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Abstract: To minimize the stress shielding effect of metallic biomaterials in mimicking bone, the body-
centered cubic (bcc) unit cell-based porous CoCrMo alloys with different, designed volume porosities
of 20, 40, 60, and 80% were produced via a selective laser melting (SLM) process. A heat treatment
process consisting of solution annealing and aging was applied to increase the volume fraction of
an ε-hexagonal close-packed (hcp) structure for better mechanical response and stability. In the
present study, we investigated the impact of different, designed volume porosities on the compressive
mechanical properties in as-built and heat-treated CoCrMo alloys. The elastic modulus and yield
strength in both conditions were dramatically decreased with increasing designed volume porosity.
The elastic modulus and yield strength of the CoCrMo alloys with a designed volume porosity of
80% exhibited the closest match to those of bone tissue. Different strengthening mechanisms were
quantified to determine their contributing roles to the measured yield strength in both conditions.
The experimental results of the relative elastic modulus and yield strength were compared to the
analytical and simulation modeling analyses. The Gibson–Ashby theoretical model was established
to predict the deformation behaviors of the lattice CoCrMo structures.

Keywords: selective laser melting; CoCrMo; porosity; heat treatment; compression test

1. Introduction

Metallic materials, such as tantalum (Ta)-based, titanium (Ti)-based, and cobalt (Co)-
based alloys, are widely used as bone implants. Among the most prevalent materials
used for promising biomedical applications [1], cobalt-chromium-molybdenum (CoCrMo)
alloys [2] have attracted great interest due to their superior biocompatibility, corrosion
resistance, wear resistance, and good mechanical properties [3–10]. Poor tribological
behavior caused by a high friction coefficient and wear debris is one of the crucial obstacles
for Ti-based alloys [11], which can be overcome by the use of CoCrMo alloys. Extensive
research on the mechanical and microstructural properties of widely used cast, wrought, or
hot-forged CoCrMo alloys has been reported [6,12–15]. To fulfill the criteria for metallic
materials as feasible implants, it is important to reduce the stress shielding effect and
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enhance osseointegration [16–21] by applying porous lattice structures, which are difficult
to achieve via traditional fabrication processes.

The wear resistance of CoCrMo alloys is governed by the amount of carbon, the
homogeneous distribution of carbides, and the existence of a hexagonal close-packed (hcp)
structure [22]. There may exist two different crystal structures—metastable γ-face-centered
cubic (fcc) and ε-hcp—in the CoCrMo alloys at room temperature, and their volume fraction
can be changed via heat treatment conditions [23–25]. Increasing the volume fraction of
the hcp phase is beneficial to the improved mechanical and wear properties of CoCrMo
alloys, as well as to their stability [24–28]. A number of studies on various process- and
heat-treatment conditions have been devoted to promoting a martensitic transformation
from fcc to hcp [23–26,29,30].

Additive manufacturing allows for complex structures produced with diverse geome-
tries and shapes associated with controllable microstructures [31–35]. Better metallurgical
design can be achieved through machine learning and high-throughput examinations [36].
Among the most common three-dimensional (3D) printing processes, selective laser melt-
ing (SLM) produces SLM-built metallic parts with distinct microstructures [37–39]. In
addition, SLM offers great possibilities in tailoring porous lattice structures with various
unit cell types, cell sizes, and strut dimensions, which enables the tuning of the mechanical
properties of SLM-built metallic implants to closely match those of human bone [39,40].
Comprehensive research has been conducted on the mechanical properties of additive-
manufactured porous CoCrMo alloys via different, designed volume porosities [41–43] or
heat treatment conditions to reduce the stiffness mismatch between bone and biomedical
CoCrMo implants [24,25,44]. Furthermore, the analytical and simulation modeling analyses
were generally used to predict the mechanical properties of porous structures [18,45,46].
However, investigating the ideal porosity and pore sizes for porous implants is still contro-
versial [47], and exploring the role of different, designed volume porosities on heat-treated
CoCrMo alloys fabricated via SLM is limited.

