomic mass. In contrast, the darker 

microareas indicate lower atomic mass, or resin-filled porosity. Thanks to these signals, 

the determination of phase composition can be postulated. 

The cross-section sample for SEM observation was prepared by a ceramographic 

technique. First, the sample was embedded in an ambient cure two-component epoxy 

resin. Then, the resin-embedded cross-sectioned sample proceeded with rough ground-

ing and fine polishing. The impregnated sample was coated with carbon in a vacuum to 

enable the charge transfer of SEM beam electrons at the ceramic, electrically isolated 

specimen. Finally, the sample was mounted on the SEM microscope table using carbon 

tape.  

For the quantitative analysis of the image, proper preparation of the sample is cru-

cial [32]. Additionally, the number of images captured should be enough to retrieve the 

representative information, and will be greater for higher-magnification photographs. 

Based on experience, the approximate number of images that should be taken to obtain 

reliable information on a sample is 20–40, which, specifically, depends on the analyzed 

sample (larger for anisotropic materials). The average time of such analysis, together with 

EDS measurements, is 1–2 h.  

Figure 2a presents a greyscale SEM microstructure image of the studied, melted ce-

ramic material, which is composed of four distinct phases, determined based on the 

chemical EDS analysis. The darkest phase, which created a specific pattern, is Al2O3 with 

a slight amount of Fe (0.9, point 1). Between alumina grains, three phases of different in-

tensities of grey are observed. The lightest-color phase is copper oxide, CuOx (point 2). 

The rest phases, lighter-grey (point 3) and darker-grey (point 4), are spinel compounds of 

different stoichiometry, namely, Cu-rich and Fe-rich spinels, respectively. The EDS 

spectra for the discussed points are presented in Figure 2b, and the results are included in 

Table 1. 

 

Materials 2023, 16, x FOR PEER REVIEW 5 of 26 
 

 

  

Figure 2. (a). SEM microstructure image of ceramic high-temperature material together with EDS 

spectra in points 1–4 (b–e). 

Table 1. EDS analysis of microareas of high-temperature ceramic material corresponding to Figure 

2. 

Point Phase 
Chemical Composition, mol. %* 

Cu Fe Al  

1 
Alumina 

Al2O3 
- 0.9 47.0 

2 
Copper oxide 

CuOx 
67.3 1.8 0.6 

3 
Fe-rich spinel 

(Fe,Cu)(Fe,Al,Cu)2O4 
2.6 31.9 13.0 

4 
Cu-rich spinel 

(Cu,Fe)(Cu,Fe,Al)2O4 
30.7 19.4 7.7 

* The rest (to 100%) is oxygen. 

The SEM microphotograph, saved in lossless tiff format, was subjected to image 

analysis by using traditional methods based on stereology as well as an automated 

method based on the developed algorithm. For the traditional methods of linear and 

planimetry, the free and open-code software ImageJ was used [9]. The automatic algo-

rithm for the simultaneous recognition and measurements of phases present in the 

studied sample was developed using Aphelion software ver. 4.4.0. 

3. Traditional Methods of Image Analysis 

Stereology covers the number of methods developed for the description of 3D ob-

jects based on 2D images [33]. The selected methods, especially planimetry owing to its 

usefulness, were included in standards, e.g., American Society for Testing and Materials 

[34] for the estimation of average grain size in all single-phase materials, or International 

Organization for Standardization [35] for the estimation of grain size in Cu and Cu alloys, 

and other applications [36]. Using stereological-based methods, the volumetric propor-

tions between coexisting phases can be determined using only fragmental information 

based on a flat cross-sectioned sample. A reliable analysis requires a random area, using 

material that is located uniformly within the volume of the material and without the 

privileged direction of orientation [37].  

Traditional stereological methods, including planimetry, linear analysis, or point 

counting, are used to obtain quantitative information about the objects distributed in the 

material. Specifically, the global parameters are determined. They describe relations 

between selected features and the entire analyzed space, including the volume share of 

the selected element in the material (VV), the surface area share of cross-sections (AA), and 

Figure 2. (a). SEM microstructure image of ceramic high-temperature material together with EDS
spectra in points 1–4 (b–e).



Materials 2023, 16, 812 5 of 27

Table 1. EDS analysis of microareas of high-temperature ceramic material corresponding to Figure 2.

