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Abstract: Atherosclerosis lesions are described as the formation of an occlusive wall-vessel plaque
that can exacerbate infarctions, strokes, and even death. Furthermore, atherosclerosis damages the en-
dothelium integrity, avoiding proper regeneration after stent implantation. Therefore, we investigate
the beneficial effects of TiO2 nanotubes (NTs) in promoting the initial response of detrimental human
atherosclerotic-derived endothelial cells (AThEC). We synthesized and characterized NTs on Ti6Al4V
by anodization. We isolated AThEC and tested the adhesion long-lasting proliferation activity, and
the modulation of focal adhesions conducted on the materials. Moreover, ultrastructural cell-surface
contact at the nanoscale and membrane roughness were evaluated to explain the results. Our findings
depicted improved filopodia and focal adhesions stimulated by the NTs. Similarly, the NTs harbored
long-lasting proliferative metabolism after 5 days, explained by overcoming cell-contact interactions
at the nanoscale. Furthermore, the senescent activity detected in the AThEC could be mitigated by
the modified membrane roughness and cellular stretch orchestrated by the NTs. Importantly, the
NTs stimulate the initial endothelial anchorage and metabolic recovery required to regenerate the
endothelial monolayer. Despite the dysfunctional status of the AThEC, our study brings new evidence
for the potential application of nano-configured biomaterials for innovation in stent technologies.

Keywords: cell topography; cell-nanointeractions; tissue engineering; endothelial mechanosensing;
nanobiotechnology

1. Introduction

Cardiovascular diseases (CVD) are the predominant pathophysiological processes
causing mortality and morbidity, mainly in top-income countries [1–3]. Interestingly,
among CVD, atherosclerosis points is the leading vascular condition characterized by
critical chronic inflammation, lipids accumulation, fibrous elements, calcification, and
plaque formation in the intima of blood vessels [4,5]. Moreover, atherosclerosis lesions alter
and damage the endothelium activity close to the plaque boundaries. Far more critical
is when a rupture of the atherosclerotic plaques takes place, exacerbating myocardial
infarctions, strokes, and in the worst scenario, death. The catheter-based angioplasty
followed by stenting implantation is the gold standard intervention for the revascularization
and treatment of atherosclerotic lesions [6,7]. However, the angioplasty and the stent
colocation process led to significant damage and alterations of the surrounding endothelial
cells [8–10]. In addition, current studies have evidenced a cellular turnover accompanied
by senescent transformed endothelial cells after implant colocation [7,11,12]. Consequently,
the detrimental endothelial integrity conducts dysfunctional adhesion, proliferation, and
monolayer cellular formation [13], prerequisites required to integrate the surface of the
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stent with the endothelial layer. Far more important is the subsequent complex clinical late
thrombosis that can occur due to the lack of endothelialization or growing activity of new
endothelial cells in the inner stent wall [14]. The low recovery of endothelial cells on the
surface of the stent is considered the primary reason for late in-stent thrombosis because
the nude exposed stent surface acts as a nucleation site for developing a thrombus [15].

The surface properties of the stent-designed materials have been demonstrated to play
a pivotal role in the re-growth and subsequent re-endothelialization process after the initial
hours of implant collocation [16–19]. Thus, different surface modification strategies have
been applied in order to improve endothelial cell adhesion and proliferation. Interestingly,
Hu et al. proposed that the vascular endothelial growth factor (VEGF) immobilization
by using a heparin-bind strategy over Ti-based materials can improve the proliferation of
healthy endothelial cells [20]. Even more, Bruni et al. suggested that thermal transforma-
tion and glow-discharge of Ti6Al4V increase the biocompatibility of human umbilical vein
endothelial cells (HUVEC) under standard culture conditions [21]. Furthermore, Treves
et al. investigated the effect of different heat treatments on Ti materials for vascular applica-
tions [22]. Similarly, an advanced electropolymerization coating method for incorporating
dopamine into cardiovascular stents improved the proliferation of primary HUVEC of
newborn healthy umbilical cords [23]. Despite those studies providing evidence of the
innovation in surface strategy design to improve re-endothelialization, the vast majority
of research uses healthy cell cultures instead of injured models. Therefore, atherosclerotic
lesions require closely-related cellular conditions to ascertain the beneficial effect of surface
modification technologies.

