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Abstract: Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland
cement, the most widely used type of cement. However, the hydration reaction and mechanical
properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and
age. Due to the complex interactions between the precursors in CAC, traditional analytical models
have struggled to predict CAC binders’ compressive strength and porosity accurately. To overcome
this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The
study begins by using thermodynamic simulations to determine the phase assemblages of CAC at
different ages. The XGBoost model is then used to predict the compressive strength, porosity, and
hydration products of CAC based on the mixture design and age. The XGBoost model is also used
to evaluate the influence of input parameters on the compressive strength and porosity of CAC.
Based on the results of this analysis, a closed-form analytical model is developed to predict the
compressive strength and porosity of CAC accurately. Overall, the study demonstrates that ML can
be effectively used to predict the properties of CAC binders, providing a valuable tool for researchers
and practitioners in the field of cement science.

Keywords: calcium aluminate cement; XGBoost model; analytical model; compressive strength;
phase assemblage

1. Introduction

Concrete is the most widely produced-and-used material globally. While the incessant
development of global infrastructure (e.g., rapidly growing metropolises and mega-cities)
ensures that demand for concrete is ever-increasing, the production of Portland cement (PC)
presents considerable energy consumption (≈11 EJ/year [1]) and environmental impact-
(≈9% of global CO2 emission is attributed to the production of PC [2–4]) related challenges.
Calcium aluminate cement (CAC) has been explored as a sustainable alternative to PC [5–7].
The main chemical phases of CACs are calcium aluminate (CA)* and mayenite (C12A7),
whereas gehlenite (C2AS) and calcium di-aluminate (CA2) are the minor phases [8,9], where
C = CaO, A = Al2O3, H = H2O and S = SiO2. During the production of PC, the calcination
of limestone is a significant contributor to CO2 emissions, accounting for approximately
60% of the total CO2 emissions [10,11]. The lime content of PC typically ranges from 50 to
60%mass, whereas the lime content of CAC is usually between 20 to 30%mass [8,12]. As a
result, the manufacturing of CAC emits approximately half the amount of CO2 emissions
compared to the manufacturing of PC. To be specific, the production of 1 g of CAC releases
approximately 0.29 g of CO2, which is approximately 47% less than the CO2 emissions
associated with the production of PC [6,10]. In addition to environmental benefits, CAC
becomes even more appealing when we consider its rapid strength achievement. This is on
account of the rapid hydration of CAC, because of which 1-day and 7-day strength of the
CAC binder are equivalent to 7- and 28-day strengths of their PC counterparts [13–15].
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During the hydration process of CAC, various intermediate, metastable phases are
formed. These phases are called CAH10, C2AH8, and C4AHx, where “x” can be 11, 13,
or 19, depending on the relative humidity [16,17]. These phases later transform into
C3AH6 (hydrogarnet) and AH3 (gibbsite) [8]. The formation of these metastable phases are
temperature dependent. At low temperatures (below 15 0C), only CAH10 is formed [8]. As
the temperature increases, C2AH8 starts to appear in the CAC binder [18]. At around 40 ◦C,
C2AH8 is the main hydration product formed, along with alumina gel [19]. When the
temperature reaches 60 ◦C, C3AH6 and AH3 are formed without forming any metastable
phases [8,18,19]. If the CAC contains silica, C2ASH8 (straetlingite) may also be formed [9].
Straetlingite is a strength-providing phase that can improve the compressive strength of
the CAC. The phase conversion process has a significant effect on the compressive strength
of CAC. As the low-density phases (i.e., C2AH8, CAH10, and C4AHx) transform into the
high-density phase (i.e., C3AH6), the porosity of the cement increases and its compressive
strength decreases [14,20].