Point Phase
Chemical Composition, mol. % *

Cu Fe Al

1 Alumina
Al2O3

- 0.9 47.0

2 Copper oxide
CuOx

67.3 1.8 0.6

3 Fe-rich spinel
(Fe,Cu)(Fe,Al,Cu)2O4

2.6 31.9 13.0

4 Cu-rich spinel
(Cu,Fe)(Cu,Fe,Al)2O4

30.7 19.4 7.7

* The rest (to 100%) is oxygen.

The SEM microphotograph, saved in lossless tiff format, was subjected to image
analysis by using traditional methods based on stereology as well as an automated method
based on the developed algorithm. For the traditional methods of linear and planimetry,
the free and open-code software ImageJ was used [9]. The automatic algorithm for the
simultaneous recognition and measurements of phases present in the studied sample was
developed using Aphelion software ver. 4.4.0.

3. Traditional Methods of Image Analysis

Stereology covers the number of methods developed for the description of 3D objects
based on 2D images [33]. The selected methods, especially planimetry owing to its useful-
ness, were included in standards, e.g., American Society for Testing and Materials [34] for
the estimation of average grain size in all single-phase materials, or International Organiza-
tion for Standardization [35] for the estimation of grain size in Cu and Cu alloys, and other
applications [36]. Using stereological-based methods, the volumetric proportions between
coexisting phases can be determined using only fragmental information based on a flat
cross-sectioned sample. A reliable analysis requires a random area, using material that is
located uniformly within the volume of the material and without the privileged direction
of orientation [37].

Traditional stereological methods, including planimetry, linear analysis, or point
counting, are used to obtain quantitative information about the objects distributed in
the material. Specifically, the global parameters are determined. They describe relations
between selected features and the entire analyzed space, including the volume share of
the selected element in the material (VV), the surface area share of cross-sections (AA), and
linear its share (LL). According to the Cavalieri–Hecquert principle, the global parameters
are Equation (1) [33,38].

VV = AA = LL (1)

3.1. Linear Analysis

The linear analysis is based on the secant of known length on the analyzed microstruc-
ture image followed by the determination of the sum of the chords belonging to this secant,
covering the interest phase. The linear share is the ratio of the sum of chords to the length
of the secant. A specific number of secants is applied for the analyzed image in order to
reduce the uncertainty. The quantity information is obtained by dividing the sum of the
chords cutting out the interest phase by the total length of the secant (2).

LL(P) =
∑n

i=1 ∑m
j=1 cij

n·l (2)

where:
c—the length of the chord,
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n—the number of secants,
m—the number of the cut phase in the following i-measurement,
l—the length of the secant.
Based on the Cavalieri–Hecquert principle (1) and the calculated surface area of the

interest phase (P1, P2, P3. or P4), the volume share of the specific phase in the material is
equal to its linear share at the cross-section, namely VV = LL [33,38].

3.2. Planimetry

Planimetry is based on the measurement of the surface area of the interest phase,
via summing the pixels corresponding to this phase, extracted out of the rest phases by
binarization. The quantity information is obtained by dividing the surface of the phase by
the total surface of the image (3).

AA(P) = ∑n
i=1 A(P)
A(A)

(3)

where:
A(P)—the total surface of the phase at the image,
A(A)—the total surface of the analyzed image.
Based on the Cavalieri–Hecquert principle (1) and the calculated surface area of the

interest phase (P1, P2, P3, or P4), the volume share of the specific phase in the material is
equal to its surface share at the cross-section, namely, VV = AA [33,38].

4. Operations in Computer Image Analysis

Different color models, also called color spaces, are commonly used in image analysis.
Using a color space, it is possible to define a specific combination of color models and
their representation functions. The identification of a color space permits the automatic
identification of the associated color models. During image processing, one of the important
steps is the selection of the color model. Several color models were developed, as presented
in Table 2. They can be used independently of the desired results, as shown by Figure 3
(RGB) and Figure 4 (HSI).

Table 2. Selected color models and their designations.

