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Abstract: In this paper, two kinds of Be/2024Al composites were prepared by the pressure infiltration
method using two different beryllium powders as reinforcements and 2024Al as a matrix. The effect
of interfacial strength on the mechanical behavior of Be/2024Al composites was studied. Firstly, the
microstructure and mechanical properties of the two composites were characterized, and then the
finite element analysis (FEA) simulation was used to further illustrate the influence of interfacial
strength on the mechanical properties of the two Be/2024Al composites. The mechanical tensile test
results show that the tensile strength and elongation of the beryllium/2024Al composite prepared by
the blocky impact grinding beryllium powder (blocky-Be/2024Al composite) are 405 MPa and 1.58%,
respectively, which is superior to that of the beryllium/2024Al composite prepared by the spherical
atomization beryllium powder (spherical-Be/2024Al composite), as its strength and elongation are
331 MPa and 0.38%, respectively. Meanwhile, the fracture of the former shows brittle fracture of
beryllium particles and ductile fracture of aluminum, while the latter shows interface debonding.
Further FEA simulation illustrates that the interfacial strength of the blocky-Be/2024Al composite is
600 MPa, which is higher than that of the spherical-Be/2024Al composite (330 MPa). Therefore, it can
be concluded that the better mechanical properties of the blocky-Be/2024Al composite contribute to
its stronger beryllium/aluminum interfacial strength, and the better interfacial strength might be
due to the rough surface and microcrack morphology of blocky beryllium particles. These research
results provide effective experimental and simulation support for the selection of beryllium powder
and the design and preparation of high-performance beryllium/aluminum composites.

Keywords: Be/2024Al composites; pressure infiltration; interface strength; finite element analysis (FEA)

1. Introduction

Beryllium/aluminum composites, also known as Be–Al alloy, are actually aluminum
matrix composites with beryllium phase as the reinforcement phase. Due to its excellent
properties such as low density, high specific stiffness, specific strength, high thermal con-
ductivity, low expansion, long range dimensional stability, and so on, beryllium/aluminum
composites are very competitive in aerospace, national defense equipment, and other fields.
At present, they are mainly used in optoelectronic systems, satellite structural components,
thermal control systems, inertial navigation systems, and other fields [1–3].

The interfacial strength is one of the key factors affecting the properties of metal matrix
composites. For beryllium/aluminum composites, it can be seen from the beryllium alu-
minum phase diagram [4] (Figure 1) that the solid solubility between the beryllium phase
and the aluminum phase is very low, no intermediate phase or compound is formed, and
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the wettability between the beryllium phase and the aluminum phase is poor [5]. Therefore,
it is difficult to form a strong interfacial bond between beryllium and aluminum without
the influence of external factors, and it is hard to obtain beryllium/aluminum composites
with high strength and plasticity. In general, interfacial bonding can be improved by means
of surface treatment of reinforcements, addition of alloying elements (metal-based alloying),
selection of preparation methods, and parameter control to increase the interfacial strength
of composites [6–9]. According to different preparation methods, beryllium powder can
be divided into disc-grinding powder, ball-grinding powder, impact-grinding powder,
and gas atomization powder, etc. The characteristics of beryllium powder prepared by
different preparation methods vary. The speed of ball milling and disc milling is slow, slips
and fractures first occur on the {0002} basal plane of hexagonal beryllium crystal, which
makes the particles mostly flake. The impact grinding process uses high-speed airflow
to carry beryllium debris to impact on a beryllium target. The fracture of beryllium can
also occur on other crystal planes other than the base plane, so that the particles are blocky,
which can reduce the preferred orientation of beryllium products. Compared with the
mechanical grinding method, the powders produced by the atomization method are typical
spherical particles with high production efficiency, low cost, better fluidity, and higher
filling density. [10,11]. The properties of beryllium or beryllium aluminum materials pre-
pared by beryllium powder with dissimilar morphologies produced by various processes
are different. Surface impurities can be removed by pickling beryllium powder and a
relatively rough surface can be obtained at the same time to improve interface bonding
strength [12]. However, surface treatment of beryllium powder is risky due to its toxicity.
Adding alloying elements to the aluminum matrix is an effective way to obtain a uniform
and refined microstructure, while helping to improve the interfacial strength between
beryllium and aluminum, such as adding Mg, Si, Ag, Ge, Ni, Sc, Zr, etc. [13–16] At the
same time, our previous work shows that in addition to powder metallurgy, precision
casting, laser melting, and other preparation methods [17–20], the self-exhaust pressure
infiltration technique has been successfully verified as an effective method to prepare high-
strength Be/Al composites with good interfacial bonding [21]. Therefore, we selected two
kinds of beryllium powders with different morphologies produced by different processes
as reinforcements to prepare qualified beryllium/aluminum composites by the pressure
infiltration method.
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The specific interfacial strength of beryllium/aluminum composites is often difficult
to obtain directly through experiments, while the FEA simulation can fit the interfacial
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strength value of the composites, and predict the toughness of the composite and analyze
its fracture and damage mechanism on the basis of considering the microstructure of each
phase of the composites [22–25]. Currently, 2D/3D modeling algorithms (3D reconstruction
method [26], stochastic sequential adsorption algorithm [27], perturbation algorithm [28],
Voronoi graph-based algorithm [29], etc.) and mechanical properties of particle-reinforced
composites have been extensively studied in FEA simulation. Taking into account the
complexity of establishing a 3D high-volume mechanical model and the computational
efficiency, we used a 2D finite element model and an algorithm based on Voronoi diagrams
to establish a multi-particle model close to the actual morphology and content of beryllium
particles in order to estimate the interfacial strength of beryllium/aluminum composite to
explain its fracture behavior.