The conversion of metastable hydrates into stable ones is influenced not only by
temperature but also by other factors, such as the water-to-cement ratio and the pres-
ence of admixtures. The water-to-cement ratio plays a significant role in this process. At
high water-to-cement ratios, the conversion of CAH10 into C3AH6 is complete, but excess
water is left over from the reaction, leading to an increase in porosity and a decrease in
strength [12,21,22]. On the other hand, at low water-to-cement ratios, there is insufficient
water available for CAH10 to fully react and convert into C3AH6, resulting in a more signif-
icant amount of CAH10, leading to a decrease in porosity and an increase in mechanical
strength [8,23]. Several studies [8,24–26] have found that inorganic salts can significantly
impact the hydration reaction of CAC. It is generally agreed upon that lithium salts acceler-
ate the hydration of alumina-based cementitious materials, with Li2CO3 being the most
common and effective accelerator [26,27]. The addition of Li2CO3 reduces the time-to-set of
CAC (i.e., the time until initial hydrates form) and increases strength development at early
ages [25]. However, the use of inorganic salts also has a negative effect, as they decrease the
setting times of high alumina-containing CACs and hinder the development of mechanical
properties at later ages [25,28]. According to Luong et al. [29], accelerating admixtures only
affect the hydration kinetics of CAC initially, prolonging the precipitation of CAH10 and
C2AH8. However, once the hydration products start to form, accelerating admixtures do
not affect the rate of CAC hydration [30].

Based on the above discussion, it is clear that the mixture design and processing
parameters have a significant impact on the mechanical properties and hydration products
of CAC. To better understand the influence of these parameters on cementitious materials,
previous studies [31–38] have developed several analytical models to predict the compres-
sive strength. These models help researchers to quantitatively understand the effects of
different mixture designs and processing parameters on the performance of CAC. The
selective equations for analytical models are listed in Table 1. Where: f ′c is compressive
strength; Vi is volume of the component i; w, c, and a represents water, cement, and air
content, respectively; α is degree of hydration; t is cement curing age; τ is reference curing
age; and A, B, and n are coefficients.

Table 1. Analytical models used to predict the compressive strength of cementitious materials.

Analytical Model Reference

f ′c = A
(

Vc
Vc+Vw+Va

)B Feret et al. [37]

f ′c =
A

Bw/c Abrams et al. [38]

f ′c = A(X)B = A
(

0.66α
w+Va

c +α

)B
Powers et al. [31]

f ′c =
(

A + B w
c
)
e[−τ/tn ] Gavela et al. [36]
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The first-generation analytical models to predict the compressive strength of cementi-
tious material were proposed by Feret et al. [37] and Abrams et al. [38], which reinforced the
effect of the water-to-cement ratio on the consequent compressive strength. However, these
two models did not account for other vital factors (i.e., aggregate content, admixture, curing
condition, and concrete age) that are widely known to affect mechanical property devel-
opment. In 1946, Powers et al. [31] amended the relationship presented by Feret et al. [37]
by introducing the degree of hydration and gel-to-space ratio terms. Karni et al. [32]
refined the gel-to-space ratio parameter by relating it to the total reacted paste volume.
In 2000, Tango et al. [33] simplified the Powers’ equation and initially applied time (i.e.,
concrete age) to the equation. Around the same time, Popovics et al. [34,39] incorporated
air and C3S content into Abrams et al.’s model [38]. More recently, multi-factor models—as
developed by AL-Shukaili et al. [35] and Gavela et al. [36]—were established to account
for the complex cement mixture designs (i.e., water-to-cement ratio; percentage of steel
fiber; cement content; aggregate content; and aspect ratio). In particular, Gavela et al. [36]
developed a sigmoidal function model to predict the compressive strength of concrete via
similar mixture design and processing methods in relation to the water-to-cement ratio and
curing time.

However, those models cannot accurately predict the compressive strength of CAC
due to several knowledge gaps that exist in the aforesaid analytical models. One of the main
reasons is that most of these models were initially developed for PC, which has different
strength-providing phases and hydration mechanisms compared to CAC. Next, coefficients
in analytical models are not generic, which means that they need to be calibrated each time
they are used to predict the compressive strength of a new CAC. Additionally, due to the
incomplete understanding of CAC, some theories and parameters cannot be included in
analytical models, resulting in lower prediction accuracy. Therefore, an advanced model is
required to produce the compressive strength of CAC in a high-fidelity manner.