Name Color Space Definitions

RGB Red, Green, and Blue

HSI Hue, Saturation, and Intensity

HSV Hue, Saturation, and Value

YUV Luminance and Chrominance

One method of image processing is converting an original color image into a grey
one (0–255 grayscale [39]; Figure 1, middle), followed by analysis. This simple and quick
transformation can extract information that can be used in the subsequent steps of the
algorithm. However, it simultaneously causes a loss of information in the individual
components. Alternatively, binarization of the color image can be performed for one
individual component of the image, which permits obtaining the binary image directly
from the color image (Figure 1, right).
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If object detection on a grey image is not recommended or if a determination of the
binarization thresholds for a color image is problematic, the RGB image can be split into
components. This transformation produces three multi-shade images, representing the red
(R), green (G), and blue (B) components, respectively (Figure 3a–d). Then, an individual
image can be subjected to further transformations, such as object detection.

In some cases, the RGB model does not permit the detection of objects effectively.
This results from insufficient color differences between the objects and the background,
in terms of the values of the individual color components. Therefore, it may be useful
to perform a color transformation from the RGB model to the HSI model. The result of
this transformation is an image stored in the HSI model, as shown in Figure 4a–d. In this
method, the color image is split into its components and the differences between the images
are analyzed. Even if there is no significant difference in the share of the individual RGB
components, the differences will be visible in the share of the components of saturation,
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intensity, and brightness of colors. The most suitable component can be selected for further
transformation and detection.

Noise is commonly encountered during image acquisition. This can make analysis
difficult or, in some cases, impossible. For this purpose, several filter tools have been
developed to reduce the presence of noise. However, special caution should be taken
during using a filter for noise reduction to avoid the introduction of undesired changes
to the sourced image. Otherwise, this can cause irreversible losses in the information
contained in the image [39]. Filters are mainly used for sharpening, blurring, or edge
detection [40], as presented in Figure 5a–d.
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Figure 5. Comparison of the (a) input image with added noise, and images (b) after sharpening,
(c) after noise removal, (d) with detected edges in the image without noise.

Filters can help significantly in image preparation, e.g., if the image was registered
with a signal. This can be evidenced by comparing the profile of the image with noise
(Figure 6a,b) to the image after noise reduction (Figure 6c,d) using the median filter [39]. The
profile after filtering is significantly smoothed compared to the image with noise. This is an
ideal operation for inhomogeneous noise with varying degrees of grey. Sharpening filters
should be avoided when performing quantitative image analysis as they can introduce
additional noise, despite the improvement in the quality of the image.
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Figure 6. Comparison of the image and noise with its profile (a,b) vs. the image after noise reduction
and its profile (c,d); the yellow line shows the test site for creating the profile.

Morphological operations belong to the most important operations in the analysis
of the digital image, as, combined with other operations, they allow for complex image
transformations to extract desired information. Morphological operations can be described
as filters that are distinguished from classical filters by their selectivity [3,33,39]. In this
case, the specific points are subjected to transformation. A structural element, called a
pattern or a template, plays a role in every morphological operation. The general scheme of
the algorithm for morphological operations can be divided into three stages. First, a center
point to each point in the image is applied. Then, the configuration of points is checked
to confirm that it is identical to one in the pattern. Finally, the operation according to the
given transformation is performed [3]. Four morphological operations are mostly used,
namely erosion, dilation, opening, and closing (Figure 7a–d).

Erosion permits the removal of isolated points, small particles, and narrow spears
from an image, as shown in Figure 7b. In addition, it smooths the edges of objects in an
image and reduces their surface edges. Erosion can also lead to the division of the objects
into several smaller ones, so it can be used to divide connected particles.

Dilation is the inverse transformation to erosion, also called a maximal filter. The
characteristic feature of dilation is that it closes small holes (fills the gaps in objects) [3,33].
As result, the area of each object in the transformed image is greater than in the input image,
as shown in Figure 7c.
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Opening and closing are more complex operations, combining erosion with dilation
(Figure 8a–d). In the opening operation, the erosion is followed by dilation. However, it
uses the same pattern (structural element) and maintains the same operation size in both
steps. First, erosion breaks up the thin lines in the input image that connect objects. Then,
dilation permits the approximate recreation of these connections [3,33]. As a result, the
separation of elements will be obtained in the output image, as shown in Figure 8b. The
characteristic feature of the opening operation is that it removes small elements and details
without changing the size of the main part of the image.