Herein, blocky-Be/2024Al composite and spherical-Be/2024Al composite were pre-
pared by pressure infiltration method using two kinds of beryllium powders with different
morphologies: blocky impact grinding beryllium powder and spherical atomized beryl-
lium powder. The microstructure and mechanical tensile properties of the two composites
were characterized. The interfacial strength of Be/2024Al composites was simulated by
FEA simulation for the first time, and the effect of beryllium powder morphology on the
interfacial strength and mechanical behavior of Be/2024Al composites was studied.

2. Materials and Methods
2.1. Materials and Fabrication Process

The blocky impact grinding beryllium powder and spherical atomized beryllium
powder were used as the reinforcement, and the 2024 aluminum alloy was used as the
matrix to prepare two kinds of Be/2024Al composites. The chemical composition of the
raw materials is shown in Table 1. Figure 2 shows the morphologies and particle size
distributions of the two kinds of beryllium powders. The beryllium powder prepared
by impact grinding is blocky, there are triangular prism-like and round shape particles
among the powders (Figure 2a), microcracks are observed on the surface of beryllium
particles (marked with yellow arrows in Figure 2b), and the average particle size is about
27.9 µm (Figure 2c); the beryllium powder prepared by atomization has a regular spherical
shape and a smooth surface (Figure 2d,e) with an average particle size of about 17.2 µm
(Figure 2f). Figure 3 shows the XRD patterns of the two beryllium powders, neither of
which has obvious impurity phase.

Table 1. Composition of raw materials (wt.%).

Materials Cu Mg Mn Fe Si Zn Cr Ni Ti Al Be

Blocky Be 0.005 <0.003 0.023 0.199 0.015 <0.003 0.032 0.007 – 0.023 Bal.
Spherical Be 0.003 0.034 0.044 0.292 0.044 – – 0.038 – 1.100 Bal.

2024Al 4.89 1.57 0.64 0.15 0.20 0.19 0.01 – 0.04 Bal. –

The fabrication process of the composites was the same as that of the Be/Al composites
reported previously by self-exhaust pressure infiltration [21]. The beryllium powder was
loaded into a steel mold in a vacuum glove box, and then pressed to a specified volume
fraction to make a preform. The height of the preform was firstly calculated according to
the preset volume fraction, and then the volume fraction of the preform was controlled by
real-time observation of preform height and applied pressure. For blocky impact grinding
beryllium powder, a preloading pressure of 5 MPa was applied to obtain a preform with
a volume fraction of 53%. For the spherical atomized beryllium powder, due to the good
fluidity of the spherical particles and the volume mismatch of the large and small particles,
the preform was vibrated to a volume fraction of 63% without applying preloading pressure.
The preform was placed in an argon-protected heating furnace at 10 ◦C/min to 600 ◦C
for 1 h, while the 2024 aluminum alloy ingot was melted at 760 ◦C. Then the liquid
aluminum was poured into the preform mold, and kept under the pressure of 10 MPa
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for 5 min to ensure the aluminum liquid fully infiltrated. Then the as-cast Be/2024Al
composite was obtained by cooling and demolding. Before mechanical testing, all samples
were subjected to T6 treatment (495 ◦C/1.5 h solution vacuum quencher, quenched in oil,
175 ◦C/10 h aging).
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2.2. Characterization