In the present study, the designed lattice structure of body-centered cubic (bcc) unit
cell-based porous CoCrMo alloys was manufactured via SLM. The objective of this work
was to discover the optimal design parameters for a closer match between bone tissue and
CoCrMo alloys. The influence of different, designed volume porosities on the compressive
mechanical properties of as-built and heat-treated CoCrMo alloys was examined. Moreover,
the theoretical model proposed by Gibson–Ashby was employed to predict the mechanical
behavior of porous SLM-built CoCrMo structures, which is conducive to establishing the
optimal design of bcc lattice structures with suitable mechanical properties for biomedical
applications.

2. Materials and Methods
2.1. Sample Preparation

The cylindrical shapes of as-built porous CoCrMo alloys with a diameter of 11 mm
and a height of 7 mm were fabricated using the SLM AM100 machine with a working space
of 10 cm × 10 cm manufactured by the Industrial Technology Research Institute (ITRI).
The diameters of the struts were 0.2, 0.3, 0.4, and 0.5 mm, corresponding to the designed
volume porosity of 80, 60, 40, and 20%, respectively. Figure 1a–e shows computer aided
design (CAD) models for the designed porous CoCrMo structures with different volume
porosities of bcc unit cells with a length of 1 mm. The building direction was parallel to the
longitudinal axis of the as-built CoCrMo samples. The chemical composition of fully dense
as-built CoCrMo alloy was Co (58 wt%), Cr (28 wt%), Mo (6 wt%), and Si (<1 wt%).
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Figure 1. (a–e) CAD-designed models, (f–j) as-built, and (k–o) heat-treated CoCrMo alloys with
different, designed volume porosities.

2.2. Heat Treatment Process

The heat-treated CoCrMo structures were prepared using a combination of solution
heat treatment at 1100 ◦C for 1 h and subsequent aging treatment at 800 ◦C for 4 h of the
as-built CoCrMo alloys.

2.3. Mechanical Test

The uniaxial compression tests of as-built and heat-treated CoCrMo alloys were car-
ried out using an HT-2402 universal testing machine produced by the Hung Ta Company,
Taichung, Taiwan, with a 50 kN load cell and a strain rate of 2.1 × 10−3 s−1 at room temper-
ature. The samples used for mechanical tests with dimensions of 5 mm × 5 mm × 4 mm
were cut from the CoCrMo alloys. The compression direction was parallel to the building
direction.

2.4. Microstructure Characterization

The CoCrMo alloys were mechanically polished using silicon carbide sandpapers
of 4000-grit and finally using 0.02 µm colloidal silica suspension. The samples were
subsequently etched for microstructure characterization using optical microscope (OM,
Nikon ECLIPSE LV150N, Minato ku, Japan) and scanning electron microscopy (SEM, JEOL
6700F, Akishima, Japan).

2.5. Density Measurement

The density of the foam is shown below,

ρ f =
Mporous

Vporous
(1)

where Mporous and Vporous are the weight and volume of the porous sample.
Meanwhile, the density of solid structure (ρS) was measured using the Archimedes

method as follows,

ρS =
ρw × wa

wa − ww
(2)

where ρw is the density of water, wa and ww are the weights of the sample in air and in
water, respectively.
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The relative density of material (ρ∗) was determined as

ρ∗ =
ρmeasured
ρtheoretical

(3)

where ρmeasured and ρtheoretical are the measured density, and the theoretical bulk density,
ρtheoretical , is 8.3 g/cm3.

2.6. Finite Element Simulation

A finite element method using the ANSYS Explicit Dynamics (2019R1) software
was simulated to predict the compressive mechanical behavior of the as-built and heat-
treated porous CoCrMo with various designed porosities in comparison with the analytical
prediction and experimental data. The 3D models with a length of 5 mm, a width of
5 mm, and a height of 4 mm exported from the 3D builder CAD software (18.0.1931.0), in
STL file formats of the 3D-printed models were used for simulation to satisfy the actual
compression test. The top and bottom plates were set as rigid bodies, while the 3D models
were set to be deformable. The friction coefficient was set to 0.2, and the self-contact of 3D
models was set. The Cartesian and tetrahedral mesh was used with a minimum element
size of 0.00011 m, and the total number of the elements and nodes was around 220,000
and 59,000, respectively. The bottom plate had no freedom of x, y, and z displacements,
and any rotation was restricted. The top plate was set with a z displacement while x and
y displacements were restrained. The elastic and plastic behaviors were simulated based
on an isotropic elasticity model and a bilinear isotropic hardening model, respectively.
The values of Young’s modulus, yield strength, and tangential modulus derived from the
experimental data of the fully dense as-built and heat-treated CoCrMo alloys were input
into the simulation analysis. A Poisson’s ratio of 0.3 was applied [7]. A maximum plastic
strain of 0.2 was set as the failure criterion of materials. If the plastic deformation of the
element exceeded 0.2, it was considered damaged and thus removed.

