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Abstract: The influence of P3HT:PCBM ratio on thermal and transport properties of solar cells were
determined by photothermal beam deflection spectrometry, which is advantageous tool for non-
destructively study of bulk heterojunction layers of organic solar cells. P3HT:PCBM layers of different
P3HT:PCBM ratios were deposited on top of PEDOT:PSS/ITO layers which were included in organic
bulk-heterojunction solar cells. The thermal diffusivity, energy gap and charge carrier lifetime were
measured at different illumination conditions and with a different P3HT:PCBM ratios. As expected,
it was found that the energy band gap depends on the P3HT:PCBM ratio. Thermal diffusivity is
decreasing, while charge carrier lifetime is increasing with PCBM concentration. Energy band gap
was found to be independent on illumination intensity, while thermal diffusivity was increasing and
carrier lifetime was decreasing with illumination intensity. The carrier lifetime exhibits qualitatively
similar dependence on the PCBM concentration when compared to the open-circuit voltage of operat-
ing solar cells under AM1.5 illumination. BDS and standard I-V measurement yielded comparable
results arguing that the former is suitable for characterization of organic solar cells.

Keywords: organic bulk-heterojunction solar cells; polymer-fullerene solar cells; photothermal beam
deflection spectrometry; non-radiative recombination; thermal diffusivity; frequency domain methods

1. Introduction

Semiconducting polymers are becoming increasingly important due to their potential
application in novel organic optoelectronic devices such as organic solar cells (OSCs),
organic field-effect transistors (OFET) or organic light-emitting diodes (OLED) [1,2]. As
for OSCs, substantial effort has been invested recently to improve their power conversion
efficiency (PCE). The approaches include chemical [3], structural modification [4,5] and
thermal treatment [3,6] of the layers, which form OSCs.

It is becoming increasingly present that PCE exhibits a complex dependence between
charge carrier extraction, charge carrier mobility and recombination rate of photogenerated
charge carriers [7,8]. The charge carrier extraction depends on the length of the pathway,
along which they are photogenerated, and the extraction efficiency depends on the recombi-
nation process, which can be either radiative or non-radiative [9]. Moreover, recombination
significantly depends on the density of charge carriers, which can be either photogenerated
or injected from the electrodes [10,11].
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Quantitative determination of recombination coefficient is a complex task due to its
time dependence and dependence on the chemical composition of the layers forming OSCs.

Chemical composition of the layers within OSCs, in turn affects not only their charge
carrier transport properties but also their thermal properties. Therefore, understanding
the processes that govern heat transport along these layers, could in principle, help in
optimization of the chemical and morphological properties of the layers, with the aim
of maximizing PCE [12]. In order to study the thermal transport through the layers of
OSCs under operational conditions, a non-contact and non-invasive experimental method
is required. Available experimental techniques that satisfy these requirements include a
steady-state infrared thermography, laser flash method, thermo-reflectance, modulated
photothermal radiometry and photoacoustic method. Among these the frequency-domain
methods are preferred [13] because they allow one to perform depth profilometry, yield
two simultaneous information on the amplitude and phase, and provide lock-in detection
for low-signal conditions. For characterization of the OSCs a depth profilometry is of
particular interest since it allows one to analyze of multilayered samples. By changing of
the modulation frequency of the excitation light, the thermal diffusion length is changed.
Therefore, it is possible toa discriminate the signals emitted from the topmost layers of
the sample (10 nm–100 µm, several 10–100 kHz modulation frequencies) from the signals
emitted from the deeper layers and the substrate. Next, providing the two simultaneous
channels of information increases the level of confidence in the experimental data. The
lock-in detection ensures a superior signal-to-noise ratio comparing to the time-domain or
steady state methods. Common to all optical methods is a high spatial resolution due to
the fact that excitation laser beam can be focused onto a submicron spot size.