Machine learning (ML) techniques, a data-driven approach, are a promising tool to
achieve reliable predictions of the compressive strength of CAC. ML is an emerged ap-
proach used by many studies related to cementitious materials. Previous studies have
employed ML models to predict the compressive strength of cementitious materials. Ar-
tificial neural networks (ANN) have been used to predict the compressive strength of
self–compacting concrete containing bottom ash and self-compacting concrete after ex-
posure to high temperatures [40,41]. Dantas et al. and Duan et al. [42,43] have applied
the support vector machine model to predict the compressive strength of concrete made
from recycled aggregate. Particle swarm optimization adaptive network-based fuzzy in-
terference and Genetic algorithm adaptive network fuzzy interference models have been
developed to predict the compressive strength of alkali-activated concrete made from steel
slag [44]. The gray model, a combination of ML and theoretical models, is developed to
accurately predict the shear capacity of reinforced concrete [45]. Mangalathu et al. [46] have
explored the ability of ML models in predicting the failure mode of reinforced concrete
shear walls. Our previous studies [47–50] have also shown that ML is powerful enough
to predict and optimize the mechanical properties of PC and alkali-activated cement. Al-
though ML demonstrates outstanding performance in predicting the properties of various
cementitious materials, it has not been utilized to predict the compressive strength of CAC.

Overall, the objective of this study is to provide an accessible method to predict the
properties of CAC binders. First, thermodynamic simulations are utilized to obtain phase
assemblages at given ages. The XGBoost model is then employed to learn correlations
between properties (i.e., compressive strength, porosity, and phase assemblage) and mixture
designs, and subsequently produce reliable predictions of those properties. A closed-form
analytical model is then developed to predict the compressive strength and porosity based
on the variable importance evaluated by the XGBoost model. The analytical model can help
end-users who cannot use ML to predict the compressive strength and porosity of CAC
binders before starting cumbersome experiments. To the authors’ best knowledge, this is
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the first study to develop ML and analytical models to predict time-dependent compressive
strength and phase assemblages of CAC in relation to mixture designs.

2. Modeling Methods
2.1. Thermodynamic Model

Several studies [17,51,52] have shown that thermodynamic modeling, coupled with
accurate and complete thermodynamic databases, can accurately simulate phase assem-
blages of hydrates and anhydrates based on the chemical composition of cement. The
following paragraphs describe the parameters for Gibbs Free Energy Minimization Soft-
ware (GEMS) [53,54] simulation and the details of the GEMS simulation itself. The accuracy
and completeness of the physicochemical properties of precursors and products used in
thermodynamic modeling are critical to the quality of the results. These properties can
typically be found in the literature and thermodynamic databases. In this study, the thermo-
dynamic data for aqueous species and solids are taken from the PSI-GEMS thermodynamic
database, while the solubility products for cement minerals are taken from the Cemdata
14.01 database [55,56]. An extended Debye-Huckel equation [57] is used to calculate the
activity coefficients of the aqueous species.