It has been reported that the nanostructured counterpart of vascular-based implants
significantly improves the wound-healing behavior of vascular cells. For instance, TiO2
nanofibrous surfaces have been demonstrated to increase the adhesion, proliferation, and
angiogenic behavior of HUVEC more than the non-modified counterpart [24]. Additionally,
Choudhary et al. showed that nanostructured Ti increases the cellular growing density of
commercial rat aortic endothelial cells [25]. Furthermore, a previous work using TiO2 nan-
otubes enhanced the cellular mobility of bovine aortic endothelial cells [26]. In addition, our
group demonstrated that TiO2 nanotubes improve the angiogenic markers expression of
bovine coronary artery endothelial cells [27]. Those works of surface modification highlight
the benefits of nanoconfiguration in tailoring endothelial growth, increasing angiogenic
functionality checkpoints, and forming the strictly demanded endothelial monolayer. How-
ever, it is critical to highlight that many surface modifications for coronary stents apply
HUVEC or healthy models of endothelial cells instead of primary injured site-specific
vascular cells. Far more important, the origin of the endothelial cells can arrange different
morphology, fenestration of cell layer, proliferation, and angiogenic responses to biomateri-
als surfaces [28]. Considering the above-stated information and the urgent need for more
realistic endothelial conditions, we test the re-endothelialization of NTs surfaces using
endothelial cells derived from severe peripheral artery disease.

Here, we report the NTs angiogenic proliferative activity via addressing endothelial
adhesion, formation of focal adhesion points, and cell-surface intimate contact bonding
with the nanostructures. In addition, given the importance of cellular attachment and
structural configuration, we describe the nanoscale cellular membrane roughness regulated
by the nanostructured and control surfaces. The results bring new knowledge in the
biology and understanding of endothelial cells from atherosclerotic disease dictated by
nanostructured surfaces for application in stent technologies.

2. Materials and Methods
2.1. Synthesis of TiO2 Nanotubes

The NT surfaces were synthesized by following our previous method [29,30]. The
medical alloy Ti6Al4V disks (ASTM F-136, Supra Alloys Inc., Camarillo, CA, USA) of 15 mm
diameter and 5 mm thickness were mechanically polished according to the metallographic
procedure ASTM E3-11 using SiC emery paper (100–2000 grit) and 0.5 µm alumina to
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accomplish a mirror finish. Then, the samples were cleaned in an ultrasonic bath (Branson,
MO, USA) with acetone, ethanol, and distilled water for 30 min each. The Ti6Al4V samples
were positioned on a flat 125 mL electrochemical cell and anodized using an electrolyte
solution prepared with Microdacyn 60 (Oculus Technologies, Guadalajara, JAL, Mexico),
10 mg/mL NH4F (Sigma-Aldrich, St. Louis, MI, USA), and 100 mg/L NaCl (Sigma-Aldrich,
St. Louis, MI, USA) at pH 6.8. Then, a 20 V potential was applied for only 5 min using a
DC power supply and a platinum mesh as a counter electrode. The anodized materials
were ultrasonically cleaned for 5 min in distilled water, rinsed with isopropyl alcohol, and
dried in a desiccator for 12 h. The NTs diameter distributions were counted and measured
using the ImageJ software (1.48v, NIH, Bethesda, ML, USA). Flat polished Ti6Al4V samples
without any modification were used as control.

2.2. Surface Characterization

The surface morphology of the anodized Ti6Al4V samples was analyzed by Field
Emission Scanning Electron Microscopy (FE-SEM; Tescan LYRA 3, Brno, Kohoutovice,
Czech Republic) on random fields at 20 kV accelerating voltage. The Ti6Al4V flat materials
were previously analyzed, thus confirming the smooth surface configuration [31]. The
energy dispersive X-ray spectroscopy (EDX; Bruker, XFlash 6I30, Billerica, MA, USA)
coupled to the FE-SEM at 10 kV with a large spot size to adjust a suitable count rate
per second for spectrum collection. The surface topography of the NTs and Ti6Al4V
was characterized using atomic force microscopy (AFM; NX10, Park Systems, Suwon,
Republic of Korea). The AFM was equipped with an anti-acoustic box and an active
vibration isolation table to prevent noises and vibrations that can affect the measurements.
Moreover, the AFM was configured with a PPP-NCHR tip (Park Systems) with force
constant = 42 N/m, resonance frequency = 330 kHz using the non-contact mode. The
sample materials were fixed on a magnetic sampler holder using bi-adhesive carbon
tape. The operation scan rate for all the samples was 0.5 Hz, with a Z-feedback set point
of 3 × 103 and amplitude of 21.376 × 103 nm. The scan surface area was 2.5 µm2. To
provide the surface roughness differences between the NTs and Ti6Al4V, we measured the
average roughness (Ra), the square root mean (Rq) values, as well as the Z-profile graph,
is provided [32]. The wettability of the experimental materials was assessed by the static
water contact angle (WCA) by depositing a 5-µL droplet of deionized water at 20 ± 2 ◦C
and 45% relative humidity. The droplet morphology was imaged using a high-performance
CCD camera of an automatized tensiometer (Theta Attension, Biolin Scientific, Västra
Frölunda, Sweden) equipped with an X-Y syringe. The WCA values were obtained using
the ONE Attension software, which enables a highly precise analysis of the two angles of
the drop. The surface crystalline configuration of the experimental materials was analyzed
by means of X-ray diffraction (XRD) using a Bruker D8 Advanced diffractometer operated
at 30 kV and 30 mA.

