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Abstract: Owing to their high design freedom and excellent performance, lattice structures have
shown outstanding capabilities and great potential in aeronautics and astronautics fields. In this paper,
we propose a method to construct lattice structures by parameterizing biological features. An ant-leg
configuration is used as the bionic object to generate a bionic lightweight design with a gradient
lattice structure. To achieve the above goal, an innovative optimization method combining topology
optimization, size optimization, and a bionic lattice structure is proposed in this paper. Taking the
support structure of the Fengyun-3 satellite payload as the research object, this optimization method
is applied to optimize the design. Further, the reconstructed optimization model and the original
model are simulated to evaluate and compare the structural performance. The simulation results
show that when combined with bionic lattice structure and structural optimization, the method
can achieve the lightweight design goal while ensuring the stiffness and strength of the structure.
The results demonstrate that the application of a bionic lattice design in a lightweight design has
feasibility and expectable potential.

Keywords: lattice structure; structural bionic; lightweight design; topology optimization; aerospace
support structure

1. Introduction

In the aerospace field, lightweight design is the orientation that scholars strive to
pursue [1,2]. The support structure is the main load-bearing component of an aerospace
load but also the component with the largest proportion of mass, generally accounting
for 40–50% [3]. Therefore, the lightweight design of a support structure is particularly
significant. Traditional lightweight design methods include topology optimization, shape
optimization, and size optimization. Topology optimization is often used as a tool to find
effective design concepts in the early design stage, while size optimization and shape opti-
mization are tools for later detailed designs [4–6]. But the results of topology optimization
are often complex and unmanufacturable. In consequence, the complexity of optimization
results has become a barrier to processing and manufacturing [7–9].

As a lightweight structure, lattice provides high performance such as high specific stiff-
ness, accompanied by a relatively low density and good energy absorption characteristics.
A 3D lattice structure is believed to be a significant structure for weight reduction [10–12].
In the past few years, honeycomb cellular lattice has been regarded as the most classical
lattice structure and applied in aerospace, medical, and engineering products [13–15]. The
superior structural characteristics of truss lattice have also attracted the attention of many
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researchers. Wang et al. presented a composite sandwich structure with a pyramidal
truss core, which had excellent mechanical behavior [16–18]. Rathbun et al. fabricated
metallic sandwich panels with tetrahedral truss cores [19–21]. Nevertheless, the bending-
dominated deformation of the lattice cannot fully utilize the load-carrying properties of
materials [22–24]. Additionally, the lattice cores are liable to buckling under compressive
loads, while the thick core leads to large spacing between nodes, which weakens the resis-
tance to local panel buckling [25–27]. Although the development of additive manufacturing
has broken the shackles of traditional manufacturing technology and provided opportu-
nities for the production of lattice structures [28–30], owing to the structural defects and
the challenges encountered in traditional manufacturing difficulties, the application of
3D lattice structures in aerospace and aeronautical support structures remains a signifi-
cant challenge.

Over 500 million years of evolution, natural organisms have developed many struc-
tural types with excellent mechanical properties, thanks to selective pressures from their
living environment [31–33]. For example, the internal gloss layer of many mollusk shells
has excellent mechanical properties, and its hierarchical arrangement can be used as a guide
for the design of high-strength and lightweight materials or structures [34]. In addition,
deer antlers, bones, and teeth all show outstanding mechanical properties. Deer antler
can endure bending without damage and has impact resistance [35]. Bones and teeth can
maintain a large compressive force without bending or cracking [36–38]. Some efforts have
been made to apply these advantages to the design of aircraft structures, including aircraft-
reinforcing frames and small wings [39–41]. As a typical microhexapod structure, foraging
workers of ants often carry food loads many times their body weight. The well-developed
legs of ants show an excellent load-carrying ability, as well as the double improvement
of strength and stability. Scholars have studied the biological characteristics of ants. The
well-known size-grain hypothesis predicts that small ants should have smaller legs than
larger ants, and ants that forage in flat environments are generally larger than those that
forage in more-complex environments [42,43]. This configuration is very promising for
supporting structures and can provide guidance for lightweight designs. However, as far
as we know, there is no research on the application of ant carrying capacity in lightweight
structure design.