In this work we focused on the characterization of thermal properties and charge
carrier transport in OSC comprising blended layers of poly(3-hexylthiophene) (P3HT)
and [14,14]-phenyl-C61-butyric acid methyl ester (PCBM) using beam deflection spec-
trometry (BDS). Both P3HT and PCBM are well established materials used to fabricate
bulk-heterojunction OSCs in which both materials are blended in a single active layer.
Electronic energy band gap of P3HT is ~1.9 eV, with the majority of absorbed light from
the visible part of the solar spectrum [15,16]. The bulk heterojunction layer was pre-
pared on top of the hole-transport layer of poly(3,4-ethylenedioxythiophene) polymer,
crosslinked with the poly(styrenesulfonic acid) (PEDOT:PSS) [17]. PEDOT:PSS layer is
characterized by high hole conductivity, optically transparent and forms suitable interface
dipole with P3HT:PCBM for photogenerated charge extraction [14]. Under the PEDOT:PSS
there was an indium-tin-oxide (ITO) cathode and on top of the P3HT:PCBM there was an
aluminum anode.

BDS is based on the illumination of the sample by light of selected wavelength, inten-
sity and time duration. The analysis of the absorbed light allows one to extract information
on the chemical composition and optical properties of the sample. The absorbed light is
in part converted to heat within the sample and by measuring it is possible to determine
thermal diffusivity and thermal conductivity of the sample. Both parameters, in turn, can
be used to describe, at least in a qualitative fashion, mechanical, transport, structural prop-
erties of the sample. Due to direct dependence of a BDS signal on the intensity of excitation
light, these techniques offer higher sensitivity compared to conventional reflectance and
transmission techniques, which have recently been further improved by optimization of the
pump/probe beam geometries and by performing the measurements in organic solvents as
contact fluids [18].

One of the advantages of BDS for characterization of OSCs is also the possibility
to perform non-contact and non-destructive analysis of the multilayered structures [19]
without the need of electrical contacts that are required in the case, e.g., photoconductivity
measurements. Furthermore, BDS technique is extremely sensitive to the absorption and
subsequent de-excitation processes of the investigated material. Both these processes are
determined by the energy band gap, carrier lifetime and thermal properties of the layer.
BDS is therefore suitable for in-situ measurements, allowing continuous monitoring of the
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processes governing the synthesis of the layers, and determination of thermal, optical and
transport properties of multilayered materials [20–23]. The use of BDS to characterize the
charge and thermal transport offers the possibility to determine thermal diffusivity and
conductivity, energy band gap and carrier lifetime of organic solar cells in a single analysis,
while performing the measurements in a non-contact and non-destructive way [24–26].
Knowledge of them is crucial to determine its applicability in the field of OSCs since
they define the rate of light absorption, generation of electron-hole pairs or excitons, as
well as separation of charge carriers. These processes further effect the efficiency of light
conversion into electricity.

The advantage of BDS is demonstrated by a set of measurements performed on organic
solar cell under illumination. In order to directly and independently measure transport and
recombination parameters, the BDS measurements were correlated to the current-voltage
characterization of organic solar cell under standard AM1.5 illumination.

2. Materials and Methods
2.1. Preparation of Solar Cells

OSC (see Figure 1) were prepared on an indium tin oxide (ITO) coated glass slides,
which were purchased from Sigma-Aldrich (Darmstadt, Germany) (surface resistivity
8–12 Ω/cm2). A 2 mm wide region of ITO was removed from the edges of the substrates by
etching in 37% hydrochloric acid for 20 min. Consequently, the substrates were thoroughly
cleaned in a series of ultrasound baths of acetone, isopropanol, 2% Hellmanex solution and
deionized water. A co PEDOT:PSS purchased also from Sigma-Aldrich was spin-coated
at 7000 rpm for 60 s and maximum acceleration. Under these conditions, the thickness of
the PEDOT:PSS layer amounts to approximately 70 nm. After PEDOT:PSS deposition, the
substrate was heated to 120 ◦C for 10 min on a hot plate and transferred into the glove box
an inert 99.999% N2 atmosphere, with oxygen level below 10 ppm and water level below
5 ppm.
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Figure 1. Schematic of an organic solar cell, which was assembled in an inert nitrogen atmosphere
maintained between two sealed glass plates. The top Al electrode (dashed lines) was not present
during photothermal spectroscopy. Light-absorbing layer comprises of a P3HT:PCBM layer and a
PEDOT:PSS layer. These layers were illuminated from the top during photothermal spectrometry
and from the bottom during electrical characterization of the solar cell as indicated by arrows.
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A poly(3-hexylthiophene-2,5-diyl) polythiophene (P3HT) polymer was blended with
[14,14]-phenyl-C61-butyric acid methyl ester (PCBM) fullerene. The blend was prepared
as a 1:1, 1:3 and 3:1 weight ratio in 1,2-dichlorobenzene solution of 5 mg/mL P3HT and
15 mg/mL PCBM. The solution was mixed overnight at room temperature. In order to
remove any non-dissolved material, the solution was filtered through a Whatman 0.2 µm
PTFE membrane syringe filter.