The closing operation is the reverse of the opening one. It includes dilation followed
by erosion. The main role of closing is to fill in the narrow elements in the image, such as
indentations or small details. Similar to opening, closing does not change the size of the
image [33]. The results of the closing operation can be seen in Figure 8c and the comparison
between opening and closing is presented in Figure 8d.
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Binarization is one of the most significant operations in image analysis [3,39,41]. It
facilitates the analysis and conducting of measurements at the images, especially in terms
of percentage quantification of the objects relative to the rest of the image, determination of
the object parameters (areas, perimeters, etc.), and displaying them on screen. Numerous
binarization methods have been developed so far, e.g., applying an upper threshold, a lower
threshold, and two thresholds. Moreover, various automatic binarization methods are used
that determine threshold values based on the analysis of selected image features. The Otsu
or entropy thresholding method is an example of the automatic threshold algorithm, based
on the histogram of grey-level distribution.

As can be seen from Figure 9a–c, every individual method of binarization produces
different results. Otsu binarization (Figure 9b), which is a histogram-based method, trans-
forms a grayscale input image into a binary image by minimizing the weighted sums of
the variances of two classes, namely foreground objects and background [41]. This method
belongs to simplest and most successful; however, it may lose some important details. The
entropy threshold method (Figure 9c) provides a set of regions from the input image, by
applying automatic thresholding based on the entropy computation of the histogram. This
method, due to fixed threshold values, has problems with images of unimodal histograms
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and may lose information for small, low-contrast target objects [41]. In all cases, to acquire
information about the reliability of the selected binarization method as well as to avoid
errors, the object of interest in the binary image (Figure 10b,c) should be compared to the
original, before binarization (Figure 10a).

Materials 2023, 16, x FOR PEER REVIEW 12 of 26 
 

 

[41]. In all cases, to acquire information about the reliability of the selected binarization 

method as well as to avoid errors, the object of interest in the binary image (Figure 10b–

c) should be compared to the original, before binarization (Figure 10a). 

   

Figure 9. Comparison of various binarization methods, (a) using the blue component for RGB, and 

using automatic threshold methods (b) Otsu, (c) entropy. 

   

Figure 10. Comparison of (a) the original microstructural image of ceramic material with the image 

(b) after binarization, (c) comparison of images with marked objects of interest (green) permits for 

the visual assessment of the quality of the binarization. 

Binarization by automatic thresholding has both pros and cons compared with 

manual thresholding. The advantage is that automatic binarization does not require the 

selection of the range of threshold for a particular object, as it occurs automatically, re-

leasing object and background distribution. In the case of entropy automatic binariza-

tion, for each threshold, the t-value (between image-min and image-max) and two 

probability distributions (object and background distribution) are derived from the 

original grey-level distribution image [41]. As result, two entropy values are calculated. 

For a small number of studied objects and a large series of photographs, the use of the 

automated method is an appropriate solution if the same image quality is provided. 

However, when the number of interest phases increases or there are slight differences in 

the quality of the images, it may result in different detection of objects, e.g., for sample 1 

the range needed for detection of a studied phase is 0–100, while for sample 2 it is 0–120 

for the same object. Overall, the choice of binarization method shall be adapted to the 

studied image and object of interest; however, in the former case, the manual (interac-

tive) method will be more appropriate as it permits precise adjusting of the range of 

threshold [39]. Automatic binarization works best for images with that which signifi-

cantly differ in contrast, such as bright objects on dark backgrounds or the opposite [33]. 

Nevertheless, binarization alone is not a sufficient operation before image analysis, and 

in most cases requires additional operations, such as morphological transformations. 

5. Results of the Quantification Analysis of the SEM Image 

5.1. Traditional Stereology-Based Methods 

In this work we used linear and planimetry methods. The measurements were per-

formed on a digital SEM image. The digital image was analyzed using ImageJ software. 

Figure 9. Comparison of various binarization methods, (a) using the blue component for RGB, and
using automatic threshold methods (b) Otsu, (c) entropy.

Materials 2023, 16, x FOR PEER REVIEW 12 of 26 
 

 

[41]. In all cases, to acquire information about the reliability of the selected binarization 

method as well as to avoid errors, the object of interest in the binary image (Figure 10b–

c) should be compared to the original, before binarization (Figure 10a). 

   

Figure 9. Comparison of various binarization methods, (a) using the blue component for RGB, and 

using automatic threshold methods (b) Otsu, (c) entropy. 