In this article, 14 lattice structures are designed on the basis of the research of ant-leg
configuration characteristics inspired by ants’ incredible carrying capacity. And their me-
chanical performance is verified by using the finite element method (FEM), conducting
a vibration experiment, and conducting a compression experiment. Furthermore, the
lightweight design of the support structure of the Fengyun-3 satellite payload is realized
by integrating topology optimization, bio-inspired lattice structure filling, and size opti-
mization. The configuration principles of ant legs are applied to fill part of the support
structure. By comparing the stiffness and strength of the original model and the optimized
model, it is proved that the proposed bionic lattice lightweight method has certain advan-
tages, which will provide guidance for the lightweight design of support structures in the
aerospace field.

2. Prototype Structure of Ants
2.1. Lectotype of Ants

Camponotus is the largest ant genus in the world, belonging to Formicinae. It prefers
digging trees damaged by water and is good at carrying and hiking. Black-gold Turkish
Camponotus is a typical Camponotus. Messor structor, belonging to the subfamily Myrmic-
inae, lives mainly in grasslands, in dry areas, and near human-inhabited villages. It has the
characteristics of collecting plant seeds as food reserves, peeling seeds, and storing seeds in
a nest. There are three sizes of worker ant: large, medium, and small. Large worker ants
are usually responsible for carrying food, defending, and killing. In order to observe the
load-carrying morphology of ants, the large worker ants in black-gold Turkish Camponotus
and Messor structor were collected for research.



Materials 2023, 16, 736 3 of 15

Black-gold Turkish Camponotus and Messor structor were collected from Xinjiang
Province, China (73◦40′–96◦18′ E, 34◦25′–48◦10′ N). The ants were kept in tubes under
long-day conditions (25 ± 1 ◦C; 50% RH) at the College of Biological and Agricultural
Engineering Jilin University, Changchun, China.

2.2. Ants in Static Morphology

In the experiments, only adult worker ants are used. Specifically, 10 samples are
randomly selected from the two types of ants collected (black-gold Turkish Camponotus
and Messor structor). The samples are washed with water, sorted, and stored in 80%
alcohol. Then, the samples are dried at room temperature for 12 h. Finally, all the samples
are identified and counted.

Digital image acquisition and leg length measurements are performed using a Canon
EOS 750 D digital camera (Canon, Tokyo, Japan) attached to a 3D electron microscope
Jt-h800 system (Sunny, Changchun, Jilin, China).

For each ant, five standard linear measurements are taken using a visual micrometer
mounted on the 3D electron microscope, and the average value is taken to the accuracy
of 0.01 mm: fore tibia length, fore femur length, middle tibia length, middle femur length,
hind tibia length, and hind femur length (Xin, R., Changchun, Jilin, China).

According to the top and side views of the black-gold Turkish Camponotus
(Figure 1(A1,A2)) and the Messor structor (Figure 1(B1,B2)) in the static morphology, we
find that the lower limbs of ants are composed mainly of a femur and a tibia, with the
same structure as the human femur and with a similar skeleton to that of human lower
limbs. According to the measurement of sample data, the summary is as follows: The
femur lengths of the fore legs of the black-gold Turkish Camponotus are 1.97–2.16 mm,
while that of the Messor structor are 2.24–2.97 mm. The tibia lengths of the fore legs of
the black-gold Turkish Camponotus are 3.17–3.88 mm, while that of the Messor structor
are 3.59–4.77 mm. The femur lengths of the middle legs of the black-gold Turkish Cam-
ponotus are 1.98–2.36 mm, while that of the Messor structor are 2.97–3.26 mm. The tibia
lengths of the middle legs of the black-gold Turkish Camponotus are 3.82–4.73 mm, while
that of the Messor structor are 5.38–6.74 mm. The femur lengths of the hind legs of the
black-gold Turkish Camponotus are 2.31–2.54 mm, while that of the Messor structor are
3.32–3.70 mm. The tibia lengths of the hind legs of the black-gold Turkish Camponotus
are 4.62–6.25 mm, while that of the Messor structor are 7.52–8.69 mm. Moreover, we find
that the fore legs of all the samples are the shortest (Figure 1(A3,B3)). The middle legs are
relatively longer (Figure 1(A4,B4)). The hind legs of all the samples are found to be the
longest (Figure 1(A5,B5)). Further, we find that the ratios of tibia to femur for all samples
are 1.6, 1.8, 2.0, 2.2, and 2.5, respectively.
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Figure 1. Body structure of ants. (A1) Top view of black-gold Turkish Camponotus in the static 
morphology. (A2) Side view of black-gold Turkish Camponotus in the static morphology. (A3) 
Magnified fore leg of black-gold Turkish Camponotus. (A4) Magnified middle leg of black-gold 
Turkish Camponotus. (A5) Magnified hind leg of black-gold Turkish Camponotus. (A6) Top view 
of black-gold Turkish Camponotus in the load-carrying morphology. (A7) Side view of black-gold 
Turkish Camponotus in the load-carrying morphology. (B1) Top view of Messor structor in the 
static morphology. (B2) Side view of Messor structor in the static morphology. (B3) Magnified fore 
leg of Messor structor. (B4) Magnified middle leg of Messor structor. (B5) Magnified hind leg of 
Messor structor. (B6) Top view of Messor structor in the load-carrying morphology. (B7) Side view 
of Messor structor in the load-carrying morphology. 
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Camponotus and the Messor structor are analyzed from video recordings. Video files are 
recorded using a Canon EOS 750 D digital camera (Canon, Tokyo, Japan) with a macro 