3. Results
3.1. Morphology of As-Built and Heat-Treated Porous CoCrMo Alloys

Figure 1f–o shows the cylinder shapes of the as-built and heat-treated CoCrMo alloys
with different, designed volume porosities of 0, 20, 40, 60, and 80%. A discernable variation
in surface morphology towards the rougher surfaces and the change in color in the sample
surfaces was found using heat treatment. The heat-treatment-induced varying color from
slight yellow to dark green was ascribed to the presence of a chromium surface oxide,
which was demonstrated by an obvious appearance of Cr2O3 [48–50], as shown in the XRD
patterns in Figure 2.
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A martensitic transformation from an fcc to an hcp phase usually occurs in the CoCrMo
alloys. Although the thermodynamically stable phase at room temperature is the hcp phase,
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the remaining fcc phase is mostly obtained in the CoCrMo alloys due to the sluggish
transformation from the metastable fcc to the stable hcp under normal conditions [23,24].
The fcc to hcp transformation occurs more easily via rapid cooling, plastic deformation,
and isothermal aging below the transformation temperature [23,24]. An examination of the
degree of martensitic transformation via a heat treatment process was determined using
XRD profiles in Figure 2. The as-built CoCrMo exhibited an obvious fcc phase with a lattice
constant of 3.568 Å, while the heat-treated CoCrMo revealed the coexistence of residual
fcc and hcp phases. The volume fractions of the hcp and fcc phases can be calculated as
follows [25,51,52].

fhcp =
I(1011)hcp

I(1011)hcp + 1.5I(200) f cc
(4)

f f cc = 1− fhcp (5)

where I(1011)hcp and I(200) f cc are the integrated intensities of the (1011)hcp and (200) f cc
diffraction peaks for the hcp and fcc phases, respectively.

The calculated volume fraction of the fcc and hcp phases in the fully dense heat-treated
CoCrMo alloy were 64 and 36%, respectively.

3.2. Relative Density of the Solid Structures in Both Conditions

Figure 3 shows the top-view surface in the as-built and heat-treated porous CoCrMo
structures with different, designed volume porosities. The melt pool formed in different
printing layers during SLM laser scanning was observed on the surface of fabricated
samples, which was different from the smooth-designed model. The melt pool boundary
became blurred, and the oxide layer, mainly composed of chromium oxide on the surface,
made the surface rougher after heat treatment. In addition, there were also unmelted
powder particles and spatter attached to the surface. When the melt pool was formed
using a laser source, the excess heat energy would melt the nearby powders so they would
adhere to the surface [39]. The distribution of pores was quite homogeneous in both
conditions. Although the pore size on the surface of fabricated samples with a designed
volume porosity of 20% was similar to that of the designed model, the pores were not
as completely hollow in the vertical direction as those designed with the 3D model. The
pores were obvious on the surface of fabricated samples with the designed volume porosity
above 40%, and their pore sizes were evidently smaller than those of the designed model.
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Figure 4a describes the pore size in the designed, as-built, and heat-treated CoCrMo
alloys. There was a negligible discrepancy in pore size between the as-built and heat-treated
CoCrMo alloys. The difference in pore size between the fabricated and designed alloys
increased with increasing designed volume porosity. As shown in the as-built CoCrMo
alloys in Figure 4b, the pore fraction significantly increased with the increasing designed
volume porosity.
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Figure 4. (a) Pore size in the designed, as-built, and heat-treated CoCrMo alloys with different,
designed volume porosities. (b) Pore fraction in the as-built CoCrMo alloys with different, designed
volume porosities.