2.3. Isolation of Endothelial Cells from a Human Atherosclerotic Vessel

The present study included one patient (Table 1) with severe peripheral artery disease.
Segments of the human femoral artery (2 to 5 cm) were dissected from patients accomplish-
ing the inclusion criteria of being diagnosed with grade IV critical ischemia according to
Fontaine classification [33]. The atherosclerotic segments of the superficial femoral artery
were isolated by supracondylar amputation under regional anesthesia, followed by ligation
and surgical excision. The segments were placed in 1 × phosphate-buffered saline (PBS)
containing 1% penicillin/streptomycin (PS; Gibco-Invitrogen, Waltham, MA, USA) and
immediately prepared for primary culture. The Ethical and Research Committee of the
National Scientific Committee from Instituto Mexicano del Seguro Social approved the
research protocol (Ref. R-2019-785-035; IMSS, Mexico City, Mexico). According to the
Declaration of Helsinki, each participant signed informed consent to donate the explant for
research purposes.
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Table 1. Clinical profile of the patient undergoing supracondylar amputation.

Age, Years 62

Gender Male
Nicotine use (Smoker) -

Comorbidity

Type 2 Diabetes mellitus 10 years of follow up
Hypoglycemic drugs Metformin

Hypertension -
Dyslipidemia -

Cerebrovascular disease 3 years of follow up

Blood analysis

Glucose, mg/dL 89.1
Urea, mg/dL 56.3

Creatinine, mg/dL 1.7
Hemoglobin, g/dL 8.8

The primary culture of atherosclerotic endothelial cells (AThEC) was isolated from the
whole luminal surface of the vessel. The vessel was washed several times with PBS in order to
remove clots and blood and dissected into sections of 0.5 ± 0.1 × 0.2 ± 0.1 × 0.3 ± 0.1 mm.
Then, the vessel fragments were placed in a sterile centrifuge tube containing 0.12%
trypsin/0.02% EDTA in PBS and incubated at 37 ◦C for 90 min. The enzymatic reaction
was stopped using medium 199 (M199; Gibco, Invitrogen, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (FBS; Gibco, Invitrogen). The solution was collected
into a 15 mL centrifuge tube and washed with M199. The cellular suspension was then
centrifuged at 2000 rpm for 10 min; the obtained pellet was resuspended in 5 mL of M199
with 10% FBS and 1% PS to be seeded into a 50 mm tissue culture plate. The cells were
incubated at 37 ◦C, 5% CO2, and 95% air with medium changes every 48 h until reaching
an 80% confluence. For the experimental analyses, the starting passages were from 2–4 to
reduce the adverse effects of cellular senescence due to the origin of the cells.

2.4. Atherosclerotic Endothelial Cell Characterization

The AThEC were seeded at a density of 1 × 104 cells/mL on glass slides pretreated
with 0.1% gelatin solution (Sigma-Aldrich, St. Louis, MI, USA) and cultured for 24 h. The
cells were washed thrice with PBS for 5 min and fixed with 4% paraformaldehyde (PA)
for 30 min at room temperature (RT). Then, the cell substrates were permeabilized using
0.1% Triton X-100 in PBS for 30 min. The samples were washed thrice, incubated for 2 h
at RT in bovine serum albumin (BSA) blocking solution (1% BSA/1 × PBS), and washed
with PBS. The primary antibody for von Willebrand factor (1:500, Novusbio, Englewood,
CO, USA) directly conjugated with DyLight 488 was incubated in blocking solution at 4 ◦C
overnight and washed with PBS. The glass slides were mounted with coverslips containing
fluorescence mounting medium (Fluroshield, Sigma-Aldrich, St. Louis, MI, USA), exam-
ined, and imaged using a green filter of an epifluorescence microscope (BX43, Olympus,
Center Valley, PA, USA) equipped with a dark-field illumination system (Cytoviva® 150
Resolution Imaging System, Auburn, AL, USA) (Figure S1).

