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Abstract: To prevent drastic climate changes due to global warming, it is necessary to transition to
a carbon-neutral society by reducing greenhouse gas emissions in all industrial sectors. This study
aimed to develop carbon utilization sequestration technology that uses the concrete slurry water
generated during the production of concrete as a new CO2 sink to reduce CO2 emissions from the
cement industry. This was achieved by performing supercritical CO2 carbonation by varying the
concrete slurry waste (CSW) ratio. The study’s results confirmed that, according to the CSW ratio
(5 to 25%), complete carbonation occurred within only 10 min of the reaction at 40 ◦C and 100 bar.

Keywords: concrete slurry water; concrete slurry waste; ready-mixed concrete; CO2 sequestration;
supercritical CO2; net-zero

1. Introduction

Concrete is a major structural component of buildings and one of the most extensively
used core materials [1–5]. The demand for concrete is expected to increase further owing to
the increasing demand for social infrastructure and housing, continuous urbanization, and
social development in developing countries [6–9].

Numerous studies have been conducted, and implementation strategies have been
established worldwide to realize the 2050 carbon neutrality goals. Several initiatives
have also been made in the cement industry to reduce greenhouse gas (GHG) emissions.
However, global carbon emissions are increasing every year. In 10 major countries with
high-GHG emissions (listed in Table 1), the carbon emissions per capita (as of 2021) are
reported to exceed the global average (4.7 tons of CO2 per capita) [10]. In South Korea,
carbon emissions are also increasing every year. At the time of the Paris climate agreement,
South Korea’s GHG reduction target for 2030 was set at 37% compared with Business-
as-Usual (BAU), but it was increased to 40% compared with 2018 considering the recent
international trend toward GHG reduction. Accordingly, efforts have been expended in the
cement industry to reduce CO2 emissions, including the use of blended cement and fuel
conversion to increase the thermal efficiency of kilns, but they are not sufficient to meet the
reduction quota. CEMBREAU presented a carbon neutrality roadmap to achieving carbon
neutrality in the cement industry. According to the roadmap, various carbon emission
reduction measures were prepared from clinker to concrete levels, including the increased
use of blended cement and fuel conversion to improve the thermal efficiency of kilns.
However, these measures alone cannot achieve carbon neutrality; thus, it is essential to
develop carbon capture, utilization, and storage (CCUS) technologies, such as mineral
carbonation, to achieve considerable CO2 reductions [11,12]. Figure 1 shows the carbon
neutrality strategy of the cement industry presented by CEMBREAU.

Meanwhile, the production of ready-mixed concrete involves the generation of con-
crete slurry water because the returned/surplus concrete or the concrete attached to the
truck agitator and batching plant mixer is washed [13–15]. CSW is mostly dehydrated cake
produced with a filter press in a ready-mixed concrete plant after separating the fine and
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coarse aggregates in CSW. As CSW contains many unhydrated cement particles, studies on
recycling CSW as a cementitious material are increasing every year [16–19]. Nevertheless,
most of this research focuses on utilizing CSW as a filler or binder of cement matrices.
However, as CSW contains a large amount of Ca2+ owing to unhydrated cement particles,
it is expected to be highly applicable as a material for CO2 sequestration [20,21].

Table 1. Carbon emissions per capita in major countries [10].

Country CO2 Emissions per Capita (tCO2) CO2 Emissions (MtCO2)

China 8.0 11,472.37
United States of America 15 5007

India 1.9 2710
Russian Federation 12 1756

Japan 8.6 1067
Iran 8.5 749

Germany 8.1 675
Saudi Arabia 19 672

Indonesia 2.3 619
South Korea 12 616
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Figure 1. Carbon neutrality roadmap for the cement industry proposed by CEMBREAU [10].

Generally, the CO2 mineral carbonation reaction at room temperature and atmospheric
pressure is extremely slow and inefficient. Therefore, research on supercritical CO2 mineral
carbonation has grown to accelerate the reaction. According to previous studies on mineral
carbonation using supercritical CO2, the carbonation efficiency increases with pressure
even though there are no significant differences in the influences of temperature on the
carbonation reaction in the supercritical state. In most studies, the temperature and pressure
are set to be less than 80 ◦C and 150 bar, respectively [22–25].

Therefore, in a previous study [26], mineral carbonation by supercritical CO2 was
performed for CSW, in which the CSW ratio was adjusted to 5% at a set temperature
(40 and 80 ◦C) and pressure (100 and 150 bars) conditions based on previous studies. It was
confirmed that complete carbonation occurred within only 10 min at 40 ◦C and 100 bar.