The performed GEMS simulations utilized the initial mixture design parameters of
a given binder (i.e., as inputs at 25 ◦C. The GEMS calculated the volume of all reactants
and hydration products with respect to the degree of hydration. Figure 1 is an example
of phase assemblage obtained from the thermodynamic simulation for a CAC binder
with a 0.3 water-to-cement ratio. Based on this figure, the hydration process stops at 42%
because of a lack of sufficient water to fully hydrate the CAC. This phase assemblage
can help researchers to discover the hidden correlations between hydration products and
properties at different hydration levels. For example, when 10% CAC reacts with water, it
forms 28.571%vol unreacted CAC, 6.1784%vol C4AH19, 0.7046%vol straetlingite, 1.2367%vol
gibbsite, 0.0418%vol hematite, and 0.2745%vol magnetite. The compressive strength would
be low because the volume of strength providing phases (i.e., C4AH19 and straetlingite)
are low. The phases shown in the figure are in agreement with findings in prior studies.
Lothenbach et al. [16] and Barnes et al. [18] have discovered that C4AH19, straetlingite, and
gibbsite are the main hydration products at 25 ◦C.
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Figure 1. Phase assemblage of CAC estimated through GEMS at various degrees of reaction. The
dashed line indicates the phase assemblage at 10% reacted CAC based on the degree of hydration
estimated from compressive strength. After 41.3% of CAC reacted, the hydration reaction was
terminated due to insufficient water.
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2.2. XGboost Model

The XGBoost model [58] is an advanced classification and regression tree (CART) model.
It uses the gradient boosting technique [59] to combine a set of weak base learners into
strong learners through additive functions. The XGboost model is designed to be paral-
lelizable, computationally efficient, and to prevent overfitting. Similar to the conventional
CART model, the XGBoost also grows through binary split in a hierarchical fashion. How-
ever, the gradient boosting technique allows XGBoost to utilize the objective function
(Equation (1)), a combination of cost function and regularization (Ω) at each node, and to
train new trees with residual errors (Equation (2)) from previous trees. Therefore, the final
output compensates for errors produced by each weak learner.

Obj = ∑
i

L(ŷi, yi) + ∑
k

( fk)where ( f ) = γT +
1
2

λω2 (1)

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (2)

Here, L is the loss function that measures differences between prediction ŷi and target
yi; ŷ(t)i is the prediction at t-th iteration; Ω(fk) penalizes the complexity of tree fk; T is the
number of leaves of tree fk; ω is the leaf weights; γ is the complexity of each leaf, and λ is
the vector of scores on leaves. Second-order Taylor expansion is then applied to optimize
the objective function in the general setting [60], as shown in Equation (3).

Obj(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + ( ft)=

T

∑
j=1

[(∑
i∈Ij

gi)ωj +
1
2

∑
i∈Ij

hi + λ)ω2
j

+ γT (3)

Here, gi and hi are the first and second, respectively, a derivate of the loss function
(L); Ij represents all instances at leaf node j. The objection functions before and after the
split (Equations (4) and (5)) are compared to determine the effectiveness of a certain split. I
is the instance set before the split. IL and IR are instance sets of left and right nodes after
the split. The comparison can be applied to every possible split. If the decision tree’s
performance improves after the split, this modification will be accepted; otherwise, the
split will be terminated.

Objlea f = −
1
2

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γ (4)

Objsplit = −
1
2

(
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

)
+ 2γ (5)

Due to the abovementioned architectures, the XGBoost model has several unique
features. First, the objective function effectively eliminates overfitting, and thus the XGBoost
model converges at a global minimum quickly after a few iterations and maintains the
level constantly [61]. Moreover, the objective function used in XGBoost automatically
penalizes individual trees, which allows each tree to have a different number of leaves
and increases the diversity between trees. This helps prevent overfitting and improves the
overall performance of the model. Another unique feature of XGBoost is the use of shrinkage,
which reduces the influence of individual trees and nodes on future trees. This ensures that
the model is able to develop rational input-output correlations and improve its accuracy.
Furthermore, XGBoost includes a randomization parameter known as subsampling [58],
which decorrelates individual trees. This helps to prevent overfitting and improves the
model’s ability to generalize to new data. Overall, the XGBoost model is easy to implement
and only requires manual adjustment of a few hyperparameters, such as the shrinkage and
the number of iterations. This makes it a popular choice among data scientists and machine
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learning practitioners. In this study, the optimal shrinkage and the number of iterations were
0.2 and 300.