Figure 1. Body structure of ants. (A1) Top view of black-gold Turkish Camponotus in the static
morphology. (A2) Side view of black-gold Turkish Camponotus in the static morphology. (A3)
Magnified fore leg of black-gold Turkish Camponotus. (A4) Magnified middle leg of black-gold
Turkish Camponotus. (A5) Magnified hind leg of black-gold Turkish Camponotus. (A6) Top view
of black-gold Turkish Camponotus in the load-carrying morphology. (A7) Side view of black-gold
Turkish Camponotus in the load-carrying morphology. (B1) Top view of Messor structor in the static
morphology. (B2) Side view of Messor structor in the static morphology. (B3) Magnified fore leg of
Messor structor. (B4) Magnified middle leg of Messor structor. (B5) Magnified hind leg of Messor
structor. (B6) Top view of Messor structor in the load-carrying morphology. (B7) Side view of Messor
structor in the load-carrying morphology.

2.3. Ants in Load-Carrying Morphology

In this experiment, the load-carrying morphologies of the Black-gold Turkish Cam-
ponotus and the Messor structor are analyzed from video recordings. Video files are
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recorded using a Canon EOS 750 D digital camera (Canon, Tokyo, Japan) with a macro
lens (Canon RF 100 mm F 2.8 L Macro IS USM, Canon, Tokyo, Japan; lens focal length:
100 mm) for about 1 min. In order to observe tiny details, the camera is set to 0.26 m
extreme macro mode.

As exhibited in Figure 1(A6,B6), the left front leg and the right hind leg, the right front
leg and the left hind leg, and the middle two legs are almost in straight lines for the two
kinds of ants, so as to form a more stable state. For black-gold Turkish Camponotus, the
angle between the femur and the tibia of the front and hind legs is approximately 45◦, the
angle between tibia of the front and hind legs and the horizontal axis is approximately 65◦.
The angle between the femur and tibia of the middle legs is approximately 30◦, and the
angle between tibia of the middle legs and the horizontal axis is approximately 70◦.

Correspondingly, the angle between the femur and the tibia of the front and hind legs
of the Messor structor is approximately 65◦, and the angle between tibia of the front and
hind legs and the horizontal axis is approximately 75◦. Additionally, the angle between the
femur and the tibia of the middle legs is approximately 45◦, and the angle between tibia of
the middle legs and the horizontal axis is approximately 80◦.