Figure 5a describes the relative densities of the solids in the as-built and heat-treated
CoCrMo alloys determined using Archimedes’ method to examine the printing quality of
the SLM process. The relative densities of the fully dense as-built and heat-treated samples
were 99.5 and 99.6%, respectively. The relative densities of the heat-treated porous CoCrMo
alloys altered from 97 to 98.4%, which were slightly lower than the variation from 98.3 to
99.2% of the as-built porous samples. Such high relative densities suggested a negligible
existence of internal void defects on the bulk struts during the fabrication process. The
relative density of the solid was reduced slightly with an increasing designed volume
porosity within the range of 20–40%; however, the effect of the designed volume porosity
on the relative density of the solid was generally trivial. The lower relative densities of the
solid seen at the designed volume porosity of 20–40% implied that a small number of voids
was confined in the solid strut.
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The actual relative densities in the as-built porous CoCrMo were determined using
Equation (3) and compared with the designed relative densities in Figure 5b. The actual
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relative densities in the as-built CoCrMo alloys were all higher than the designed relative
densities, in accordance with previous work [53]. Moreover, the difference between the
actual and designed relative densities became larger with increasing designed volume
porosity. It was possibly related to a thinner strut and lower thermal conductivity, which
may enlarge the melt pool and increase the width of the strut compared to the designed
model. Table 1 lists the parameters of the as-built porous CoCrMo alloys.

Table 1. Parameters of the as-built porous CoCrMo alloys.

Designed Volume
Porosity

(%)

Designed Relative
Density

(%)

Actual Relative
Density

(%)

Relative Density of
Solid
(%)

20 80 93.3 98.3
40 60 79.5 98.2
60 40 66.2 99.1
80 20 52.1 99.2

3.3. Compressive Deformation in the As-Built and Heat-Treated Porous CoCrMo Structures

Figure 6 presents the macroscopic stress-strain curves of uniaxial compression tests
in both conditions. The three distinct deformation stages of linear elasticity, plateau, and
densification were seen at the designed volume porosity above 40% in both conditions,
which was similar to the typical deformation of porous structures proposed by Gibson–
Ashby [54]. Young’s modulus was extracted in the initial stage of elastic deformation. The
plastic deformation started to yield in the plateau region of the local collapse of pores, at
which the strain significantly increased with a negligible variation in the stress. The plateau
region was followed by a sharp increase in stress at the onset of the densification regime.
The densification stages started at large strains of 0.65 and 0.74 in the heat-treated sample
with a designed volume porosity of 60% and in the as-built CoCrMo with a designed
volume porosity of 80%. In the present study, the SLM-built CoCrMo alloys with an actual
porosity above 34% disclosed porous structures. Meanwhile, no obvious plateau and
densification regions were obtained at a designed porosity below 40%, which is analogous
to the deformation behavior of metallic solids. Such a drastic decline in stress after the
elastic regime derived from the failure of struts in the porous structures owning high
designed relative density.
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Figure 7 shows the experimental and simulated values of Young’s modulus and
the compressive yield strength in both conditions with respect to the designed volume
porosity. The yield strength drastically decreased from 1079 to 822 MPa, while there was
a slight increase in Young’s modulus from 191 to 198 GPa in the fully dense CoCrMo
after heat treatment. The experimental values of Young’s modulus and the yield strength
were generally higher than the simulated values in both conditions and may be due
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to a higher actual relative density rather than the designed relative density. Increasing
the designed volume porosity significantly decreased Young’s modulus and the yield
strength in both conditions. Furthermore, heat treatment resulted in a noticeable decrease
in yield strengths but a slight increase in Young’s moduli for all different, designed volume
porosities of CoCrMo alloys. Such a remarkable discrepancy in yield strength between
the as-built and heat-treated conditions became smaller with increasing designed volume
porosity. Among the investigated CoCrMo alloys, the as-built and heat-treated CoCrMo
porous structures with the designed volume porosity of 80% had Young’s moduli of 17
and 29 GPa, respectively, while they possessed compressive yield strengths of 271 and
187 MPa, respectively. Compared to Young’s modulus of 3–30 GPa and a yield strength of
193 MPa in the human cortical bone [18,55], the as-built and heat-treated CoCrMo porous
structures with a designed volume porosity of 80% were the most appropriate implants for
potential biomedical applications due to a very close match in their mechanical responses.
In addition, heat treatment was more conducive to tailoring the mechanical performance of
SLM-built porous structures, which was more similar to that of human cortical bone. The
mechanical properties of CoCrMo structures could be effectively tuned using an adjustable,
designed volume porosity fabricated via SLM.
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3.4. The Compressive Mechanical Properties Using the Gibson–Ashby Model and Finite Element
Simulation

An analytical model proposed by Gibson–Ashby enables the effective prediction of
the adjustable porosity for isotropic materials [54]. The compressive mechanical responses
of porous CoCrMo structures were fitted using the Gibson–Ashby model to evaluate the de-
gree of matching among the analytical, simulated, and experimental results in establishing a
more suitable design of porous structures for potentially promising implants in biomedical
applications. The compressive deformation of porous CoCrMo alloys was implemented
using finite element simulation. The analytical prediction of an elastic modulus and yield
strength was presented with the Gibson–Ashby model as follows [54].