However, it is essential to increase the proportion of CSW that contains a lot of Ca2+

to maximize the amount of CO2 fixed in concrete slurry water. According to reports, Korea
produces more than 30 million tons of concrete slurry water annually [27]. Therefore, it will
be possible to sequestrate a significant amount of CO2 generated from the cement industry
if a supercritical CO2 carbonation process capable of continuous processing in connection
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with concrete slurry water in a ready-mixed concrete plant through CO2 capture or bypass
is developed, as shown in Figure 2.
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Figure 2. Schematic showing the sequestration of a large amount of CO2 in concrete slurry water.

Therefore, in this study, the supercritical CO2 carbonation reaction was performed for
10 min at 40 ◦C and 100 bar with CSW, in which the CSW ratio was adjusted to its maximum
of 25% as part of enforced measures to reduce GHG emissions from the cement industry.
The impact of the CSW ratio on supercritical CO2 sequestration was also investigated using
pH measurements, TG-DTA, and XRD analysis.

2. Experimental
2.1. Materials

CSW was collected from a ready-mixed concrete plant (company Y) located in Gyeonggi-do,
Korea in the late afternoon, when the proportion of CSW was at its highest. Figure 3
shows the process of collecting CSW. For the CSW used in the experiment, supernatant
water and CSW were separated to evenly adjust its ratio. The CSW was dried at 105 ◦C
until a constant weight was reached. The dried CSW was then pulverized and adjusted
using a No. 200 sieve (particle size ≤ 75 µm). Dilution of the supernatant water and
dried CSW to the target CSW ratios (5, 10, 15, 20, and 25%) was used to perform mineral
carbonation based on the supercritical CO2 reaction. Tables 2 and 3 show the chemical
compositions of the supernatant water and CSW, respectively. As a result of measuring the
chemical composition of CSW, is was determined that it can be sufficiently used as a CO2
sequestration source, as it contains about 34% of the CaO component.
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Table 2. Chemical composition of supernatant water (obtained by ICP spectroscopy).

Chemical Composition (mg/L)

Ca Mg Na Fe K

812 0 242 0 711
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Table 3. Chemical composition of the concrete slurry waste (obtained by XRF spectroscopy).

Chemical Composition (wt.%)

CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O TiO2 Na2O3 P2O5

34.32 26.24 8.27 3.12 2.37 2.10 1.05 0.47 0.37 0.23

2.2. Supercritical CO2 Reactor

Figure 4 shows a schematic of the supercritical CO2 reactor used in this study. The
supercritical CO2 reactor consists of a gas booster (Maximator, Nordhausen, Germany) and
a reactor (PHOS-ENTECH, Daejeon, Korea). A heating plate (used for temperature control)
and an agitator are installed in the reactor, and a thermocouple and pressure gauge are
used to measure the temperature and pressure, respectively. The gas booster is connected
to the air compressor and is used to pressurize CO2 gas into the reactor at a high pressure
to maintain the supercritical CO2 state. The maximum operating temperature and pressure
of the supercritical CO2 reactor are 80 ◦C and 200 bar, respectively, and the internal volume
of the reactor was designed to be 4 L. The agitator’s rotation speed can be adjusted to
≤400 revolutions per minute (rpm).
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2.3. Supercritical CO2 Carbonation

The carbonation test was conducted using supercritical CO2 as follows:
The reactor was assembled after samples were added to it, in which the supernatant

water and CSW had been diluted at different ratios (10, 15, 20, and 25%). When the
interior of the reactor reached the target temperature of 40 ◦C, the electric heater was
activated, and CO2 was injected until the target pressure of 100 bar was reached. When the
CO2 inside the reactor reached the target pressure, the agitator was operated at 200 rpm,
and accelerated carbonation was performed over a predetermined reaction time (10 min),
while the temperature and pressure were maintained. After the predetermined reaction
time, CO2 was discharged, and the reactor was disassembled to recover the sample. The
supernatant water and solid content in the sample were separated, and the solid content was
dried at 105 ◦C until it reached a constant weight. The dried solid content was subjected
to pH (Hanna Instruments HI2215, Woonsocket, RI, USA), SEM (Philips XL30 ESEM,
Eindhoven, The Netherlands), XRD (Rigaku D/max 2200 + Ultima, Tokyo, Japan), and
TG-DTA (NETZSCH STA2500 Regulas, Germany) analysis to quantitatively evaluate the
degree of carbonation reaction.