2.5. Cell Culture

The primary AThEC were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
Gibco-Invitrogen) supplemented with 10% SBF and 1% PS. The experimental materials
(NTs and Ti6Al4V control alloy) were placed in individual wells of a 12-well polystyrene
tissue culture plate (Corning, Corning, NY, USA) to analyze the proliferation, morphology,
and cell-ultrastructure [27]. The cells were seeded on the specimens at a cell density of
1 × 104 cells/mL and incubated for different culture periods.
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2.6. Cell Viability by MTT

The metabolic activity of the primary atherosclerotic endothelial cells was studied
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after
1, 3, and 5 days of culture. The cells were washed thrice with warm PBS, and 1 mL of
MTT (Sigma-Aldrich, St. Louis, MI, USA) in DMEM (5 mg/mL) was added into each
well and incubated at 37 ◦C in a humidified 5% CO2 incubator for 3 h. The formazan
crystals resulting from the metabolic reaction were dissolved after discarding the medium
containing MTT and transferring the 12-well plate into an orbital shaker at 200 rpm, 37 ◦C
with dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MI, USA) for 20 min. The dissolved
crystals were then deposited into a 96-well polystyrene plate (Sigma-Aldrich, St. Louis, MI,
USA), and the optical density (O.D.) was recorded at 590 nm using a microplate reader
(Thermoskan, Thermo Fisher Scientific, Carlsbad, CA, USA).

2.7. Immunofluorescence Staining

The AThEC phenotype and the formation of focal adhesions were evaluated by means
of F-actin filaments organization and convergence of Vinculin receptors conducted by the
experimental surfaces [27]. The samples were washed three times with PBS and fixed in PA
for 30 min at RT [32]. Next, the cells were washed, permeabilized using 0.1% TritonX-100 in
PBS for 20 min and washed thrice. The samples were then incubated in blocking solution,
washed thrice, and incubated with Alexa Fluor 488 phalloidin 1:100 dilution (Invitrogen,
Carlsbad, CA, USA) in blocking solution for 1 h in order to analyze the F-actin fibers.
For Vinculin localization, the samples were treated for 2 h with the primary antibody to
Vinculin 1:100 dilution (Abcam, Cambridge, MA, USA) in the blocking solution at 4 ◦C.
Then, the samples were washed, and Alexa Fluor 594 labeled anti-mouse 1:1000 dilution
(Invitrogen, Carlsbad, CA, USA) was used as the secondary antibody for 1 h at RT. Next, the
cell nuclei were counterstained using 4′,6′-diamidino-2-phenylindole (DAPI) (Molecular
Probes, Carlsbad, CA, USA) in PBS, incubated for 20 min at RT, and washed three times with
PBS. Finally, the materials were inverted and mounted onto coverslips with Fluroshield,
analyzed, and photographed using a green (F-actin), red (Vinculin), and blue (DAPI) filter
employing a fluorescence microscope (ZOE, Bio-Rad, Irvine, CA, USA) under similar
magnifications. We captured 5–10 micrographs of each sample using the same exposure
time to measure the fluorescence intensity of Vinculin. The average intensity was measured
using ImageJ software from five random cells on each surface.

2.8. Atherosclerotic Endothelial Cells Characterization by FE-SEM

In order to analyze the morphological behavior and the cell-materials surface in-
teractions conducted by the experimental materials, FE-SEM technology was applied as
previously described [32]. The AEC were conditioned after 4 h, and 24 h of culturing
by rinsing thrice with PBS (5 min) and fixed in 2.5% w/v glutaraldehyde (Sigma-Aldrich,
St. Louis, MI, USA) buffered with 0.1 M sodium cacodylate (Sigma-Aldrich, St. Louis, MI,
USA) a 4 ◦C overnight. The samples were then washed three times for 5 min in 0.1 M
sodium cacodylate buffer and postfixed with 2.5% glutaraldehyde for 2 h at RT. Next, the
cells were dehydrated in graded series of ethanol solutions (25%, 50%, 75%, and 100%) for
15 min at each concentration. Finally, the specimens were sputter-coated with gold (10-nm
gold layer) for 8 s and characterized at 5 kV accelerating voltage.