E
ES

= C1

(
ρ

ρS

)n
(6)

σ

σS
= C5

(
ρ

ρS

)m
(7)

where E and ES are the elastic modulus of cellular and solid materials, respectively, σ
and σS are the yield strength of cellular and solid materials, respectively, ρ and ρS are the
density of cellular and solid materials, respectively, C1 and C5 are constants, and n and m
are exponential factors. The general values of n and m are 2 and 1.5, respectively. C1 and
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C5 are ideally 1; however, their variable values were experimentally determined from the
best-fitting curve.

The relative elastic moduli E/ES and relative yield strengths σ/σS obtained from the
analytical, simulated, and experimental results versus a logarithmic scale of relative density
were plotted in Figure 8. The fitted value of C1 from the simulated and experimental
results was in the range of 0.9–1.09. The variation in n is mainly related to the predominant
deformation mode of strut-based cellular structures, which can be determined based on
the lattice structure of repeating unit cells. Based on the Maxwell number of the bcc
unit cell [56,57], the compressive deformation mechanism of the porous CoCrMo alloys
was ascribed to the bending-dominated deformation proposed using the Gibson–Ashby
model in which the exponent n is 2. The fitting curves of relative elastic modulus in both
simulated and experimental results revealed linear relation with respect to the relative
density, following the power law relationship. In Figure 8a, the exponent n extracted
from the fitting curves of the simulated and experimental results was larger than that
from the analytical Gibson–Ashby model. The fitting curve of the simulation analysis
deviated from that of the Gibson–Ashby model, and it has an exponent of 2.58, which was
close to the exponential value obtained in the simulation analysis of other bcc strut-based
structures [45]. The fitting curve of as-built and heat-treated samples was closer to that of
the simulation with an exponent of 3.56 and 3.05, respectively, which was far outside the
expected range. The data of the simulation analysis and experiment were all well-fitted.
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In Figure 8b, the relative yield strength versus relative density also followed a linear
trend, which was similar to the relative elastic modulus versus relative density. The fitting
curve of the relative yield strength in both simulated and experimental results also deviated
from that proposed using the Gibson–Ashby model. The data of simulation analysis and
heat-treated samples were better fitted, while there was a deviation between the fitting
curve and data in the as-built samples. The exponent m obtained from the simulated,
as-built, and heat-treated results were 1.83, 2.59, and 2.36, respectively, which was relatively
greater than the 1.5 derived from the Gibson–Ashby model. The exponential value of
1.83 derived from simulation analysis was close to that of 1.97 in other bcc strut-based
structures [45]. In general, a closer agreement was attained in the simulation analysis of
bcc strut-based structures between this study and another previous study [45]. However,
there was not a close correlation between the predicted and experimental values in the
present study.
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3.5. Microstructural Characterization in Both Conditions