3. Database

In this study, the experimental data porosity and compressive strength of CAC were
obtained from Matusinovic et al.’s study [62]. The CAC was supplied by Istra Cement
International, Pula, Croatia, a part of the Heidelberger Zement Group. The CAC had
40.2%mass CaO, 39.0%mass Al2O3, 11.7%mass Fe2O3, 4.3%mass FeO, and 1.9%mass SiO2. The
principal mineral phase was monocalcium aluminate (CA), with C12A7, C6AF2, and C2S
as minor phases. The Li2CO3 used was a commercial Analar grade reagent [62]. In
mixture designs of CAC binders, water-to-cement ratios were 0.2, 0.25, and 0.3; the Li2CO3
contents were 0, 0.001, 0.003, 0.005, 0.007, and 0.01%mass. The ages of CAC binders were
1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 72, and 168 h. The compressive strength measurement was
conducted based on ASTM C349 [63] and ASTM C109 [64]. The compressive strength
for each binder was calculated as the average of measurements of triplicate specimens.
All experiments were conducted consistently under the abovementioned experimental
conditions. In Matusinovic et al.’s study [62], total water (TW) and bound water (BW)
in each binder were measured. This information was used to calculate porosity in CAC
binders. The TW and BW were calculated by the mass difference between the crushed
sample and the sample after removing all water or free water through ignition. The quantity
of TW and BW was expressed per 100 g of ignited material. The total porosity (%) is defined
as the fraction of the cement paste volume filled with free water, as shown in Equation
(6) [24,62,65]. Here, ρH2O is the density of water (g/cm3); ρS is average density of acetone–
dried CAC paste (g/cm3; including the hydrates and the fraction of non-reacted cement).
After determining the porosity of the CAC binder, the degree of hydration of CAC was
estimated. To obtain accurate phase assemblages, it is necessary to carefully specify the
degree of hydration of CAC in thermodynamic simulations. The GEMS simulations are
performed in a range of degrees of hydration of CAC. Afterwards, the porosity in the phase
assemblage is compared to the porosity calculated using Equation (6). If the two porosities
match, a straight line is drawn on the phase assemblage figure, which indicates the degree
of hydration of the CAC and the volume of the anhydrates and hydrates.

P =
(TW− BW)/ρH2O
100+BW

ρs
+ TW−BW

ρH2O

(6)

In this study, compressive strength, porosity, and phase assemblage of CAC binders
in relation to mixture design and age are consolidated into a single database (shown in
Table S1), which consists of 171 unique data-records. All data-records from Matusinovic
et al. [62] are included in the database. This is because the database is adopted from
the literature, and there is no possible mechanism to distinguish data-records that were
measured accurately from ones that are erroneous. Therefore, for all data-records, we
simply assume that all data-records were obtained from proper measurements and were
reported accurately, and, therefore, there is no need to “sanitize” the database. The training
dataset comprises 75% random-selected data-records from the parent database, and the
remaining data-records are utilized as a testing dataset. Through the training dataset,
the ML model discovers underlying correlations between mixture design and property.
The testing dataset is used to validate the performance of the ML model. Overall, the
parent database comprised of three input variables and six outputs. The inputs included
mixture designs of the CACs: water-to-cement ratio (unitless); Li2CO3 content (%mass);
and cement age (hour). The outputs are compressive strength (MPa), porosity (%Vol),
C4AH19 content (%Vol), Straetlingite content (%Vol), Gibbsite content (%Vol), and Solid
content (%Vol). Other hydrate phases (i.e., Hematite and Magnetite) were not investigated
because they were minor phases and provided little-to-no strength. The curing condition
was not considered as an input parameter because all the experiments were conducted
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under identical curing conditions. The statistical parameters pertaining to the database
are itemized in Table 2. Four statistical parameters—Pearson correlation coefficient (R);
coefficient of determination (R2); root mean squared error (RMSE); and mean absolute error
(MAE)—are used to evaluate the prediction performance of the XGBoost model.