2.4. Measurement of Mineralogical Property Changes

The pH, SEM, XRD, and TG-DTA measurements were performed for samples be-
fore and after the carbonation reaction with supercritical CO2 to measure changes in the
mineralogical properties of CSW.
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The samples were diluted with distilled water at a 1:5 ratio before pH measurements
were conducted.

TG-DTA measurements were conducted in the temperature range of up to 1000 ◦C at
a rate of 10 ◦C/min in a nitrogen atmosphere to calculate the amount of CaCO3 generated
following the reaction.

3. Results and Discussion
3.1. PH Measurements

Figure 5 shows the pH measurement results before and after supercritical CO2 car-
bonation. The specimen’s pH was measured to be greater than 12 before the reaction, but
regardless of the CSW ratio, it ranged from 9 to 9.5 after the reaction. Typically, during
the cement hydration process, Ca(OH)2 is produced and the pH is increased. Ca(OH)2 is
converted into CaCO3 in a CO2-containing environment that exists during the carbonation
process, as shown in Equation (1), thus resulting in a pH reduction. In this study, it appears
that the carbonation reaction also caused the pH of the concrete slurry water to decrease.
The pH of high-purity CaCO3 is known to be 9.4. It was determined that the conversion into
CaCO3 occurred because the pH of the reaction product after supercritical CO2 carbonation
ranged from 9.0 to 9.5.

CaO + CO2 → CaCO3 (1)
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3.2. XRD Results

Figure 6 shows the XRD measurements before and after supercritical CO2 carbonation.
In the XRD measurement results, the Ca(OH)2 peak and a small amount of the calcite peak
were detected from the solid sludge content before the reaction.

However, following the reaction, no Ca(OH)2 peak was detected, and the calcite peak
was dominant in conjunction with the small aragonite peak. Additionally, similar peaks
were observed regardless of the CSW ratio. CaCO3 is divided into aragonite, vaterite,
and calcite depending on the crystal structure, and calcite is reported to be the most
stable form [28]. Furthermore, a previous study reported that calcite is mainly formed
when Ca2+/CO3

2− ≤ 1. It was determined that calcite was also mainly generated as a
reaction product in this study because a significant amount of CO3

2− was generated at the
supercritical CO2 condition that caused the Ca2+/CO3

2− ratio to decrease [24]. Meanwhile,
quartz peaks could be confirmed both before and after the reaction. It was determined that
this is due to the SiO2 component caused by the fine powder of the aggregate mixed in
concrete slurry water [29].
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3.3. TGA Results

Figure 7 shows the TG-DTA measurements before and after supercritical CO2 car-
bonation. Ca(OH)2, the main hydrate of cement, thermally decomposes between 400 ◦C
and 550 ◦C, and CaCO3, which is generated following the reaction with CO2, thermally
decomposes between 600 ◦C and 800 ◦C. In the TGA results, small weight losses of Ca(OH)2
and CaCO3 were observed in the sample before supercritical CO2 carbonation. However,
in the samples after supercritical CO2 carbonation, the weight loss of Ca(OH)2 could not be
detected, and only the weight loss of CaCO3 was confirmed regardless of the CSW ratio.
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In the typical carbonation reaction, the formation of CaCO3 particles from the surface
layer of particles reduces the carbonation rate in the typical carbonation reaction by in-
hibiting the dissolution of ions and the carbonation rate. However, according to previous
studies [30,31], CaCO3 that has been generated on the surface of particles after carbonation
can be removed through agitation; this may improve the carbonation rate by accelerating
ion diffusion. Because supercritical CO2 is highly reactive and the agitation accelerates ionic



Materials 2023, 16, 742 7 of 10

diffusion, it is determined that complete carbonation also occurred in this study within
only 10 min of carbonation reaction for CSW ratios up to 25%.

3.4. Evaluation of CO2 Sequestration

While there are many research reports on concrete carbonation using supercritical
CO2, most studies focused on the changes in the mechanical properties and microstruc-
ture attributed to the supercritical CO2 carbonation of concrete [32–34]. Conversely, this
study investigated a method for reducing industrial CO2 emissions and realizing net-zero
emissions by developing a carbon utilization and sequestration technology that utilizes
the CSW generated during concrete production as a new CO2 sink using the supercritical
CO2 reaction.