Active layers were prepared by spin coating the blend solution at 1000 rpm for 60 s
with the acceleration of 1000 rpm/s. The resulting layer thickness was about 100 nm
as presented in Figure 1. Solution preparation and layer deposition was performed in a
nitrogen glove box. Upon completion of the layer deposition the samples were transferred
to a vapor deposition system mounted inside the same glove box. Here, 100 nm thick Al
topmost electrode was deposited by vacuum evaporation through a shadow mask. The
area of each device was defined by the overlap of the ITO layer and the top Al electrode.
This area was measured by a micrometer and was approximately 50 mm2. Solar cells were
heated to 130 ◦C for 6 min on a hot-plate inside the same glovebox. Thermal annealing
temperature and duration was not optimized in terms of device photovoltaic performance.

2.2. Current-Voltage Characteristics of Solar Cells

Current-voltage (I-V) characteristics of OSCs were measured in the nitrogen atmo-
sphere in the same glove box, in which the cells were prepared. The electric contacts to solar
cell electrodes were realized by pressing small indium pieces on the ITO and the Al layer.
This method resulted in a stable, low resistance pads, which were contacted with golden
probes. Solar cell characteristics were calculated from the I-V characteristics measured with
a Keithley, Cleveland, OH, USA, 2400 SourceMeter in dark and under illumination by a
class AM1.5 standard reference spectrum solar simulator with an intensity of 100 mV/cm2

(Model SS-50AAA, Photo Emission Tech, Ventura, CA, USA).

2.3. Photothermal Beam Deflection Spectrometry (BDS)

The schematic diagram of the BDS experimental arrangement is shown in Figure 2.
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Figure 2. Schematic diagram of the experimental setup of the BDS method. Probe beam intensity
is 2 mW. Pump beam intensity is 35 mW. An additional 407 nm laser was used to continuously
photoexcite the active layer of organic solar cell, labeled as sample.

A continuous He-Ne laser (wavelength λ = 633 nm, MELLES GRIOT, Bensheim, Ger-
many, Model 25-LHP-928-230) with output power of 35 mW (spot size of 2 mm, intensity
of 70·10−6 Wm−2) was applied as incident heating beam (excitation beam). It was modu-
lated by a broadband electro-optical (EO) amplitude modulator (New Focus, Santa Clara,
CA, USA, Model 4102-M) for a wavelengths and frequency range 600–900 nm and DC-
200GHz, respectively, driven by a high voltage amplifier (New Focus, Model 3211) and
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followed by a polarizer (Thorlabs, Bergkirchen, Germany). A He-Ne laser (wavelength
λ = 543.5 nm, MELLES GRIOT, Bensheim, Germany, Model 25-LGR-393-230) was used as
probe beam source of the 2 mW (spot size of 50 µm, intensity of 10−7 Wm−2) output power.
The probe beam intensity change, after its interaction with the temperature oscillation
(TOs), was detected by four-quadrant position sensitive detector (RBM—R. Braumann
GmbH, Attenkirchen, Germany, Model C30846E) and processed by means of a lock-in
amplifier (Stanford research instruments, Sunnyvale, CA, USA, Model SR830 DSP). An
x-y-z-translation stage (CVI, Albuquerque, NM, USA, Model 2480M and 2488) allowed to
vary the position in x, y and z direction to optimize the experimental configuration. The
sample was illuminated by a Krypton laser (λ = 407 nm, Innova 300C, Coherent, Lisses,
France), which was used to generate carriers in the examined materials and 60 and 120 mW
power at the location, where TOs were induced.

In order to prevent deterioration of organic semiconductor during photothermal
characterization, the solar cells were sealed in an inert nitrogen atmosphere as schematically
shown in Figure 1. Theoretically, the geometry was approximated as a 6-layered structure
surrounded with an infinite column of air. The heat source represents the heat produced by
the absorption of the excitation light beam (EB). Therefore, it was assumed that EB is only
absorbed in the central layer comprising of P3HT:PCBM and PEDOT:PSS layers. Other
layers exhibit negligible light absorption.