   

Figure 10. Comparison of (a) the original microstructural image of ceramic material with the image 

(b) after binarization, (c) comparison of images with marked objects of interest (green) permits for 

the visual assessment of the quality of the binarization. 

Binarization by automatic thresholding has both pros and cons compared with 

manual thresholding. The advantage is that automatic binarization does not require the 

selection of the range of threshold for a particular object, as it occurs automatically, re-

leasing object and background distribution. In the case of entropy automatic binariza-

tion, for each threshold, the t-value (between image-min and image-max) and two 

probability distributions (object and background distribution) are derived from the 

original grey-level distribution image [41]. As result, two entropy values are calculated. 

For a small number of studied objects and a large series of photographs, the use of the 

automated method is an appropriate solution if the same image quality is provided. 

However, when the number of interest phases increases or there are slight differences in 

the quality of the images, it may result in different detection of objects, e.g., for sample 1 

the range needed for detection of a studied phase is 0–100, while for sample 2 it is 0–120 

for the same object. Overall, the choice of binarization method shall be adapted to the 

studied image and object of interest; however, in the former case, the manual (interac-

tive) method will be more appropriate as it permits precise adjusting of the range of 

threshold [39]. Automatic binarization works best for images with that which signifi-

cantly differ in contrast, such as bright objects on dark backgrounds or the opposite [33]. 

Nevertheless, binarization alone is not a sufficient operation before image analysis, and 

in most cases requires additional operations, such as morphological transformations. 

5. Results of the Quantification Analysis of the SEM Image 

5.1. Traditional Stereology-Based Methods 

In this work we used linear and planimetry methods. The measurements were per-

formed on a digital SEM image. The digital image was analyzed using ImageJ software. 

Figure 10. Comparison of (a) the original microstructural image of ceramic material with the image
(b) after binarization, (c) comparison of images with marked objects of interest (green) permits for
the visual assessment of the quality of the binarization.

Binarization by automatic thresholding has both pros and cons compared with manual
thresholding. The advantage is that automatic binarization does not require the selection of
the range of threshold for a particular object, as it occurs automatically, releasing object and
background distribution. In the case of entropy automatic binarization, for each threshold,
the t-value (between image-min and image-max) and two probability distributions (object
and background distribution) are derived from the original grey-level distribution im-
age [41]. As result, two entropy values are calculated. For a small number of studied objects
and a large series of photographs, the use of the automated method is an appropriate
solution if the same image quality is provided. However, when the number of interest
phases increases or there are slight differences in the quality of the images, it may result
in different detection of objects, e.g., for sample 1 the range needed for detection of a
studied phase is 0–100, while for sample 2 it is 0–120 for the same object. Overall, the
choice of binarization method shall be adapted to the studied image and object of interest;
however, in the former case, the manual (interactive) method will be more appropriate as
it permits precise adjusting of the range of threshold [39]. Automatic binarization works
best for images with that which significantly differ in contrast, such as bright objects on
dark backgrounds or the opposite [33]. Nevertheless, binarization alone is not a sufficient
operation before image analysis, and in most cases requires additional operations, such as
morphological transformations.
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5. Results of the Quantification Analysis of the SEM Image
5.1. Traditional Stereology-Based Methods

In this work we used linear and planimetry methods. The measurements were per-
formed on a digital SEM image. The digital image was analyzed using ImageJ software.
Twenty-five lines of the same length were applied in the linear analysis. For planimetry
analyses, before performing the binarization, the image was first filtered using a median
filter, then transformed to an 8-bit image (256 of grey), normalized, and finally transformed
to a 1-bit image using interactive thresholding.

The results of linear analysis on a grey SEM image of the studied material are presented
in Figure 11a,b, while the result of the planimetry is presented in Figure 12a–d. The
quantitative information extracted from both analyses are included in Table 3.
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Figure 12. Window of ImageJ during binarization (by manual thresholding) and planimetry analysis
of phases (a) P1, (b) P2, (c) P3, (d) P4.

Table 3. Results of traditional image analysis corresponding to Figure 2 (linear) and Figure 3 (planimetry).

Phase Name
Phase Amount, %

Linear Planimetry

P1 (darkest) 70.6 71.4

P2 (lightest) 2.7 2.1

P3 (dark grey) 1.9 8.6

P4 (light grey) 24.6 21.6
Estimated error: linear ±2.0, planimetry ±1.0.