Typically, it is known that when accelerated carbonation is performed on Ca(OH)2 or
cement particles, a microcrystalline layer of CaCO3 is formed on the particle surfaces; as
the reaction proceeds, the densification of CaCO3 particles in the surface layer causes the
reaction to decrease gradually [22,35–38]. In this study, however, even when the CSW ratio
was increased to 25%, complete carbonation occurred within only 10 min, and the reaction
rate did not decrease. Previous studies [28,39] reported that when stirring is performed
during the carbonation reaction, CaCO3 formed on the surface layer is separated from
the surface of Ca(OH)2 particles, and the carbonation of Ca(OH)2 is promoted. Moreover,
supercritical CO2 is known to be approximately 10 times more soluble in water than its
dilution rate in natural carbonation conditions, and studies have reported that this can
accelerate the carbonation reaction [40,41]. Accordingly, in this study, as stirring was
performed during supercritical CO2 carbonation, CaCO3 particles were separated and the
complete carbonation of Ca(OH)2 occurred despite the increased CSW ratio due to the
increase in CO2 solubility within the CSW in supercritical CO2 conditions.

Meanwhile, the most common method used to evaluate the amount of sequestered
CO2 through CCUS was the CaCO3 weight loss ratio achieved based on TGA analysis.
Using the amount of CO2 produced by CaCO3 pyrolysis in the temperature range of
600–800 ◦C, the CO2 sequestration can be calculated by comparing the weight loss in
this temperature range before and after the reaction; correspondingly, in the temperature
range of 400–550 ◦C, the CO2 sequestration can be calculated by using the amount of H2O
evaporation by Ca(OH)2 pyrolysis. Additionally, the Ca(OH)2 and CaCO3 contents can be
calculated using Equations (2) and (3) based on the TGA results.

Ca(OH)2 experiment = (∆400 ∼ 550 ◦C)×
MWCa(OH)2

MWH2O
(2)

CaCO3 experiment = (∆600 ∼ 800 ◦C)× MWCaCO3

MWCO2
(3)

As shown in Table 4, based on the TGA results in this study, an average weight loss of
15.67 wt% was calculated within the temperature range of 600–800 ◦C after supercritical
CO2 carbonation, and the weight loss before the reaction was 2.79 wt%. This indicates that
the CO2 sequestration ability of solid sludge is approximately 128.8 g per 1 kg. The theo-
retical CO2 sequestration based on the CaO content of solid sludge (see Equation (4)) [12]
is 130.7 g per 1 kg of solid sludge. The CO2 sequestration calculated based on the exper-
iment was almost identical to the theoretical at 128.8 g, thus indicating that complete
carbonation occurred.

CO2 theoretical = CaO(%)× MWCO2

MWCaCO3
(4)
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Table 4. Amounts of Ca(OH)2 and CaCO3 before and after supercritical CO2 carbonation.

400–550 ◦C Amount of
Ca(OH)2

600–800 ◦C Amount of
CaCO3

Before 1.1 4.57 2.79 7.04
CSW 5% 0 0 15.94 40.20
CSW10% 0 0 15.84 39.94
CSW 15% 0 0 15.12 38.13
CSW 20% 0 0 15.21 38.36
CSW 25% 0 0 16.23 40.93

4. Conclusions

The following conclusions were drawn according to the experimental results of
this study.

1. When quantitative analysis (pH, XRD, and TGA) was conducted after performing
the mineral carbonation of concrete slurry water by supercritical CO2, Ca(OH)2 was
detected before the carbonation reaction; however, this outcome was not confirmed,
and only the presence of CaCO3 was detected after the carbonation reaction regardless
of the CSW ratio, thus confirming the occurrence of complete carbonation. It appears
that complete carbonation occurred because supercritical CO2 is highly reactive and
agitation accelerates ionic diffusion. Future studies must quantitatively analyze the
CO2 sequestration of concrete slurry water to evaluate the possibility of reducing CO2
emissions from the cement industry.

2. Future research will be conducted to develop a continuous process capable of su-
percritical CO2 carbonation for CSW. By developing this technology, CO2 captured
in cement and other industries can be transported to ready-mixed concrete plants
near bases and sequestered based on rapid supercritical CO2 carbonation. Ultimately,
the utilization of CO2 generated in cement and other industries will greatly con-
tribute to the effective utilization of waste in the ready-mixed concrete industry and
carbon neutrality.
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