Table 2. Summary of minimum, maximum, mean, and standard deviation of the CAC database
population related to three inputs and six outputs (bold). The database consists of 171 unique
data records.

Attribute Unit Min. Max. Mean Std.Dev.

Water-to-Cement Ratio Unitless 0.20 0.30 0.25 0.04
Li2CO3 Content %mass 2.55 10.91 3.89 1.17

Cement Age Hour 1 168 30.42 51.62
Compressive Strength MPa 0 79.80 33.08 26.65

Porosity %Vol 3.84 47.34 21.35 11.96
C4AH19 Content %Vol 0.74 42.23 21.78 11.44

Straetlingite Content %Vol 0.09 4.80 2.48 1.30
Gibbsite Content %Vol 0.16 8.40 4.34 2.27

Solid Content %Vol 52.64 96.13 78.65 11.96

4. Results and Discussion
4.1. Machine Learning Prediction

This study presents the prediction results of the compressive strength and hydration
products of CAC using an XGBoost model. The hyperparameters of the XGBoost model
were optimized using a 10-fold cross-validation [66] and grid-search method [67,68], ensur-
ing a robust correlation between the input and output data, accounting for any outliers in
the database and eliminating bias and variance influences.

Figure 2 demonstrates the predictions of the compressive strength and porosity against
measured/estimated values. Figure 3 exhibits predictions of the volume fraction of C4AH19,
straetlingite, gibbsite, and solid content against phase assemblages estimated by thermo-
dynamic simulations. The results of both the training and testing datasets are shown in
the figures. Four statistical parameters pertaining to the prediction results on the testing
dataset are shown in Table 3. In Figures 2 and 3, the XGBoost model produces predictions
in a high-fidelity manner, where most data-records in both testing and training datasets are
located between 10% error lines. In Table 3, the R and MAE of compressive strength are
0.94 and 5.58 MPa. The marginal error from predictions is in a reasonable range, where
the standard deviation of compressive strength measurement ≈ 5 MPa [69]. The R2 values
for the predictions of five phase assemblages are larger than 0.90, which implies that the
XGBoost model can produce reliable predictions of phase assemblages of CAC. It is not
a surprise that the XGBoost model yields reliable predictions for CAC because several
studies [61,70,71] have already demonstrated that the XGBoost model produces excellent
predictions of various properties of cementitious materials. Such reliable performance
contributes to XGBoost’s advanced structures. When each tree grows, the split at each
node must be evaluated by the objective function, which allows the model to remove
redundant leaves and perform the optimal split. In addition, the cost function helps with
the elimination of overfitting and underfitting. In the model, shrinkage, a vital parameter,
ensures that the model does not converge at local minimums. Furthermore, the randomized
subsampling characteristic guarantees that the structure of each tree is independent from
one another. Lastly, only two hyperparameters, shrinkage rate and number of iterations, are
required to be adjusted manually. However, the adjustment may be sluggish and compro-
mise accuracy [66]. To avoid such problems, the grid-search method and the 10-fold CV
method, are implemented to optimize the two hyperparameters.
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Figure 2. The XGBoost model’s predictions of: (a) compressive strength, and (b) porosity against
experimental measurements from Matusinovic et al. [62]. The coefficient of determination (R2) is
shown in the legend. The dashed line represents the line of ideality, and the solid lines represent a
±10% error bound.
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Figure 3. The XGBoost model’s predictions of: (a) C4AH19 content, (b) straetlingite content,
(c) gibbsite content, and (d) solid content against phase assemblages derived from thermodynamic
simulations. The coefficient of determination (R2) is shown in the legend. The dashed line represents
the line of ideality, and the solid lines represent a ±10% error bound.
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Table 3. Four statistical parameters (i.e., R, R2, MAE, and RMSE) evaluating the performance of
XGBoost on predictions of compressive strength, porosity, C4AH19 content, straetlingite content,
gibbsite content, and solid content.