As can be seen from Table 3, both methods produced similar results. The greatest
agreement was obtained for the P2 phase, which was CuOx, randomly distributed in the
matrix, at the level of 2.7% and 2.1% for the linear and planimetry methods, respectively.
Additionally, a similarly small difference between results was determined for the P1 phase,
Al2O3, which constituted 70.6% and 71.4% for the linear and planimetry methods, respec-
tively. The light-grey Cu-rich spinel phase P4, which occurred as a continuous phase,
showed a higher discrepancy in both methods, of 24.6% (linear) and 21.6% (planimetry).
The greatest difference was determined for the dark-grey Fe-rich spinel phase P3 of 1.9%
(linear) and 8.6% (planimetry). The difference results from detecting the edges of the Al2O3
grains as the P3 phase, due to the same pixel values.

5.2. Automated Method

Aphelion software was used for the development of the algorithm for automated image
analysis. The user interface of Aphelion during analysis is presented in Figure 13. The
software is equipped with the necessary modules to perform individual operations and
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permits the simultaneous detection and percentage amount measurements of the objects
present in the SEM image. In addition, all the data produced during analysis can be saved
as a macro command in the Visual Basic language.
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Figure 13. User interface of Aphelion during the automated analysis of an SEM image of high-
temperature ceramic material.

The goal of the developed algorithm was to automatically detect the four phases
present in the multiphase material, namely P1, P2, P3, and P4 (previously determined using
SEM/EDS on cross-sections), color every individual phase as separate, and finally, measure
its percentage 2D surface area relative to the total image area. A schematic presentation of
the developed algorithm is depicted in Figure 14.
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Figure 15a–j show the output images from the following steps of the image analysis.
In the first stage, the input image (Figure 15a) is marked with the region of interest (ROI.
Figure 15b) to remove the black bar along the bottom that contains metadata of the SEM
analysis. Only the ROI is taken for the image analysis, which is then subjected to median
filtering to remove minimal noise (Figure 15c). Subsequently, the binary images obtained by
thresholding are generated for every individual object of interest, namely phases marked as
P1, P2, and P3 (threshold selected using a profile; Figure 15d–f). The fourth object—P4—is
determined by first detecting the ROI analyzed area and subsequently applying a log
difference between ROI and the previously detected objects P1, P2, and P3 (Figure 15g).
Additionally, the alternating operations of erosion, areaopen (a built-in function in Aphelion),
erosion, and areaopen were applied, which allowed the removal of the lines of P1 phase
grain boundaries (treated the same as P3) and final detection of the P3 phase. The next step
was the presentation of every detected phase in a separate image (Figure 15h–k). Finally,
all the detected phases were superimposed on the same image, marked in different colors
for better and complete visualization of the results (Figure 15l).
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Figure 15. (a–l) Images presenting the steps of the algorithm for image analysis of high-temperature
ceramic material.

The percentage content of each phase was calculated based on the corresponding
surface area with reference to the total surface area of the analyzed image, according to
Equation (4), and was presented in Table 4.

Vv(P) = A(P)/A(A) (4)

where:
A(P)—the surface area of the analyzed object P1, P2, P3, or P4;
A(A)—the surface area of the total sample.
The window of the software during the image analysis was showed in Figure 16. The

superimposed image with all the detected phases, in magnification 500× was demonstated
in Figure 17. The results of image analysis can be exported to CSV and Excel formats. The
parameters given by the software involve area, volume fraction, Crofton perimeter, etc., are
attached in Table 5, and can be further used for statistical purposes. The Crofton perimeter
is an estimate of object perimeter (more complex than the four-point connections-based
neighbor-analysis <Perimeter> and results in high accuracy. Additionally, it provides a more
accurate estimate of the Euclidean object perimeter and is less sensitive to object orientation
compared to Perimeter [39].

Table 4. Percentage distribution of analyzed phases P1, P2, P3, and P4 in the image, corresponding to
Figure 15l (2000×) and Figure 17 (500×).

Phase Name * Amount of Phase, %

Magnification 2000× 500×
P1 (green) 66.3 ± 0.1 * 69.3 ± 0.1

P2 (orange) 10.7 ± 0.4 2.8 ± 1.3

P3 (blue) 9.9 ± 0.2 1.2 ± 2.1

P4 (red) 13.1 ± 0.2 26.7 ± 0.1
* relative error.
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Table 5. Two-dimensional parameters obtained as a result of the automated image analysis using
Aphelion software.