3. Construction of Bio-Inspired Ant Lattice Structure
3.1. Design of Bio-Inspired Ant Lattice Structure

Inspired by ants, the lattice structure is designed with a total of 12 sides, including six
short sides and six long sides, as depicted in Figure 2a,b. The short side ls corresponds to
the femur of an ant, and the long side ll corresponds to the tibia of an ant. The left front
leg and the right hind leg, on one hand, and the right front leg and the left hind leg, on
the other, are respectively on the diagonal section of the cube, and the left middle leg and
right middle leg are on the middle section of the cube. In order to simplify the model, it is
assumed that the left front leg and the right hind leg, on one hand, and the right front leg
and the left hind leg, on the other, have the same parameters: the length of the short side
lsd, the length of the long side lld, the angle between the short side and the long side αd, and
the angle between the long leg and the horizontal axis βd, where the subscript d represents
the diagonal section, as exhibited in Figure 2d. Correspondingly, the short side, the long
side, the angle of the left middle leg and the right middle leg, and the angle between the
long leg and the horizontal axis are lsm, llm, αm and βm, respectively, where the subscript m
represents the middle section, as exhibited in Figure 2c.

For the diagonal section, based on the Pythagorean theorem, the following equation
is satisfied:

lld cos βd + lsd cos(π − αd − βd) =

√
2

2
h (1)

For the middle section, based on the Pythagorean theorem, the following equation
is satisfied:

llm cos βm + lsm cos(π − αm − βm) = h (2)

where h represents the macroheight of the ant lattice.
According to the research on the static morphology of the Black-gold Turkish Cam-

ponotus and the Messor structor, the ratio of the long side to the short side ll/ls can be taken
as 1.6, 1.8, 2.0, 2.2, and 2.5. According to the research on the load-carrying morphology pf
the Black-gold Turkish Camponotus and the Messor structor, the diagonal section the angle
between the short side and the long side αd can be taken as 45◦ and 65◦, respectively, and
the equivalent angle between the long leg and the horizontal axis βd can be taken as 65◦

and 75◦, respectively. For the middle section, the angle between the short side and the long
side αm can be taken as 30◦ and 45◦, respectively, and the equivalent angle between the long
leg and the horizontal axis βm can be taken as 70◦ and 80◦, respectively. In addition, two
random ratios of the long leg to the short leg, 2.7 and 3.0, respectively, are introduced for
comparison. Based on the above data, 14 bionic lattice structures are established. According
to the ratio of length change, the angle between the short side and the long side in the
diagonal section, the equivalent angle between the long leg and the horizontal axis in the
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diagonal section, the angle between the short side and the long side in the middle section,
and the equivalent angle between the long leg and the horizontal axis in the middle section,
14 lattice structures are defined: FBTC1, FMS1, FBTC2, FMS2, MBTC1, MMS1, MBTC2,
MMS2, HBTC1, HMS1, RBTC1, RMS1, RBTC2, and RMS2. The specific parameters of the
14 lattice structures are shown in Table 1.
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Figure 2. Bio-inspired ant lattice structure design. (a) Top view of 3D parameterized model, (b)
three-dimensional drawing of parameterized model, (c) parameters of middle section, (d) parameters
of diagonal section, and (e) three-dimensional drawing of bio-inspired ant lattice structure.

Table 1. The specific parameters of bionic cell structures.

No. Units ll/ls αd βd αm βm Fundamental Frequency

1 FBTC1 1.6 45◦ 65◦ 30◦ 70◦ 3564
2 FMS1 1.6 65◦ 75◦ 45◦ 80◦ 3145
3 FBTC2 1.8 45◦ 65◦ 30◦ 70◦ 4713
4 FMS2 1.8 65◦ 75◦ 45◦ 80◦ 4342
5 MBTC1 2.0 45◦ 65◦ 30◦ 70◦ 5326
6 MMS1 2.0 65◦ 75◦ 45◦ 80◦ 4832
7 MBTC2 2.2 45◦ 65◦ 30◦ 70◦ 5946
8 MMS2 2.2 65◦ 75◦ 45◦ 80◦ 5453
9 HBTC1 2.5 45◦ 65◦ 30◦ 70◦ 6794

10 HMS1 2.5 65◦ 75◦ 45◦ 80◦ 6287
11 RBTC1 2.7 45◦ 65◦ 30◦ 70◦ 6024
12 RMS1 2.7 65◦ 75◦ 45◦ 80◦ 5461
13 RBTC2 3.0 45◦ 65◦ 30◦ 70◦ 5277
14 RMS2 3.0 65◦ 75◦ 45◦ 80◦ 4795