3. Results

The absorbance at 633 nm and 407 nm of a 100 nm thick P3HT:PCBM layer depends
on the P3HT and PCBM ratio and varies from the value of 0.3 to 0.4 [27–29]. It means that
most of the excitation beam energy is absorbed by the P3HT:PCBM layer. The remaining
part of the energy is absorbed by the underlying PEDOT:PSS layer. Hence, it is expected
that the BDS signal (see Equation (S9) in Supplementary Materials) contains information
mostly about thermal, optical and transport properties of the P3HT:PCBM layer. In order to
determine these properties, the BDS amplitude and phase dependence on the modulation
frequency of EB were measured in the frequency range from 0.1 Hz to 5 Hz. The chosen
modulation frequency range was related to the thermal diffusion length µth in the nitrogen,
glass and air layers above P3HT:PCBM, in which the TOs were generated. We found
that µth is between 8.4–1.2 mm, 14.2–2.1 mm and 8.4–1.2 mm for nitrogen, glass and
air, respectively, in a selected frequency range of 0.1–5 Hz (according to Equation (S6) in
Supplementary Materials). The obtained results are presented in Figures 3–6 for three
different P3HT:PCBM ratios and three different illumination modes. In can be seen that
in all cases the amplitude rapidly drops with increase in modulation frequency since the
induced TOs are strongly attenuated in the medium they propagate and the damping
coefficient increases with increase in f. Further increase in the modulation frequency results
in slower decay of the amplitude value. In contrast, phase exhibits more monotonous
decay with the increase in modulation frequency of EB. Comparing the amplitude as the
function of the P3HT:PCBM ratio, the highest amplitude of 5.0 µV is obtained in case of
sample with 3:1 P3HT:PCBM ratio, that is followed by 1:1 and finally 1:3 (the amplitude
of 3 µV). Red circles correspond to the BDS signal resulting from the fundamental sample
illumination by the 633 nm excitation beam of 35 mW, whereas green triangles represent
the BDS signal resulting from illumination of the sample by the fundamental excitation
beam (633 nm) in addition to the 407 nm illumination of 60 mW output power. The blue
squares correspond to the BDS signal resulting from sample illumination of the 633 nm
together with illumination of the 407 nm and 120 mW output power. It can be seen that the
amplitude and phase of measured BDS signal (Figures 3–5) increase with the increase in
the output power of the light illuminating the sample. In fact, the amplitude of BDS signal
is expected to increase with the illumination power due to increase in the induced density
of heat sources (see in Equation (S3) in Supplementary Materials) that are a consequence of
non-radiative de-excitation processes (realized in a form of heat) of the absorbed energy
from EB.
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Figure 6. Current-voltage characteristics of solar cells in dark (hollow symbols) and under AM1.5
illumination (filled symbols) as a function of P3HT:PCBM ratio.

In order to investigate the thermal and transport properties of the examined blends, the
theoretical model (described by Equation (S9) in Supplementary Materials) was developed
to extract the desired properties from the experimental data by the use of multiparameter
fitting procedure based on the least-squares method (solid line in Figures 3–5). The validity
of the method was tested by simulating data, performing the fitting procedure to that data
and checking if the received results agree with those used for the simulation. The fitted
parameters were the effective sample thermal diffusivity (D), energy band gap (Eg), carrier
life time (τ), surface recombination velocity (vSR) and its thickness (l2), whereas the fixed
parameters where those of experimental setup as the sample and detector position, probe
beam radius and its waist position, power of pump beam, thermal properties of the fluid in
which the TOs are induced (thermal diffusivity and conductivity) as well as thermal and
structural properties of all other layers constructing the whole sample (Figure 1) (thermal
diffusivities and conductivities, thicknesses of both glass and ITO layers). The change in
the thermal diffusivity is followed by the change in charge carrier lifetime as result of the
change in carrier concentration. That are estimated by the use of equation n = (2γτ)−1,
where τ is the carrier life time, γ is the recombination coefficient that is of the order of
10−13 cm3s−1 [30]. The effective absorption coefficients were found by the use of a least-
square method fitting procedure. The obtained values were: 2·104 cm−1, 6·104 cm−1,
1·105 cm−1 for 1:3 P3HT:PCBM, 1:1 P3HT:PCBM and 3:1 P3HT:PCBM, respectively.