The chemical composition of beryllium powder and 2024 aluminum alloy was ob-
tained by ICP–AES (710-ES, Varian, Palo Alto, CA, USA) test. The morphology of beryllium
powder, microstructure, and fracture characterization of the composites were performed
on SEM (Quanta 200FEG, FEI, Hillsboro, MO, USA). Image J (V 1.8.0.112) software was
used to calculate the particle size and distribution of Be particles based on SEM images.
Before microstructure observation, the samples were successively ground with SiC sand-
paper, coarsely polished with 0.25 µm diamond solution, and finely polished with sat-
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urated 0.02 µm SiO2 solution. The interface microstructure observation of Be/2024Al
composites was performed on HRTEM (Talos F200X, FEI, Hillsboro, MO, USA) equipped
with EDS. XRD test was used to characterize the phase composition of beryllium pow-
der and composites. The XRD test was performed on Rigaku D/max-rB diffractometer
(Rigaku, Tokyo, Japan) with the scanning range between 20◦ and 90◦ at the scanning speed
of 2◦/min. The tensile test was carried out on the Instron 5569 universal electrical testing
machine. The test samples were dumbbell-shaped samples with gauge length of 15 mm
and thickness of 2 mm, and the test speed was 0.5 mm/min. The Brinell hardness test
was carried out on the Brinell hardness tester (LHBS-3000MD, YunCe, Kunshan, China).
The sample size was 4 × 4 × 2 mm, the holding time was 30 s under the test force of
62.5 kgf. To improve the significance of the data, all mechanical tests were measured at
least five samples.

2.3. Finite Element Model

The 2D representative volume elements (100 µm × 100 µm) were used to represent
the microstructure of the composites (Figure 4). A multi-particle model with a particle
volume fraction of 53%, which was close to the actual microstructure of blocky-Be/2024Al
composite, was established by an algorithm based on Voronoi diagrams. The model of
spherical-Be/2024Al composite was drawn manually according to the actual microstructure,
and the particle volume fraction was 63%. As for the finite element discretization, the matrix
and beryllium particles were meshed by using the linear two-dimensional element CPE3
in ABAQUS. A 1 µm fine mesh discrete geometric model was used. Moreover, cohesive
element (COH2D4) was inserted into the interface to explain the interface behavior between
matrix and particles. These RVE models were generated in the XYZ Cartesian coordinate
system. No periodic boundary conditions were applied. The fixed region X = 0 was fixed
in 6 degrees of freedom, and the motion region X = L constrained by the reference point
“RF” could only move along the loading X-direction on the UX degree of freedom. A
displacement loading of U = 0.05 L was applied on the “RF” (Figure 4c).
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The Johnson–Cook constitutive model was used to describe the plastic deformation of
the matrix [30]

σ = A + Bεn (1)

where σ represents the effective strain, ε represents the plastic strain, and A, B, and n
represent the yield strength, strain hardening parameter, and hardening exponent of the
matrix, respectively. Johnson–Cook damage model was also used to describe the fracture
behavior of the matrix [31]

D =
∫ 1

ε f
d

.
ε (2)
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when the damage variable D reaches 1, the fracture occurs; d
.
ε represents the equivalent

plastic strain increment; ε f represents the equivalent strain at fracture, its expression is
as follows:

ε f = D1 + D2 exp(D3σ∗) (3)

where Di(i = 1, 2, 3) are parameters determined by material properties, σ∗ represents the
stress triaxiality. In order to define the deformation and fracture behavior of the matrix,
a host of tensile and compressive tests were conducted on the 2024Al ingot obtained by
pressure infiltration to obtain the parameters required for the J–C constitutive model, as
listed in Table 2.

Table 2. Johnson–Cook parameters of 2024Al.

A (MPa) B (MPa) n D1 D2 D3

185 2631 0.78 0.13 0.13 −1.5

An element-based cohesion method was utilized to forecast the traction–separation
behavior of the Be–Al interface. Quadratic stress criterion was used to determine the
damage initiation the cohesive zone model (CZM) [32]:{

〈tn〉
t0
n

}2
+

{
ts

t0
s

}2
+

{
tt

t0
t

}2
= 1 (4)

where tn represents the nominal traction stress in the normal direction, while ts and tt
are the nominal traction stresses in the two shear (n and t) directions, respectively. The
superscript 0 indicates the contact stress at the beginning of the damage. A variable D′ was
utilized to describe the damage evolution process [33], which was defined as:

D′ =
δ

f
m
(
δmax

m − δ0
m
)

δmax
m

(
δ

f
m − δ0

m

) (5)

δm =
√

δn2 + δ2
s + δ2

t (6)

where

• δm is the effective displacement of damage evolution;
• δn, δs, and δt are nominal displacements in normal and two shear directions;

• δ0
m and δ

f
m are the effective displacements at the damage initiation and the fracture

completion, respectively;
• δmax

m is the maximum effective displacement obtained during loading.