The microstructures significantly govern the mechanical performance of SLM-built
alloys. A considerably decreased yield strength in the heat-treated CoCrMo alloys was
ascribed to the microstructural change after heat treatment. Figure 9 depicts OM images of
the morphologies in the fully dense as-built and heat-treated CoCrMo alloys. In Figure 9a,c,
two typical morphologies of melt pools in half-cylinder and stripe-like shapes were obvious
in the plane parallel and perpendicular to the building direction, respectively, which was
similarly seen in other SLM-built alloys. In Figure 9b,d, there was a disappearance of melt
pools and a presence of grain boundaries with different grain sizes after heat treatment.
In Figure 9b, most of the large grains were elongated with their long axes parallel to the
building direction, implying an incomplete recrystallization process after heat treatment.
The average length and width of elongated grains were 120 and 44 µm, respectively.
Fine grains were also observed, which were newly formed grains in the initial stage of
recrystallization. In Figure 9d, the grains were more likely to be equiaxed grains with an
average size of 11 µm.
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Figure 10 shows SEM images in the fully dense as-built and heat-treated CoCrMo
alloys. A typical cell structure with an average size of 0.57 µm was obvious in the as-built
CoCrMo, shown in Figure 10a. The energy-dispersive X-ray spectroscopy (EDS) analysis
disclosed a different elemental distribution between the cell boundary and the cell. The
cell boundary was found to be C-Mo rich, presumably ascribed to the M23C6 phase [29].
When the metal powder was heated and cooled rapidly, Mo with a high melting point was
discharged to the cell boundary, and CoCr remained inside the cell [58]. In Figure 10b, the
formation of precipitates was visible at both the grain boundaries and within the grains after
heat treatment. The precipitates at the grain boundaries seemed to be slightly elongated
along the grain boundaries, and their sizes were much greater than those inside the grains.
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3.6. Strengthening Mechanisms

The mechanical properties of CoCrMo alloys were significantly altered in the as-built
and heat-treated conditions, ascribed to their microstructural changes in governing the
role of distinct strengthening behaviors, such as grain boundary strengthening, dislocation
strengthening, and Orowan strengthening. The contribution of each strengthening mecha-
nism to the calculated yield strength of CoCrMo alloys in both conditions was estimated.

The grain boundary strengthening is shown below [24,59].

∆σGB = kd−1/2 (8)

where k is the Hall–Petch constant, and it has different values for the fcc and hcp phases. K
is 400 [6] or 243.9 MPa µm−1/2 [60] for the fcc or hcp phase, respectively. d is the average
grain or cell size determined from SEM analysis.

The dislocation strengthening was described as follows [24].

∆σdis = αMGbρdis
1/2 (9)

where α is a dimensionless constant, M is the Taylor factor, G is the shear modulus, b is the
Burgers vector, and ρdis is the dislocation density. α is 0.24 [61] or 0.1 [62] for the fcc or hcp
phase, respectively. G is 78.4 [63] or 82.2 GPa [64] for the fcc or hcp phase, respectively. b is
0.1463 nm for both the fcc and hcp phases [14]. ρdis was obtained from CMWP fitting.

The Orowan mechanism was expressed as [65].

∆σOrowan =
2Gb
d f

(6Vf

π

)1/3

(10)

where d f is the average diameter of precipitates and Vf is the volume fraction of precipitates.
d f and Vf were determined from SEM analysis.

The calculated yield strength for the fcc or hcp phase was presented as

σi = MτCRSS + ∆σGB + ∆σdis + ∆σOrowan (11)

where i is the fcc or hcp phase, M is the Taylor factor, and τCRSS is the critical resolved shear
stress [66]. M is 2.57 [66] or 3.06 [25] for the fcc or hcp phase, respectively. τCRSS is 54 [67]
or 184 MPa [62] for the fcc or hcp phase, respectively.

There was a negligible contribution of precipitation hardening, and only the fcc phase
existed in the as-built CoCrMo alloys. Meanwhile, since there existed two phases of fcc
and hcp after heat treatment, the calculated yield strength of heat-treated CoCrMo alloys
could be estimated with the rule of mixture as shown below [24].

σy = fhcpσhcp +
(

1− fhcp

)
σf cc (12)



Materials 2023, 16, 751 12 of 17

where fhcp is the volume fraction of hcp grains, and σhcp and σf cc are the strengths of hcp
and fcc grains, respectively.

Figure 11 describes the contributing strength values and calculated yield strengths
compared with the measured yield strengths in the fully dense as-built and heat-treated
CoCrMo alloys. The calculated yield strengths in the as-built and heat-treated CoCrMo
alloys were 1055 and 790 MPa, respectively, which were in very good accordance with
the measured yield strengths of 1079 and 822 MPa, respectively. Both the strength values
of grain boundary strengthening and dislocation strengthening were reduced after heat
treatment. The disappearance of cellular structure, the increase in grain size, and the
decrease in dislocation density were mainly responsible for the decreased yield strength
after heat treatment.
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4. Discussion