The outer envelope size of all units is 10 × 10 × 10 mm3, and the macroheight of the ant lattice h = 10 mm.
Note: (1) fore black-gold Turkish Camponotus 1 cell structure, (2) fore Messor structor 1 cell structure, (3) fore
black-gold Turkish Camponotus 2 cell structure (4) fore Messor structor 2 cell structure, (5) middle black-gold
Turkish Camponotus 1 cell structure, (6) middle Messor structor 1 cell structure, (7) middle black-gold Turkish
Camponotus 2 cell structure, (8) middle Messor structor 2 cell structure, (9) hind black-gold Turkish Camponotus
1 cell structure, (10) hind Messor structor 1 cell structure, (11) random black-gold Turkish Camponotus 1 cell
structure, (12) random Messor structor 1 cell structure, (13) random black-gold Turkish Camponotus 2 cell
structure, and (14) random Messor structor 2 cell structure.

3.2. Finite Element Analysis

In this chapter, the stability of these lattices is verified by conducting a simulation
analysis. First, the stability of the unit is tested. The finite element modeling of these
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14 units is carried out by using the commercial software MSC/Patran [44], as shown in
Figure 3b. In order to ensure the accuracy of the calculation, the mesh size of 0.5 mm is
selected for modeling. The boundary conditions are uniformly set to full constraints at the
ends of the six long sides in Figure 3c. The same material is used for the finite element
model of these units.
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Figure 3. Finite element models of bio-inspired ant lattice structure. (a) Bio-inspired ant cellular
structure, (b) finite element model of bio-inspired ant cellular structure, (c) constraints of finite
element model of bio-inspired ant cellular structure, (d) first-order mode shape of bio-inspired ant
cellular structure, (e) the top-to-top lattice structure, (f) finite element model of the top-to-top lattice
structure, (g) constraints of finite element model of the top-to-top lattice structure, (h) first-order
mode shape of the top-to-top lattice structure, (i) the foot-to-foot lattice structure, (j) finite element
model of the foot-to-foot lattice structure, (k) constraints of finite element model of the foot-to-foot
lattice structure, and (l) first-order mode shape of the foot-to-foot lattice structure.

According to Table 1, under the same load-bearing form (when the values of α and β
are constant), the fundamental frequency of these units increases with the increase in the
ratio of long legs to short legs. When the ratio of long legs to short legs reaches 2.5, the
fundamental frequency of the unit reaches the maximum. After that, with the increase in the
ratio of long legs to short legs, the fundamental frequency of the unit gradually decreases.
Correspondingly, when the ratio of long legs to short legs is constant, the fundamental
frequency under the first load-bearing form is higher. By comparison, the fundamental
frequency of the ninth HBTC1 unit is the highest.

Further studies are conducted on the HBTC1 unit. The unit can form two lattice
structures by different stacking methods, including a top-to-top lattice structure (Figure 3e)
and a foot-to-foot lattice structure (Figure 3i). Both of these lattice structures are modeled
by using the commercial software MSC/Patran. In order to ensure the accuracy of the
calculation, a mesh size of 0.5 mm is selected for modeling, as shown in Figure 3f,j. The
boundary conditions of the top-to-top lattice structure are uniformly set to be fully con-
strained at the ends of the six long sides, as shown in Figure 3g. The boundary conditions
of the foot-to-foot lattice structure are applied at the junction of the long and short legs
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for full constraints, as shown in Figure 3k. Similarly, the same material is chosen for the
two lattice structures. A modal analysis is performed on the finite element model of the
two lattice structures by using the commercial software MSC/Nastran. The first-order
fundamental frequency of the top-to-top lattice structure is 2374 Hz, and the first-order fun-
damental frequency of the foot-to-foot lattice structure is 1607 Hz, as shown in Figure 3h,l.
By comparison, the stability of the top-to-top lattice structure of the HBTC1 unit is better.

3.3. Manufacture of Bio-Inspired Lattice Structure

The top-to-top lattice and the foot-to-foot lattice (size: 40 mm× 40 mm× 40 mm) of the
HBTC1 unit are additively manufactured by using the FS403P platform. In order to unify the
mechanical properties of bio-inspired lattice structures and ensure the consistency principle
of structure comparison, the same parameters are used when the bio-inspired lattice
samples are manufactured by additive manufacturing, and the 3D printing parameters are
recorded, as shown in Table 2. Two samples of the top-to-top lattice and the foot-to-foot
lattice are exhibited in Figure 4.