R R2 MAE RMSE

Compressive
Strength

Unitless Unitless MPa MPa
0.9386 0.8809 5.577 8.088

Porosity Unitless Unitless %Vol %Vol
0.9578 0.9173 2.353 2.967

C4AH19
Content

Unitless Unitless %Vol %Vol
0.9789 0.9582 1.693 2.155

Straetlingite
Content

Unitless Unitless %Vol %Vol
0.9757 0.9520 0.2060 0.2598

Gibbsite
Content

Unitless Unitless %Vol %Vol
0.9757 0.9520 0.3839 0.4553

Solid Content
Unitless Unitless %Vol %Vol

0.9655 0.9322 2.205 2.716

Overall, Figures 2 and 3 demonstrate that the XGBoost model can predict the mechani-
cal properties and phase assemblages of CAC binders as a function of mixture design and
cement age. Though outside of the scope for this study, to build upon the results presented
in this section, the next step would be to employ an optimization approach to formulate
mixture designs while satisfying user-imposed thermodynamic and mechanical criteria,
even without a comprehensive understanding of the underlying nonlinear relationships.

Next, the XGBoost model is utilized to evaluate the influence of each input variable
on compressive strength and porosity. Figure 4 ranks the influence (importance) of input
variables in descending order according to their abilities to change the compressive strength
and porosity. This rank can be used as a guideline to develop analytical models by assigning
more weight to influential parameters and removing insignificant parameters.
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Figure 4. The importance of input parameters contributing to (a) compressive strength; and
(b) porosity of CAC. Parameters are listed as a descent trend in relation to their decreasing influence
on the property.

As shown in Figure 4, as expected, cement age is the most influential factor for com-
pressive strength and porosity. This is because as time passes, CAC reacts with water
to form C4AH19, gibbsite, and straetlingite, which monotonically reduces the porosity
and increases the compressive strength. The water-to-cement ratio demonstrates a more
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substantial influence than Li2CO3 content. This is because the CAC cannot form hydration
products that provide strength without sufficient water; nevertheless, excessive water
reduces the connectivity between solids and increases porosity, which, in turn, significantly
reduces the compressive strength [8,17]. Li2CO3 is evaluated to be a substantially less criti-
cal parameter compared with the other two parameters. Although Li2CO3 can accelerate
the degree of hydration of CAC, its effect on mature properties—compressive strength and
porosity—at late ages can be neglected [29].

4.2. Analytical Model Development

This section presents an analytical model development based on outcomes from the
XGBoost. Based on Figure 4, the relative importance of cement age is determined to be more
significant than the water-to-cement ratio and Li2CO3 content for this dataset. Thus, during
the development of the analytical model, cement age is given more weight than the other
inputs—which are assigned less, but equal weights due to their relative lack of influence on
compressive strength and porosity. Owing to only three input parameters (water-to-cement
ratio, Li2CO3 content, and age), Gavela’s model [36] is selected as a baseline model to
develop the simple, closed-form analytical model for CAC. In e Gavela’s model, water-to-
cement ratio and age are major input variables. AL-Shukaili’s model [35] is then utilized
to elucidate Li2CO3 content, as a first-order input, in the analytical model. The analytical
model that predicts the compressive strength and porosity of CAC is shown in Equation
(7). The porosity of cement is directly related to compressive strength; therefore, the
same equation is utilized to predict porosity. Here, Ci is the constant coefficient (unitless);
r is the water-to-cement ratio (unitless); Li is the Li2CO3 content (%mass), and t is the
cement age (hour). By using a nonlinear, gradient-descent scheme [49,72] and Nelder-Mead
multidimensional simplex algorithm [73,74], the constant and coefficients are optimized, as
shown in Table 4.

ompressive strength/Porosity =
∣∣∣(C1 + C2 ∗ r) ∗ e

−c3
t + C4 ∗ Li + C5tC6 + C7

∣∣∣ (7)

Table 4. List of coefficients of the analytical model for the compressive strength and porosity of CAC.