From the perspective of energy evolution, fracture energy Gc, interface strength T0
e f f ,

and effective displacement at complete failure δ
f
m satisfied the following relations:

Gc =
1
2

δ
f
mT0

e f f (7)

In addition to simulating interfacial debonding, the CZM model was also widely used
in crack propagation and fracture of polycrystalline materials [34–36]. We used the CZM
model to describe the fracture behavior of beryllium particles. The relevant performance
parameters are listed in Table 3.
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Table 3. Material properties used in the REV model.

Properties Be 2024Al

Density (g/cm3), ρ 1.85 2.77
Young’s modulus (GPa), E 300 70

Poisson’s ratio, ν 0.03 0.33
Tensile strength (MPa), σUTS 505 289

Yield stress (MPa), σYS 419 185

3. Results and Discussion
3.1. Microstructure and Phase Composition

The microstructures of blocky-Be/2024Al composite and spherical-Be/2024Al com-
posite are shown in Figure 5. The black beryllium particles are uniformly distributed in the
off-white aluminum matrix, and no large area agglomeration of small particles, no holes,
or other obvious defects are observed. As microcracks exist on the surface of blocky impact
grinding beryllium particles (marked by yellow arrows in Figure 2b), off-white microcracks
filled with aluminum can also be seen in the SEM image of blocky-Be/2024Al composite
(labeled by yellow arrows in Figure 5b). However, in the spherical-Be/2024Al composite,
most of the beryllium particles are regularly spherical with no apparent surface microc-
racks, except for one or two shell-like beryllium reinforcements due to the presence of a
few hollow beryllium spheres (labeled by the yellow arrow in Figure 5c). The distribution
of Al in the two Be/2024Al composites is shown in Figure 6. For the blocky-Be/2024Al
composite, the liquid aluminum penetrates into the nanoscale microcracks of the blocky
beryllium powder (marked by yellow circles in Figure 6a,b). For the spherical-Be/2024Al
composite, a small amount of aluminum segregation exists inside and on the surface of
beryllium particles. These segregations are not caused by the infiltration of aluminum
during the preparation of the composite, but the aluminum impurities in the beryllium
raw material itself, which can be seen from the high Al content of the spherical powder
(1.1 wt%) in the elemental analysis results (Table 1).
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In addition, in the SEM images of the microstructures of the two composites at high
magnification (Figure 5b,d), a white impurity phase exists near the beryllium particles.
According to the XRD phase composition analysis (Figure 7), it can be determined that the
impurity phase in the two composites is the Be4AlFe phase, and the content of impurity
phase in the spherical-Be/2024Al composites is higher. The formation of the Be4AlFe phase
may be related to the Fe content of beryllium powder and Al matrix (Table 1). The Be4AlFe
phase is a common impurity phase in beryllium. Fe can be solid dissolved in Be, and the
binary beryllium iron phase can combine with free Al to form Be4AlFe [10]. Due to the
relatively low content of the impurity phase in the raw beryllium powder, it cannot be
detected by XRD. However, due to the introduction of Fe from the Al matrix, and the higher
content of Fe in the spherical beryllium powder compared to that in the blocky beryllium
powder, the Be4AlFe phase in the spherical-Be/2024Al composite is more than that in the
blocky-Be/2024Al composite. The impurity phase that mainly exists at the interface of
beryllium phase and aluminum phase may also affect the mechanical properties of the
composites. Moreover, a slight Al5CuMo2 phase diffraction peak is observed in the XRD
pattern. The Al5CuMo2 phase is the precipitated phase in the matrix. Since Mo does not
exist in the matrix alloy and beryllium reinforcement, the Mo element may be the impure
element introduced in the preparation process. Due to the small content, only the strongest
diffraction peak of the Al5CuMo2 phase is detected in the XRD pattern.
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3.2. Mechanical Properties and Fracture Analysis

Figure 8 shows the typical tensile curves of blocky-Be/2024Al composites and spherical-
Be/2024Al composites. Table 4 lists the specific values of mechanical properties of these two
composites. The hardness and yield strength of blocky-Be/2024Al composites are slightly
lower than those of spherical-Be/2024Al composites. This is because the beryllium content
of the blocky-Be/2024Al composites is slightly lower than that of the spherical-Be/2024Al
composites. However, its tensile strength and elongation are 405 MPa and 1.58%, respec-
tively, which are higher than 331 MPa and 0.38%, respectively, of the spherical-Be/2024Al
composites.
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Table 4. Mechanical properties of two kinds of Be/2024Al composites.