The Gibson–Ashby model is one of the most popular theoretical predictions to evalu-
ate the correlation between porous structures and their mechanical performance. Clarifying
reasonable factors governing the difference between the predicted and experimental re-
sults is necessary to establish a better design for SLM-built porous CoCrMo structures.
The predicted values from simulation and analytical analysis underestimated the elastic
modulus and yield strength of the CoCrMo alloys as compared to the experimental values.
Higher exponential values derived from the experimental data of elastic modulus and yield
strength were presumably attributed to the structural characteristics of the bcc strut-based
structures. The strut was not parallel to the compression direction, which was different
from the Gibson–Ashby model. Thus, the resistance to load deformation is weak and results
in larger exponential factors of elastic modulus and yield strength [68]. Another possible
reason is the presence of defects during the SLM process, causing the discrepancy between
the designed and actual relative density [69]. Due to the increased surface area of the strut,
the printing process causes a partial melting of the loose powder beneath it and bonds it to
the strut surfaces, resulting in the increased weight and higher actual relative density of the
specimen but a negligible contribution to the mechanical strength [45,69]. In addition, the
corrugation and increased surface roughness of the strut caused by partially melted powder
possibly induce stress concentration and thus lead to a lower elastic modulus as well as
a lower yield strength of the SLM-built alloys [69]. As the relative density decreases, the
thinner the strut, the slower the cooling rate, and the coarser the microstructure, which acts
as another reasonable factor in reducing the yield strength besides the density effect [70].
Such a lower yield strength results in an increase in the exponential factor of the experi-
mental data. Although the elastic modulus and yield strength were not well fitted using
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the Gibson–Ashby model, the predicted values could still be referred to for future designs
of SLM-built porous CoCrMo alloys with adjustable mechanical properties.

5. Conclusions

The role of different, designed volume porosities and heat treatment processes on
the mechanical properties of SLM-built CoCrMo alloys were investigated. The SLM-built
CoCrMo with an actual porosity above 34% exhibited porous structures. An optimal actual
porosity of 48% resulted in appropriate mechanical responses of the SLM-built CoCrMo
structures compared to those of the human bone. Furthermore, the heat treatment process
was found to be more beneficial in tailoring Young’s modulus and the yield strength of
the SLM-built CoCrMo alloys with a minimal stress shielding effect. Possible explana-
tions for the underestimated exponential factors from simulation and analytical analysis
compared to the experimental values were reported. Our findings suggest the optimal
design of bcc lattice-structure-based CoCrMo alloys for a closer match in mechanical
properties between the porous SLM-built CoCrMo implants and bone tissue for potential
biomedical applications.
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Nomenclature

bcc Body-centered cubic
SLM Selective laser melting
hcp Hexagonal closest packed
Ta Tantalum
Ti Titanium
Co Cobalt
CoCrMo Cobalt-chromium-molybdenum
3D Three-dimensional
CADITRI Computer aided design Industrial Technology Research Institute
OM Optical microscope
SEM Scanning electron microscopy
ρ f Density of foam
ρS Density of solid structure
Mporous Weight of the porous sample
Vporous Volume of the porous sample
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ρS Density of solid structure
ρw Density of water
wa Weight of the sample in air
ww Weight of the sample in water
ρ∗ Relative density of material
ρmeasured Measured density
ρtheoretical Theoretical bulk density
fhcp Volume fraction of hcp
f f cc Volume fraction of fcc
I(1011)hcp Integrated intensity of the (1011)hcp peaks for the hcp
I(200) f cc Integrated intensity of the (200) f cc peaks for the fcc
E/ES Relative elastic modulus
σ/σS Relative yield strength
E Elastic modulus of cellular material
ES Elastic modulus of solid material
σ Yield strength of cellular material
σS Yield strength of solid material
ρ Density of cellular material
ρS Density of solid material
C1 Constant
C5 Constant
m Exponential factor
n Exponential factor
EDS Energy-dispersive X-ray spectroscopy
∆σGB Grain boundary strengthening
k Hall-Petch constant
d Average grain or cell size
∆σdis Dislocation strengthening
α Dimensionless constant
M Taylor factor
G Shear modulus
b Burgers vector
ρdis Dislocation density
∆σOrowan Orowan strengthening
d f Average diameter of precipitates
Vf Volume fraction of precipitates
i fcc or hcp phase
τCRSS Critical resolved shear stress
σhcp Strength of hcp
σf cc Strength of fcc
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