2.9. Endothelial Topography Analysis by AFM

For the analysis of the ultrastructural cell surface topography behavior of AThEC
directed by the experimental materials at 4 h, we applied AFM. The AThEC were pre-
pared following the FE-SEM protocol for morphology characterization without cellular
dehydration and gold layer deposition process. The substrates were placed in an AFM
equipped with the anti-acoustic box and characterized using a PPP-NCHR tip with force
constant = 42 N/m, resonance frequency = 330 kHz using the non-contact mode. The
operation scan rate for all the cellular topographies was 0.2 Hz, and the amplitude of
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18.79 × 103 nm. The scan surface area was 25 µm2. To provide the surface roughness differ-
ences between the NTs and Ti6Al4V cultured cells, we measured the average roughness
(Ra) and the root mean square (Rq) values. The Z-profile graph is provided.

2.10. Statistical Analysis

Three independent experiments were performed, each in triplicate. The numerical
data evaluation was conducted by one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison test when appropriate and two-tailed unpaired Student’s
t-test [34]. A p < 0.05 was considered statistically significant.

3. Results and Discussion

The atherosclerotic lesions dictate extensive endothelial damage triggering a deficient
re-endothelialization, cell adhesion, and proliferation to endovascular prosthetic surfaces,
senescence, and apoptosis [1,7]. Far more concerning is the extensive research applying
healthy endothelial models to test material surfaces (such as Ti6Al4V) without considering
relevant conditions that recapitulate the damage of the site-specific cells. However, recent
studies have suggested that nanostructured Ti6Al4V materials with NTs can improve the
endothelial response compared to non-modified materials [26,27]. Similarly, our group
described the beneficial relevant effects of NTs in promoting bone-growing functionality
under detrimental diabetic conditions [32]. Therefore, considering the above-stated knowl-
edge gaps, the present study reports the improved initial response of AThEC stimulated by
Ti6Al4V anodized with NTs.

Figure 1 shows the surface characterization of the experimental materials, depicting
the formation of self-organized, aligned, and homogenous NTs of 52 ± 6 nm in diameter
(Figure 1a). Furthermore, the inset illustrates the honeycomb ordering of the NTs layer.
Moreover, Figure 1b describes the XRD analysis without evidence of crystallographic
patterns associated with anatase and rutile configurations. Thus, an amorphous surface
layer was obtained [30]. The topography of the control Ti6Al4V presented a flat and
smooth surface characterized by a regular Z-profile mapping closely linear to the baseline
(Figure 1c). Similarly, the Ra (1.038 ± 0.11 nm) and Rq (1.43 ± 0.16 nm) values underline
significantly more reduced roughness than the NTs, which resulted in 9.696 ± 0.41 nm
of Ra and Rq 13.43 ± 1.26 nm, as expected. On the other hand, the nanoconfiguration
exhibits irregular patterns of valleys and peaks with extensive reproducible tube-like
arrangements, supporting the FE-SEM results (Figure 1a). The chemical analysis revealed
an increased oxygen level after the anodization due to the growing thickness in the oxide
layer of the NTs [35]. Importantly, electrochemical anodization generates a controlled
passivation process, resulting in a significant increment of the protecting oxide layer of
metallic materials, such as those of Ti-based alloys [36,37]. On the contrary, EDX detection
limits were not able to sense the low oxygen content of the control (Figure 1d,e). The WCA
reveals important information regarding the biocompatibility and cell adhesion behavior
of a biomaterial surface. Hence, WCA displayed the fabrication of a nanostructured
hydrophilic coating, which could be explained by the removal of organic pollutants during
anodization and the inherent resulting oxygen levels [38].