Samples
Brinell

Hardness
(HB)

Tensile
Strength

(MPa)

Yield Strength
(MPa)

Elongation
(%)

Spherical-Be/2024Al 157.1 ± 2.15 331 ± 11.2 299 ± 8.5 0.38 ± 0.11
Block-Be/2024Al 148.2 ± 3.43 405 ± 9.3 297 ± 7.9 1.58 ± 0.22

Figure 9 shows the typical fractures of the two composites. The blocky-Be/2024Al
composites exhibit a mixed fracture mode of cleavage fracture of beryllium and ductile
fracture of aluminum, and large particles of beryllium are more prone to cleavage fracture.
The spherical-Be/2024Al composites show the fracture mode of interfacial debonding. It
can be observed from the fracture that a large number of spherical beryllium particles are
pulled out, exposing the smooth surface of beryllium particles (Figure 9d). Severe interfacial
debonding is the principal cause for the lower strength and poor ductility of the spherical-
Be/2024Al composites, and interfacial debonding is due to the low interfacial bonding
strength. Therefore, the stress and strain distribution during the tensile process and the
interfacial bonding strength of the two composites are further analyzed by FEA simulation.
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3.3. Numerical Results

Figure 10 shows the Mises stress and equivalent plastic strain distribution of the
blocky-Be/2024Al composite at different strain stages. As shown in Figure 10a,c, in the
initial stage of tension, the distribution of stress and strain is not uniform, and the high
stress area is mainly concentrated on beryllium particles, especially cluster particles and
particles with sharp corners (marked by the black dotted circle in Figure 10a). The strain
is mainly concentrated in the matrix and presents an angle of about 45◦ from the loading
direction, and the strain is also prominent at the particles with sharp angles. Subsequently,
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with the accumulation of deformation, beryllium particles begin to fail during the tensile
process, forming microcracks (Figure 10d), and the stress on both sides of the crack is
significantly released (Figure 10b).
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The Mises stress and equivalent plastic strain distribution of the spherical-Be/2024Al
composites at different strain stages are shown in Figure 11. Similar to the blocky-Be/2024Al
composites, in the initial stage, stress concentration of the composite is mainly in the
beryllium particles, and the small particles bear higher stress (Figure 11a), while the
strain is mainly concentrated in the aluminum matrix, the stress concentration zone and
the loading direction is about 45◦, and there is a high degree of strain concentration in
the aluminum matrix between the adjacent beryllium spheres (Figure 11c). With the
increase in deformation, debonding occurs at the beryllium–aluminum interface, resulting
in microcracks, and the strain is highly concentrated along the debonding interface, which
eventually leads to a complete debonding of the interface.