Parameter Description

Pixel Count Number of pixels making up the object

Height The difference between an object’s highest Y
coordinate and its lowest Y coordinate

Width The difference between an object’s right X
coordinate and its left X coordinate

Centroid
The average position of all pixels in an object

expressed as a pair of x, y coordinates (i.e., the
center of mass of the object)

Major Axis

Angle in radians from the X-axis of the
principal axis of inertia. This object attribute

gives the main orientation of the object to
the X-axis.

BR Fill Ratio

The ratio between the area of an object and the
area of its bounding rectangle. The bounding
rectangle has the same orientation as the X.Y

coordinate system of the image.

Perimeter
An estimate of the object perimeter based on

the number of 4-connected neighboring pixels
along the object boundary

Crofton Perimeter Facility circuit estimate based on a more
complex analysis than 4-connectivity

Compactness An object attribute that is equal to
16.Area/Perimeterˆ2

Bounding Rectangle To Perimeter

The ratio between the perimeter of an object
and the perimeter of its bounding rectangle,

where the latter is oriented along the X, and Y
axis. The perimeter measure used for this ratio

is Perimeter, as described above.

Number of Holes
The number of holes in an object. A hole is one

or more connected background pixels
completely contained within an object.

Area Facility area

Elongation

The absolute value of the difference between
the inertia of the major and minor axes is

divided by the sum of these inertias. The minor
axis is defined as the axis perpendicular to the

major axis.

Circularity
For a given object this attribute is equal to:

4π×Area
Cro f ton Perimeter2

Intercepts Several transitions from background to object
in 0◦, 45◦, 90◦, and 135◦ directions

Equivalent Diameter Specifies the diameter of a circle whose area is
equal to the area of the object

Convexity This attribute is equal to the area of the object
divided by the area of its convex hull
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Table 5. Cont.

Parameter Description

Perimeter Variation

The sum of the changes in direction between
the boundary pixels where a change of 45

degrees equals 1, a change of 90 degrees equals
2, and a change of 135 degrees equals 3

Convex Min Angle
The minimum of the angles formed by adjacent
pairs of line segments comprising a polygonal

object boundary is given in radians

Symmetry Mean Difference
The average of the absolute values of the

difference in length between the centroid and
the two opposite boundary points of the object

Convex Area The convex hull area of the object

Convex Perimeter Circumference of the object’s convex hull using
the Perimeter measure

Holes Area A vector containing the surface area of the
holes in the object

Holes Total Area The total area of facility openings

6. Discussion

In this work, we showed the results of image analysis conducted using two approaches:
traditional stereology-based and automated techniques. Linear analysis and planimetry
were applied as a traditional route, while an algorithm was developed to automatically
process and analyze the SEM image of ceramic multiphase material.

Image analysis is most reliable for the non-porous, homogeneous material. How-
ever, common real materials are inhomogeneous and contain defects such as intergranular
or inside-grain porosity. An example is slag samples from non-ferrous metallurgy pro-
cesses [42]. The traditional stereology-based image analysis for such materials would need
analysis of multiple images and would be extremely time-consuming. Thus, for this kind
of material computer, image analysis utilizing algorithms for the automated detection and
measurements of the material components is most promising and needed.

The results of the SEM image analysis conducted in this work using traditional and
automated methods were found to be in good agreement, as seen in Figure 18. The
dispersion between phase amounts using traditional (linear) and automated methods was
below 1.5% for P1–P3 and 2% for P4 (Table 3 vs. Table 4). The dispersion of results for
phase P3 (dark-grey phase in the matrix) between linear and planimetry methods results
from counting the pixels of P1 phase at grain borders, which were equal as it comes to
their value to pixels for the phase P3 (Figure 19). The analyzed image contained phases
of different mechanical properties, with the most abundant high-hardness Al2O3 phase (9
on the Mohs scale) distributed among softer spinel phases (8 on the Mohs scale) [43] and
tenorite CuO (3.5 on the Mohs scale). This produced blurred grain boundaries of the P1
phase, which appeared brighter and had pixel values the same as the P3 phase, causing the
P1 boundaries to be treated by the algorithm as P3.