Table 2. FS403P 3D-printing parameters.

Parameters Scanning
Speed (mm/s)

Build Cavity
Temperature (◦C)

Laser Power
(W)

Preheating
Temperature (◦C)

Jumping
Speed (mm/s) Material

Tensile sample 7.62 169 22 140 2.54 Nylon

1 

 

 

Figure 4. Vibration experiment. (a) The top-to-top lattice, (b) sweeping curve of the top-to-top lattice,
(c) the foot-to-foot lattice, and (d) sweeping curve of the foot-to-foot lattice.

3.4. Experimental Verification

The acceleration test is used to verify the structural stiffness and the accuracy of
simulation results between the top-to-top lattice and the foot-to-foot lattice of the HBTC1
unit. The result of the fundamental frequency is obtained according to the acceleration
test. The two lattices are manufactured by additive manufacturing. The test piece is
fixed on the platform by using four screws on the white adapter, and the micro three-way
sensor is arranged on the side of the test piece with glue to collect the acceleration data, as
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exhibited in Figure 4. The first-order fundamental frequencies of the two lattice structures
are determined according to the peak points of the sweep frequency curves, which are
2186 Hz and 1458 Hz, respectively. According to Table 3, the error rates of the simulation
results and the experimental results are 8.0% and 9.2%, respectively. Contrasted with the
simulation result, the reason for the low experimental results may be due to the process
problems of additive manufacturing. The results of both the simulation analysis and the
stiffness experiment show that the stiffness of the top-to-top ant lattice of the HBTC1 unit
is better.

Table 3. Comparison of small-scale characteristic sweep test results and simulation results.

The Top-to-Top Lattice The Foot-to-Foot Lattice

Low-level vibration test results/Hz 2186 1458
Simulation results/Hz 2374 1607

Error rate 8.0% 9.2%

The compression experiment is carried out on the universal tensile-testing machine
(KQL computer-controlled electronic universal testing machine, Liu, R., Changchun, Jilin,
China) at room temperature (RT). The data on force and displacement during the loading
process are transmitted to the computer from sensors mounted on the testing machine.
Their experimental compression velocity is 1 mm/min.

Figure 5a depicts the force-displacement curve of nylon material compression for
vibration simulations. It can be seen from the compression results in Figure 5b that the
peak load of the top-to-top lattice is 245.8 N higher than that of the foot-to-foot lattice,
indicating that the top-to-top lattice has extremely high structural stiffness and strength. In
addition, it can be seen in Figure 5c that in the initial deformation stage of the structure, the
foot-to-foot lattice shows a supporting effect in the outward deformation and has a strong
anti-deformation ability, while in Figure 5d, the top-to-top lattice shows a lateral bending
in the deformation and is prone to deformation from the deformation mode. Therefore, the
top-to-top lattice of the HBTC1 unit is selected to fill the solid mixture structure, and the
feasibility of this method is verified.
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Figure 5. Compression experiment. (a) Material compression experiment diagram; (b) compression
experiment diagram of two samples; (c) compression process of the top-to-top lattice sample at the
displacement of 0.5 mm, 1 mm, and 1.5 mm; and (d) compression process of the foot-to-foot lattice
sample at the displacement of 0.5 mm, 1 mm, and 1.5 mm.

4. Application of Bio-Inspired Lattice Structure in the Support Structure of the
Fengyun-3 Satellite Payload
4.1. The Original Design of the Support Structure

The support structure is designed for connecting the horizontal support and the
vertical support; this connection plays an important role in the design of the Fengyun-3
satellite payload. The upper part of the structure is fixed with vertical support by initiating
explosive devices, and the bottom part is connected with horizontal support by using
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screws. The geometric features and dimensions are shown in Figure 6. The thickness of the
upper and bottom parts is 10 mm, and the thickness of the middle part is 10 mm.

Materials 2023, 16, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 6. The support structure with load and boundary conditions and geometric dimensioning. 

(a) Load and boundary condition and (b) geometric dimensioning. 

Table 4. Properties of selected aluminum alloy. 