In this simulation, we determined the interface strength by fitting the experimental
nominal stress–strain curve. Figure 12 compares the nominal stress–strain curves of the two
composites obtained from the tensile simulation with the experimental results. The results
show that the simulated stress–strain curve of the blocky-Be/2024Al composite agrees well
with the experimental results when the interfacial strength is 600 MPa (Figure 12a). When
the interfacial strength is 330 MPa, the simulated stress–strain curve of spherical-Be/2024Al
composite fits well with the experimental results (Figure 12b). Therefore, we can conclude
that the interface strength of the blocky-Be/2024Al composite is 600 MPa and that of the
spherical-Be/2024Al composite is 330 MPa.
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Meanwhile, the cross-section of the tensile fracture specimens of the composites is
observed, and the typical microstructures are shown in Figure 13. The microcracks in the
blocky-Be/2024Al composite mainly appear inside the beryllium particles (Figure 13a,b);
the microcracks in the spherical-Be/2024Al composite are mostly present at the beryllium–
aluminum interface, and obvious debonding can be observed, while the beryllium particles
are hardly broken (Figure 13c,d). These observed results are consistent with the simulation
results in Figures 10 and 11.
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It can be seen that the difference in interfacial strength is the main reason for the
variance in tensile strength and elongation of the two composites. The interfacial strength
of the blocky-Be/2024Al composite is 600 MPa, which is much higher than that of the
spherical-Be/2024Al composite (330 MPa). Although there are no reports on the specific
experimental values or numerical simulation values of the interfacial bonding strength of
beryllium–aluminum composites to judge the level of our interfacial strength values, we
can obtain a glimpse from the reported interfacial strength values of SiC/Al composites
calculated by the finite element CZM model. The interfacial strength values of SiC/Al
composites given in different studies in the literature are slightly different. Su et al. reported
that the interfacial strength of the extruded 13 µm SiC/7A04Al was 326 MPa [23], Zhang
et al. found that the interfacial strength of 7 vol.% SiC/7A04Al was 400 MPa [24], Wu et al.
reported that the interfacial strength of the as-cast 20 vol.% A359/SiC was 372 MPa [25],
while the interfacial strength of the extruded 17 vol.% 7 µm SiC/2009Al composite was
600 MPa [22]. It can be seen that the reported interfacial strength of the SiC/Al composites
is between 300–600 MPa, and is significantly related to the content, size, morphology,
distribution of the reinforcement, and the mechanical properties of the matrix. In this study,
the calculated interfacial strength of Be/2024Al composites is also within the reasonable
range of the reported interfacial strength of SiC reinforced aluminum matrix composites,
and the interfacial strength of the blocky-Be/2024Al composites is close to the highest
reported interfacial strength of SiC reinforced aluminum matrix composites, which indicates
that the blocky-Be/2024Al composites have high interfacial strength. What needs to be
emphasized is that the difference in interfacial strength is related to the morphology of
the reinforcement. Roughness influences the interface properties. Studies show that for
concrete, the waviness of the concrete aggregate not merely increases the actual bonding
area of the interface, it also enhances the mechanical interlocking between the matrix
and the aggregate [37]. Similarly, the blocky beryllium powder has rough surface and
microcracks, and the infiltration of aluminum in the microcracks of beryllium particles
during pressure infiltration process can bring larger area mechanical bonding, which results
in a stronger interfacial strength. The surface of the spherical beryllium particle is smooth,
and liquid aluminum cannot penetrate into the beryllium sphere, meaning that the interface
bonding between beryllium and aluminum is relatively weak. Therefore, the morphology
of beryllium powder is one of the main factors affecting the interfacial strength of pressure
infiltration Be/2024Al composites.
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It cannot be ignored that the presence of the impurity phase Be4AlFe also affects
the mechanical properties of Be/2024Al composites. The brittle interface impurity phase
Be4AlFe easily becomes the stress concentration point, which leads to the premature
fracture of Be/2024Al composites during the tensile process and reduces the ductility of
the composites. The higher Be4AlFe content in the spherical-Be/2024 Al composite also
makes it more prone to brittle fracture.

4. Conclusions

In this paper, blocky-Be/2024Al composites and spherical-Be/2024Al composites were
fabricated by the self-exhaust pressure infiltration method. Their microstructures and
mechanical properties were characterized. The fracture mode and interfacial strength of
the two composites were fitted by FEA simulation. The main results are as follows:

1. The microstructures of the blocky-Be/2024Al composites and spherical-Be/2024Al
composites prepared by self-exhaust pressure infiltration are uniform and dense. The
tensile strength of the blocky-Be/2024Al composite is 405 MPa and the elongation is
1.58%. The tensile strength and elongation of the spherical-Be/2024Al composite are
331 MPa and 0.38%, respectively;

2. The tensile fracture modes of the blocky-Be/2024Al composites and spherical-Be/2024Al
composites are different. The former shows brittle fracture of beryllium particles and
ductile fracture of aluminum, while the latter shows interface debonding;

3. The results of FEA simulation show that the interfacial strength of the blocky-Be/2024Al
composite is 600 Mpa and that of the spherical-Be/2024Al composite is 330 MPa. The
fracture microstructure of the composites is consistent with the simulation results. The
difference in strength and fracture mode of the two composites is mainly caused by the
difference in interfacial strength, and the morphology of beryllium powder is one of the
main reasons for the difference in interface strength;

4. The existence of the impurity phase Be4AlFe also affects the mechanical properties of
the Be/2024Al composites. The brittle impurity phase Be4AlFe is likely to become a
stress concentration point, resulting in premature fracture of the composites during
the tensile process and reducing the ductility of the composites.
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