The challenge of the algorithm in distinguishing the binary image between the P3
phase and the grain boundaries of the P1 phase (Figure 20a–f) was resolved using the
combined action of morphological operations. The following sequence of morphological
operations was applied to solve the issue, namely erosion, area open, erosion and, again,
area open. This resulted in the correct P3 phase detection. For the detection of only the
Flines representing the P1 grain boundaries, the algorithm used the logical difference
between the original binary image (Figure 20a) with the previously detected P3 phase
(Figure 20e).
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Figure 20. SEM image during automated analysis for P3 phase: (a) after thresholding, (b) after
thresholding followed by morphological transformations (c–f).

The automated computer image analysis enables the simultaneous phase detection of
multiple-phase material on the analyzed digital SEM image, and allows for measurements
of their amounts. The quantity measurements are conducted on the binary images, so
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images are reduced to 1-bit color depth via thresholding. Thus, binarization plays a key
role in image analysis and may be the source of large errors. The results obtained in
this work by the automated method confirm those obtained by linear and planimetry
belonging to the traditional methods. Often, converting an initial color image in the RGB
model into another one, such as HSI, helps to make the algorithm simpler and the results
more satisfactory.

Numerous obstacles may arise during development of the algorithm for automated
image analysis. Frequently, noise causes difficulties in proper object detection since small
elements are treated as searched objects (Figure 4a). Another obstacle is a shadow, defined
as uneven background illumination. A shadow can cause uneven illumination of objects
and is produced during image acquisition, especially in the case of optical microscopy. As a
result, the image is brighter in the middle and darker at the border of the field of view. This
is a common problem in microscopic images and leads to incorrect qualitative descriptions
of the objects being analyzed at a given time. The human eye does not notice subtle and
minimal differences in background brightness. Approximately 40–50 shades of grey are
recognized by the human eye [39,44]. The shading effect leads to difficulties in detecting
objects correctly, especially using algorithms with automatic thresholding [23,45].

Another aspect that can affect automated object detection is the choice of image anal-
ysis method, i.e., algorithms based on human knowledge and experience or based on
machine learning or neural networks. Automated detection is faster and more accurate,
while human-made ones, based on experience in creating image analysis solutions, are
simultaneously more able to detect errors and provide better control over the final re-
sult [46,47]. Nevertheless, the code should be transparent and as simple as possible, built
by applying the best initial knowledge and experience of a human.

Performing reliable image analysis strongly depends on the sample preparation pro-
cedure as well as the conditions of SEM analysis, which both should be repeatable to
obtain sharp boundaries between microstructural objects. Numerous factors impact the
quality of SEM images and the conditions of their repeatability. The depth of field of a scan-
ning electron microscope is dependent on many factors of both physical and microscope
construction nature, including the diffraction of electrons, the diameter of the aperture,
magnification, and the working distance (which impacts spot size and aperture angle).
These wider aspects can be developed in future works.

One of the most important aspects, in terms of the industrial application of automated
image analysis based on dedicated algorithms, is the time required for image analysis. Tradi-
tional techniques for the quantitative determination based on stereological principles (using
parameters VV, AA, LL) are universal and efficient but, simultaneously, time-consuming.
In this work, the time to perform the computer-aided linear analysis together with the
analysis of the results was 170 min, but 60 min for the planimetry (the classical manual
method would take at least 50% longer). In contrast, the total time for the analysis after the
development of the algorithm was less than 5 s. Thus, the application of modern software
for image analysis, such as Aphelion, facilitates the development of dedicated algorithms
for precise, more user-friendly, and faster image analysis.

7. Conclusions

In this work, a digital SEM image of four-phase high-temperature ceramic material
from the Cu-Al-Fe-O system was subjected to image analysis to obtain quantitative data
on the coexisting phases using traditional (linear, planimetry) and automated method.
The results of stereology-based methods and automated methods utilizing the developed
algorithm of image analysis produced comparable results with a maximum 2% dispersion,
requiring 5 s for the automated method compared to 60 min for classical planimetry. This
shows that automated methods of image analysis can be successfully used for precise,
effective, and fast SEM image analysis, and can be widely applied for the characterization
of microstructure and tailoring of the properties of ceramic high-temperature materials and
other similar materials.
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