In order to evaluate the metabolic activity of the AThEC over the experimental materi-
als, we applied the MTT assay (Figure 2). Initially, it was evident that an early double-fold
increase in the proliferation activity of AThEC after 24 h of culture, highlighting a significant
change between the NTs and the control. It is essential to underline that the initial hours
after stent colocation and direct implant contact with the neighboring cells are crucial in
order to conduct cellular adhesion and proliferation [39]. Moreover, previous studies have
advocated that the newly formed cell layer over the engraftment is mandatory to avoid
side effects such as restenosis or early thrombosis [7]. Therefore, we followed up on the
growth behavior of the AThEC for 3 and even 5 days. The results showed that the NTs
sustain significantly higher cellular activity than the control alloy. However, we must focus
on the decreased metabolic action between the NTs in the early and the lasting culture days.
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This interesting phenomenon can be explained by a faster initial endothelial proliferation
rate followed by a subsequent decreased activity [27]. Cell cultures require enough sur-
face area to proliferate rapidly on a material. Nonetheless, when the cellular monolayer
reaches confluence, they enter a stationary phase, thereby downregulating the metabolic
and proliferating activity [40,41]. On the other hand, the control alloy did not promote the
growth of AThEC, suggesting that the damaged cells were not actively stimulated. This
effect indicated that the atherosclerotic cells are exquisitely selective to the surface texturing
conditions, as expected.
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The cytoskeleton organization brings important information regarding the phenotype
configuration stimulated by the physicochemical parameters of stent materials. Therefore,
we characterized the F-actin distribution and formation of stress fibers after 24 h of incu-
bation (Figure 3a). The results showed that the control alloy promoted an initial cellular
extension, a width stretching among the surface, and reduced intracellular stress fibers
accumulation. This effect could be explained due to the reduced surface area-to-volume
ratio and decreased roughness of the flat alloy, as well as the enlarged cellular spreading,
outlining complications for efficient cell migration [42]. However, the cellular morphology
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did not show the classical polygonal-like orientation appreciated for endothelial cells [43],
despite the intercellular connections detected on the control alloy. Meanwhile, the NTs
conducted an irrefutable formation of stress fibers accompanied by extensive intercon-
nections, aligned endothelial orientation, and a rhomboid-like configuration, significantly
contrasting to the control surface. Far more important is the hallmarking endothelial over-
expression of vinculin harbored by the NTs (Figure 3b). Interestingly, the activation of
vinculin, a receptor-dependent protein participating in forming focal adhesions, was far
more disseminated in the membrane boundaries of the AThEC growing on the NTs. Fur-
thermore, the intercellular convergence between vinculin and F-actin fibers was evidently
promoted by the NTs, thus highlighting the formation of focal adhesions. The findings may
be elucidated by the supported cytoplasmic crisscross pattern of stress fibers organization
which are involved in cellular mobility, proliferation, and mitochondrial activity [44]. The
retroactive vinculin converging within those filaments develops consistent focal adhesions
strongly associated with the phosphorylation of the focal adhesion kinase (FAKs) and the
subsequent signaling pathway [45]. Interestingly, our current results align with a previous
work of damaged endothelial cells isolated from human diabetic artery walls cultured over
micro- and nano-patterned polydimethylsiloxane surfaces [46]. The authors discovered that
the metabolic status of the endothelial cells mainly regulated the cytoskeletal arrangement
conducted over different surface topographies, thus suggesting that healthy endothelial
cells behave in a similar topographical manner. Meanwhile, the diabetic cells decreased
the formation of stress fibers and focal adhesions under anisotropic topographies. In this
regard, FAKs are intimately involved in robust cell adherence to materials surfaces, cell
survival, and long-lasting endothelial propagation [45,47], information that supports our
outcomes of metabolic activity (Figure 2). The current trends following our results are
in accordance with the FE-SEM shreds of evidence of the initial AThEC adhesion at 4 h,
as depicted in Figure 4. Thus far, the NTs worked as guiding platforms for the AThEC
anchorage and formation of well-defined cellular bodies (purple square) with long cellular
connections, and the growth of thick, protuberant fibrillary-like filopodia (white triangles).
Nonetheless, the Ti6Al4V control orchestrated a flat and smooth cell layer adhesion show-
ing the extension and displacement of thin translucent filopodia. Therefore, the control
material could not influence the progressive cell adhesion required for the initial stent
re-endothelialization, as counter-evidenced by the NTs.
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Figure 2. MTT assay of the AThEC proliferation on the Ti6Al4V and NTs surfaces after 1, 3, and 5 days
of culture. The @ represents significant differences between the materials after 1 day of incubation.
The * shows significant changes among NTs of 1 day and the proliferation analyses at 3 and 5 days of
growth. The ** and *** indicate increased proliferation rate over the NTs surfaces.
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Figure 3. Immunofluorescence of vinculin (red) and F-actin patterning (green) stimulated by the
surfaces at 24 h of culture: (a) AThEC showing the vinculin expression among the cells, the en-
dothelial phenotypic orientation, and the formation of cytoskeleton stress fibers conducted by the
materials. The dotted squares illustrate a high zoom highlighting the formation of focal adhesion
zones; (b) Graph of vinculin fluorescence expression, dots represents the individual values. The @
indicates significant differences.