Material Aluminum Alloy 

Brand 7A09 

Young’s modulus (E) 71 GPa 

Poisson’s ratio (m) 0.33 

Density ( ) 2700 kg/m3 

Yield limit 470 MPa 

4.2. The Optimal Design of the Support Structure 

In order to achieve the goal of lightweight design, a four-step procedure is carried 

out to design and optimize the solid-lattice hybrid structure inspired by ants, by 

combining topology optimization, bio-inspired lattice structure filling, and size 

optimization. First of all, the initial optimization model is obtained through topology 

optimization to pursue the optimal material distribution. The model is divided into two 

parts: the gray area is the nondesignable area, and the green area is the designable area. 

They are illustrated in Figure 7a. A 30% volume fraction constraint is set for optimization, 

and the optimization objective is to maximize the fundamental frequency. The topology 

optimization result with a symmetry constraint is depicted in Figure 7b. Second, the 

model is manually divided according to the distribution of pseudodensity values ( ). 

Minimum pseudodensity regions ( ) are removed, low pseudodensity regions (

) are converted into lattice filled parts, and high pseudodensity regions (

) are kept as solid parts. In addition to the distribution of the pseudodensity 

value, the influence of the main bearing path should also be considered. At the same time, 

in order to convert this optimization result into an actual engineering structure, some 

minor details need to be ignored. The reconstructed model, the total mass of which is 4.21 

kg, is exhibited in Figure 7c. Subsequently, according to the reconstructed model, a solid-

lattice hybrid model is established, in which four Y-shaped supporting parts are filled 

with ant lattices. Finally, size optimization has been carried out to obtain the optimal 

Figure 6. The support structure with load and boundary conditions and geometric dimensioning.
(a) Load and boundary condition and (b) geometric dimensioning.

The finite element model of the support frame is established, which can be broken
down into 49,315 elements and 13,202 nodes, as shown in Figure 7a. In order to save
computational costs and ensure a high-quality mesh model, these tiny bolt holes are
ignored in the process of building the finite element model. Because the bottom part of the
support structure is connected to the horizontal support, it is assumed that the bottom part
is fixed. The mesh nodes near the position of the screw holes are fully constrained as the
boundary condition, and the concentrated force, F = 20 kN, is applied at the center of the
upper part along the vertical direction. It is assumed that a common aluminum alloy-7A09
is used to manufacture the support structure. The basic properties of 7A09 are shown in
Table 4. The total mass of the support structure is 5.02 kg. The first-order fundamental
frequency of the structure is 305.3 Hz, obtained through modal analysis.

Table 4. Properties of selected aluminum alloy.

Material Aluminum Alloy

Brand 7A09
Young’s modulus (E) 71 GPa

Poisson’s ratio (m) 0.33
Density (ρ ) 2700 kg/m3

Yield limit 470 MPa
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4.2. The Optimal Design of the Support Structure

In order to achieve the goal of lightweight design, a four-step procedure is carried out
to design and optimize the solid-lattice hybrid structure inspired by ants, by combining
topology optimization, bio-inspired lattice structure filling, and size optimization. First of
all, the initial optimization model is obtained through topology optimization to pursue
the optimal material distribution. The model is divided into two parts: the gray area is
the nondesignable area, and the green area is the designable area. They are illustrated in
Figure 7a. A 30% volume fraction constraint is set for optimization, and the optimization
objective is to maximize the fundamental frequency. The topology optimization result with
a symmetry constraint is depicted in Figure 7b. Second, the model is manually divided
according to the distribution of pseudodensity values (ρi). Minimum pseudodensity regions
(ρi < 0.1) are removed, low pseudodensity regions (0.1≤ ρi ≤ < 0.7) are converted into lattice
filled parts, and high pseudodensity regions (ρi ≤ 0.7) are kept as solid parts. In addition to
the distribution of the pseudodensity value, the influence of the main bearing path should
also be considered. At the same time, in order to convert this optimization result into an
actual engineering structure, some minor details need to be ignored. The reconstructed
model, the total mass of which is 4.21 kg, is exhibited in Figure 7c. Subsequently, according
to the reconstructed model, a solid-lattice hybrid model is established, in which four Y-
shaped supporting parts are filled with ant lattices. Finally, size optimization has been
carried out to obtain the optimal cross-sectional area of the lattice structure under specified
loads and constraints. To ensure that the final design meets the weight requirements,
a mass constraint of 4.2 kg is introduced in the size-optimization problem. The final
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optimization model of the solid-lattice hybrid model is illustrated in Figure 7d. The mass
of the solid-lattice hybrid model is 3.43 kg.

