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1. Photothermal beam deflection spectrometry – theory

1.1 Temperature oscillations 

The temperature () distribution of i -layer satisfies the Fourier-Kirchhoff equation 

[58]: 
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  Di = ki/(cp)  (SM.1) 

where Di is thermal diffusivity, ki, cp and are the material thermal conductivity, 

heat capacity and density, respectively.qi is the power density of internal heat sources. 

These heat sources represent the heat produced by the absorption of the excitation light 

beam (EB). From here on, it was assumed that EB is only absorbed in the central layer 

comprising P3HT:PCBM and PEDOT:PSS layers. Other layers exhibit negligible light 

absorption. Thus, for them the Eq.(SM.1) can be rewritten in a form: 
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The incident light of EB is modulated with a frequency f in the range between 0 to I0. 

As a result, the power density of internal heat sources can be given by [59-64]: 
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αI0Eg

hυ
{
τ

2
[νSR +

1

τ
] + (
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− 1) [1 + exp(2iπft)]} exp(−αz); (SM.3) 

where Eg is the energy band gap,  is the carrier life time, vSR is the surface recombination 

velocity, α is the effective optical absorption coefficient of the light absorbing layer. 

Briefly, Eq.( SM.7) accounts for heat generated by (i) intraband thermalization, (ii) bulk 

and (iii) surface recombination of photogenerated charge carriers in a semiconducting 
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material [60]. Photogenerated heat is transported to near layers. In fact, the temperature 

and the heat flux are conserved at the interface between layers, which results in a set of 

boundary equations: 
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A solution of Eqs (SM.1-SM.4) is a set of temperature oscillations in given layers 

with certain thicknesses lsjand thermal properties (Dsj, ksj). The temperature oscillation 

(TOs) in the fluid above the sample is given by: 
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where   is the amplitude of TOs at the sample’s surface and is the phase shift between 

the phase of the sample surface’s temperature change and the phase of the pump beam, 

which is introduced below.  and  are functions of thermal (thermal diffusivity and 

conductivity), optical (energy band gap, absorption coefficient), transport (carrier life 

time) and structural (thickness) properties of light-absorbing layer and other layers con-

structing the whole sample (Fig. 1) as described by: 
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where IE and f are the intensity and modulation frequency of pumb beam,  and Eg are 

the absorption coefficient and energy band gap of the examined layer, Df, kf are the 

thermal diffusivity and conductivity of air over the whole sample structure, Ds1, ks1, l0 are 

the thermal diffusivity and conductivity as well as thickness of both glass layers, Ds2, ks2, l1 

are the thermal diffusivity and conductivity as well as thickness of nitrogen layer over 

P3HT:PCBM sample, Ds3, ks3, l2 are the thermal diffusivity and conductivity as well as 

thickness of P3HT:PCBM material, Ds4, ks4, l3 are the thermal diffusivity and conductivity 

as well as thickness of ITO layer. 

1.2 Photodeflection signal 

In BDS technique the sample’s surface is periodically heated by a modulated laser 

beam called excitation beam (EB) [8], what leads to inducing the temperature oscillation 

(TOs) in the fluid layer adjacent to the sample surface and thus to variation (gradients) in 

its refraction index, which depends on the optical and thermal properties of the material 

and fluid above it detected by monitoring the deflection and phase change of a probe 

beam (PB) propagating above sample close to its surface. One of the main advantages of 

BDS is the ability to vary the sampling depth by changing the value of modulation fre-

quency f of TOs. This is determined by a quantity called the thermal diffusion length th, 

which defines the distance measured from the surface of the sample into medium that is 

penetrated by TOs and expressed by: 

th = (Di/f)1/2 (SM.6) 
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where Di is the thermal diffusivity of the material, in which TOs propagates (i = s for 

sample, i = f for fluid over the sample). It turns outthat th depends on the material prop-

erties. Thus, by changing the TOs penetration depth, it is possible to obtaininformation 

about the thickness of the material layer at chosen depth determined by th. 

As a result of the PB interaction with TOs in the fluid above the sample, its trajectory 

is changed on the refractive index gradients according to the relation [65]: 
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where n0 is the refracting index of undisturbed fluid, sT = (1/n0)(dn/dT) – the temperature 

coefficient of refractive index (thermal sensitivity), τ is the running complex coordinate 

along the PB trajectory, ξ is the PB’s coordinate in the input plane of the experimental 

setup (z = 0).  

The consequence of the change in PB optical path is the change in the PB phase: 
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Thus, the PB intensity changes caused by its interaction with TO results in photodeflec-

tion (PD) signal that in case of detection by the use of quadrant photodiode (QP) is given 

by: 
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Here Kd is the detector constant, k is the wave number of PB and I0 is the light intensity of 

undisturbed PB.  