Figure 5 shows that after 24 h, the flat control material deprived the endothelial
extension characterized by a poor-spread morphology, deficient cell–cell interconnections,
and a flat translucent cell-body structure. Moreover, we detected smooth and disrupted cell
filopodia, suggesting that the diseased cells cannot sustain a continued cellular bonding to
the control. On the other hand, the NTs displayed outstanding development of a higher
number of thicker filopodia microspikes anchoring to the surface and performing cell–cell
continuous web interconnections. Furthermore, the AThEC showed an evident growth
of cellular bodies with underlining edges, spreading over the nano-surface conducting
to the formation of a monolayer, which is a mandatory prerequisite for the regeneration
of new and functional endothelial cells [48]. Far more interesting are the high-zoom
micrographs that evidenced widespread lamellipodia guided by the NTs (Figure 5). Given
these significant results, we performed high magnifications in order to elucidate the cell–
nanostructure surface interactions modulated at the nanoscale level (Figure 6). Interestingly,
the NTs stimulated a striking secretion and deposition of extracellular matrix (ECM) at the
boundaries of the AThEC and the NTs (white arrow in Figure 6b). The ECM extensively
coated the NTs, which was more evident at higher amplifications. This interesting condition
can be explained by a triggered cellular adaptation carried out by the NTs after establishing
good cell adhesion and an adequate microenvironment [32]. Likewise, we can identify that
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the AThEC developed strikingly thick binding filopodia that are directly interconnecting
with ECM coating and the NTs at the nanoscale level (Figure 6d,e). In this regard, in
the inset is evidenced a fusion between the filopodia-ECM-NTs system (yellow arrows in
Figure 6d). Our findings suggest that the damaged and senescent AThECs are integrating
and forming a synthetic “vascular coat” that could be indicative of endothelial functionality.
These interactions can be orchestrated thanks to the much surface area-to-volume ratio
provided by the NTs. Therefore, we hypothesize that the extensive interplay between
the pores structures, the stable deposition of ECM-associated proteins [26], the formation
of focal adhesions, and the intra- and extracellular transport of nutrients and signaling
molecules [49] facilitated by the NTs, can explain the improved AThEC response. However,
more experiments are required to measure those differences.
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show the formation of thin filopodia.
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Figure 5. FE-SEM evaluation of the AThEC after 24 h of culture. The yellow dotted squares show the
high zoom of the cell bodies. The green dotted squares illustrate the filopodia and contact adhesion
zones of the AThEC to the surfaces.

Endothelial cell migration is critical during angiogenesis, vascular remodeling, bypass
procedures, and, more importantly, for re-endothelialization after angioplasty and stent
colocation [50]. Moreover, endothelial migration includes protrusions of the leading edges,
contractility of the cells, reorganization of the cytoskeleton, and establishment of focal
adhesions [51], as observed here. Furthermore, several studies described that the cell
surface roughness and height, the topographical extension of the adhered and migrating
cells, control the mechanomodulation collectively with the surfaces of the materials [52,53].
Therefore, we performed an ultrastructural analysis of the damaged AThEC growing on
the experimental materials, employing AFM in order to elucidate the nanostructural cell
topography (Figure 7). Interestingly, Figure 7a illustrates the 2D and 3D cell orientation
showing the formation of an extended cell body and an irregular membrane topography
conducted by the NTs. On the other hand, the Ti6Al4V depicted the growth of a thinner and
flat cellular body, illustrating more delicate and shorter filopodia, as previously detected
(Figure 5). To analyze the cell surface roughness stimulated by the materials, we measure
the Ra and Rq values corresponding to the cell body topography. The NTs significantly
reduced the arithmetic and mean square root roughness cellular membrane compared
with the Ti6Al4V (Figure 7b,c). Furthermore, the roughness differences were accompanied
by extensive variations in the cell height and the valley-to-peak curves. Further high-
lighting constant and more regular topography extended by the nanostructured coating
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(Figure 7d). These results suggest the formation of a widespread monolayer. Our current
results are in line with a recent work proposing that increased cellular senescent can be pro-
portional to the membrane roughness and cellular height [54]. The authors suggested that
microvascular endothelial cells exposed to the neurotoxic amyloid β (Aβ1-42) oligomers
induce a senescence phenotype accompanied by altered cell membrane roughness and
height [54]. Similarly, it was concluded that the nanostructured surfaces improved mem-
brane roughness and height orientation can guide higher cellular locomotions and recovery
from senescent cellular activity [55]. Interestingly, the stimulation of focal adhesion has
been closely related to a higher adhesion force, nanomechanical modulation, improved
roughness, and stiffness behavior [56], as evidenced by our AFM and fluorescence analysis
(see Figures 3 and 7). Nonetheless, more work on cellular nanomechanics is required to
elucidate the underlying mechanisms.
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ing on the experimental materials, employing AFM in order to elucidate the nanostruc-
tural cell topography (Figure 7). Interestingly, Figure 7a illustrates the 2D and 3D cell ori-
entation showing the formation of an extended cell body and an irregular membrane to-
pography conducted by the NTs. On the other hand, the Ti6Al4V depicted the growth of 
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Figure 6. AThEC morphology and nanoscale cell-NTs contact interactions after 24 h of culture:
(a) AThEC polygonal morphology conducted by the nanostructured surface; (b) Well-defined cell
body formation illustrating the development of anchoring filopodia (yellow arrows) and ECM se-
cretion (white arrows); (c) High zoom promoting the ECM and filopodia contacts with the NTs;
(d) Filopodia’s intimate contact with the ECM and the NTs; (e) Nanoscale contact interface highlight-
ing the filopodia intimate insertion with the NTs (yellow arrows). The purple-dotted squares show
the filopodia elongation and thickness modulated at the nanoscale interface. The different dotted
squares represents the magnification sequence. The yellow dotted line highlights the filopodia-surface
nanoscale interface.
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Figure 7. Cell topography analysis of the AThEC cultured on the experimental materials after 24 h:
(a) 2D and 3D AFM micrographs of the ECS on Ti6Al4V and NTs; (b) Ra of the AEC; (c) Rq of the
AEC; (d) Graph of the Z-profile showing the topographic map of the cells conducted by the surfaces.
The * shows significant differences.