4.3. Mechanical Performance Verification of the Solid-Lattice Hybrid Structure

The solid-lattice hybrid FE model is also completed by using the commercial software
MSC/Patran. In order to ensure the accuracy of the calculation, a mesh size of 1 mm is
selected for modeling. The boundary conditions are uniformly set to be fully constrained
at the position of the screw holes, the same as the original design.

The modal analysis of the reconstructed solid-lattice hybrid model is carried out by
using MSC/Nastran. As shown in Figure 8(a1–a3), the first three fundamental frequencies
of the solid-lattice hybrid structure are 290.6 Hz, 291.4 Hz, and 438.3 Hz. Compared with the
initial design model, the mass of the optimized model decreases by 32%, but the first-order
fundamental frequency decreases by only 4.8%. It is proved that this solid-lattice hybrid
structure inspired by ants has excellent stiffness characteristics for a lightweigh structure.
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Figure 8. Simulation analysis result graph. (a1) First-order mode diagram, (a2) second-order mode
diagram, (a3) third-order mode diagram, (b1) von Mises stress distribution of 3D elements of the
reconstructed solid-lattice hybrid structure, and (b2) von Mises stress distribution of 1D elements of
the reconstructed solid-lattice hybrid structure.

Furthermore, it is necessary to verify the strength of the structure. In order to ensure
the safety of aerospace structures, under the yield limit load conditions, the structural
parts of the products should have a positive safety margin M.S., and M.S. is defined as
follows [45]:

M.S. =
[σ]

σMAX · f
− 1 (3)

where σ represents the yield limit, σMAX represents the maximum stress generated by the
identification load, and f represents the safety factor, which is generally taken as 1.2.

For the reconstructed solid-lattice hybrid model, a stress analysis is performed under
the prescribed load and boundary conditions to verify the strength of the structure. The
von Mises stress distribution of the reconstructed solid-lattice hybrid model is shown
in Figure 8(b1,b2). The maximum value is 106.8 MPa, occurring at the place where the
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concentrated force is applied. The stress distribution of the rest of the structure is uniform,
and the value is small. For the reconstructed solid-lattice hybrid model, the safety margin
M.S. = 2.67, indicating that the reconstructed solid-lattice hybrid structure has good strength
characteristics on the basis of ensuring a lightweight structure. It also proves the feasibility
of this multiscale optimization method, inspired by ants, to ensure that aerospace structures
are lightweight.

5. Conclusions

In order to further improve the effect of a lightweight structure, this paper proposed
a bionic design method of providing lattice structure filling for the support structure of
the Fengyun-3 satellite payload inspired by ants. In order to realize this bionic design, we
proposed a parameterized design method providing of lattice structure based on an ant-leg
configuration. In order to compare the stiffness and strength performance, a modal analysis
and a stress analysis were carried out on the original design model and the reconstructed
optimization model. The conclusion is summarized as follows:

(1) In view of the research on the leg configuration characteristics of two classic ants,
namely the Black-gold Turkish Camponotus and the Messor structor, regarding their static
morphology and load-carrying morphology, it can be seen that the HBTC1 cell has the
highest stiffness among the 14 cells, according to the simulation analysis.

(2) The two stacking methods of the HBTC1 cell, namely the top-to-top lattice structure
and the foot-to-foot lattice structure, were simulated and tested. It was found that the
top-to-top lattice structure had better stiffness and anticompressibility, which was selected
to fill the solid mixture structure.

(3) The multiscale optimization method, which combined topology optimization, bio-
inspired lattice structure filling, and size optimization, was applied to the lightweight
design of the support structure of the Fengyun-3 satellite payload. Compared with the
initial design model, the mass of the solid-lattice hybrid optimized model decreased by
32%, but the first-order fundamental frequency decreased by only 4.8%. Meanwhile, the
safety margin of the solid-lattice hybrid optimized model was 2.67, which was greater than
zero. This indicated that the reconstructed solid-lattice hybrid structure had good stiffness
and strength characteristics to ensure a lightweight structure.
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