Compressive
Strength

C1 82.159 C2 −41.801 C3 3.632
C4 1788 C5 1.631 C6 0.274
C7 −15.422

Porosity
C1 2.610 C2 55.324 C3 −0.488
C4 −710 C5 35.542 C6 −0.258
C7 −16.192

Figure 5 shows the predicted compressive strength and porosity produced by the ana-
lytical model against measured values. The statistical parameters pertaining to prediction
accuracy are shown in Table 5. In general, the analytical model produces predictions of the
compressive strength and porosity of CAC with reasonable accuracy. The R2 and MAE of
compressive strength predictions are 0.87 and 7.67 MPa, respectively, and the R2 and MAE
of porosity predictions are 0.82 and 4.24%vol, respectively. In Figure 5, it is worth pointing
out that the predictions of compressive strength under 20 MPa exhibit higher deviation
between predicted and measured values than any other predictions owing to variations
in Li2CO3 content. Within the dataset of interest, the compressive strength under 20 MPa
were measured from the CAC binder at early ages. The Li2CO3 content nonlinearly affects
the hydration reaction at early ages, substantially increasing the variation of compressive
strength and decreasing prediction performance. A potential solution that improves the
prediction accuracy is to utilize a more extensive database or extend the current one further.
Inclusion of more data-records into the database will enhance its volume and diversity,
which, in turn, can be utilized to optimize the analytical model further and enhance pre-
diction performance. To the authors’ best knowledge, this is the first study to develop a
closed-form analytical model to predict the compressive strength and porosity of CAC.
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Table 5. Four statistical parameters (i.e., R, R2, MAE, and RMSE) evaluated the prediction perfor-
mance of the analytical model on compressive strength and porosity.

R R2 MAE RMSE

Compressive
Strength

Unitless Unitless MPa MPa
0.9351 0.8745 7.666 9.673

Porosity Unitless Unitless %Vol %Vol
0.9075 0.8236 4.244 5.065

5. Conclusions

CAC, which has traditionally been used in refractory applications, has gained popu-
larity as a CO2-efficient alternative to PC. However, the unpredictable nature of CAC has
limited its widespread adoption. Hence, there is a need to understand the composition-
property relationships in CAC. Recently, machine learning (ML) has been used to uncover
non-linear correlations between composition and properties in composite materials. By
using mixture design attributes such as cement age, water-to-cement ratio, and Li2CO3
content as inputs, ML can predict not only the porosity and compressive strength but also
the phase assemblages of hydrated CAC. However, ML techniques may not be universally
accessible. As an alternative, a novel analytical model has been developed to predict the
compressive strength and porosity of CAC.

In this study, the compressive strength and porosity of CAC was obtained from
previous studies. Based on the mixture design, thermodynamic simulations were used to
determine the phase assemblages of CAC at different degrees of hydration. The XGBoost
model was used to predict the compressive strength, porosity, and phase assemblages of
CAC in relation to the mixture design and cement age. The results showed that the XGBoost
model can produce reliable predictions of the properties of CAC. Additionally, the model
was able to evaluate the impact of different input parameters on the compressive strength
and porosity of CAC. This information was used to guide the development of a closed-
form analytical model that can predict the compressive strength and porosity of CAC.
Analytical approaches can be more desirable because they do not require any programming
background to perform predictions. The optimized analytical model produced predictions
of the compressive strength and porosity of CAC with good accuracy. In conclusion, the
prediction accuracy of both the XGBoost and analytical models could be improved by
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using a more extensive and a more diverse dataset. This study marks an important step
towards developing machine learning models to predict the properties of CAC. In the
future, a larger and more diverse database of CAC may be applied to the XGBoost model.
By learning the input-output correlations from this new database, the XGBoost model
will be able to easily predict the properties of CAC with different mixture designs and
processing parameters. Additionally, the XGBoost model has the potential to optimize the
mixture design of CAC to achieve specific target properties.
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