The formation of atherosclerotic plaque severely alters the biochemical and physio-
logical function of the endothelial cells [4,7]. In our present work, we isolated damaged
AThEC from the most severe peripheral artery disease, which showed outcomes of cellular
senescence, reduced proliferative activity, and a limited number of cell passages. There-
fore, it was difficult to obtain a viable culture that allowed the preliminary evaluation
presented herein. Previous works have suggested that the endothelial cells from direct
atherosclerotic lesions can derive into senescent and damaged endothelial cultures [57,58].
For instance, Cho et al. suggested that the endothelial layer of the atherosclerotic sec-
tions of human carotids upregulated the CD9 tetraspanin protein, which is intimately
involved in senescent control and plaque development [59]. Moreover, it was reported
in an in vitro study that vascular endothelial cells from atherosclerotic lesions exhibited
high levels of senescence-associated β-gal activity and telomere shortening [60]. These
studies of damaged cellular response are in line with the detrimental metabolic activity
and deficient proliferation detected in our isolated AThEC. Similarly, it was reported that
endothelial cells isolated from human diabetic arteries are generally less responsive and
exhibited decreased endothelial functionality, rather than the healthy cells cultured under
identical surface and microenvironment conditions [46]. Despite the deteriorated status
of the primary AThEC, we can highlight that the NTs tailored focal adhesions, intimate
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surface bond-contact interactions, and beneficial mechanosensing performance. However,
we recommend further studies regarding angiogenic activity, AThEC derived from more
patients and different NTs diameters in order to extend the contributions of these findings.

4. Conclusions

Here, we present the initial response of damaged and senescent human-derived
AThEC conducted by NTs and the non-modified surface. Our work highlights that the
nanostructured surfaces improve the initial adhesion, the formation of cytoskeleton stress
fibers, and improved focal adhesion in the damaged cells. Moreover, the results of MTT
indicated that the NTs could promote a faster proliferation of the AThEC and a long-lasting
metabolic activity after 5 days of being cultivated. Furthermore, the NTs guided intimal
cell-surface contact interactions tailoring an extensive ECM deposition as observed by
the high-resolution FE-SEM analyses. These beneficial results are partly explained by the
promoted focal adhesions and guided filopodia anchorage by the NTs. Importantly, the
subsequent cell-surface roughness and the cellular stretching behavior harbored by the
nanoconfigured materials can explain part of the mechanosensing stimulation harbored
by the NTs. Despite the senescent and dysfunctional status of the AThEC, the NTs could
mitigate those adverse conditions for potential applications for stent surface technologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16020794/s1, Figure S1: Immunofluorescence micrograph of
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