The obtained parameter values are presented in Tables 1–3. The P3HT:PCBM thickness
is equal for all examined samples. In contrast, Eg rr increases with the concentration of the
PCBM in the blend from 1.75 ± 0.10 eV for the ratio of 3:1 to 2.25 ± 0.10 eV for the ration 1:3.
This behavior is presumably the result of the phenomena, which was previously observed
in semiconducting polymer blended with small photochromic molecule [31]. Once blended,
the photochromic molecules preserved their electronic structure in parallel to the electronic
structure of the polymer matrix. Similarly, P3HT:PCBM blends exhibit a combination
of electronic levels of individual component. Thus, Eg in organic solar cells reflects the
energy difference between HOMO of the donor component and LUMO of the acceptor
component [10]. In our case, HOMO of P3HT as a donor is approximately−5 eV, while
LUMO of PCBM acceptor is around −3 eV [32]. Therefore, the expected difference is 1.4 eV,
which is slightly lower than our results. However, the experimental method presented
here provides a more precise measurement of effective Eg, which apparently increases with
the PCBM concentration. This information can be advantageously used to study other
phenomena related to the electronic structure of organic semiconducting blends.
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Table 1. Effective parameters of P3HT:PCBM(1:1)+PEDOT:PSS determined by BDS.

λ

[nm]
P

[mW]
D

[m2s−1]
Eg

[eV]
τ

[µs] Thickness [nm] n
[m−3]

630 35 (0.158 ± 0.012)·10−6

2.10 ± 0.10

200 ± 15

175 ± 20

(2.50 ± 0.19)·1022

400 60 (0.202 ± 0.014)·10−6 25 ± 2 (2.00 ± 0.16)·1023

400 120 (0.268 ± 0.018)·10−6 12 ± 1 (4.17 ± 0.35)·1023

Table 2. Effective parameters of P3HT:PCBM(1:3)+PEDOT:PSS determined by BDS.

λ

[nm]
P

[mW]
D

[m2s−1]
Eg

[eV]
τ

[µs]
Thickness

[nm]
n

[m−3]

630 35 (0.075 ± 0.005)·10−6

2.25 ± 0.10

245 ± 15

175 ± 20

(2.04 ± 0.13)·1022

400 60 (0.112 ± 0.009)·10−6 30 ± 5 (1.67 ± 0.28)·1023

400 120 (0.148 ± 0.011)·10−6 15 ± 1 (3.33 ± 0.22)·1023

Table 3. Effective parameters of P3HT:PCBM(3:1)+PEDOT:PSS determined by BDS.

λ

[nm]
P

[mW]
D

[m2s−1]
Eg

[eV]
τ

[µs]
Thickness

[nm]
n

[m−3]

630 35 (0.183 ± 0.11)·10−6

1.75 ± 0.10

175 ± 15

175 ± 20

(2.86 ± 0.25)·1022

400 60 (0.241 ± 0.018)·10−6 15 ± 2 (3.33 ± 0.44)·1023

400 120 (0.325 ± 0.023)·10−6 8 ± 1 (6.25 ± 0.78)·1023

In contrast to Eg, thermal diffusivity (D) and carrier lifetime (τ) strongly depend
on the excitation light power [33]. D has increased by about 30% when illuminating the
sample with the additional 60 mW laser and has further increased by another 30% by
increasing its power twice (Tables 1–3). Hence D is not directly proportional to the light
power, but it is to the thermal conductivity normalized to mass density and specific heat
capacity (see Equation (S1) in Supplementary Materials). Mass density and heat capacity
are not expected to be significantly changed with the power of excitation light, although the
temperature of the examined layers raise due to light excitation. The observed D change
presumably reflects the change in material thermal conductivity. Thermal conductivity of
organic semiconductors is determined by phonons and electrons [1]. The population of
both heat carriers is generally low in the lack of light illumination. For instance, Hiura et al.
measured D of P3HT film at the value of ~10−7 m2/s [34]. In contrast, once illuminated, the
absorbed photons excite excitons—coupled pair of electron and hole. Excitons in organic
semiconductors are coupled to local perturbation of the electronic cloud, distortion of
structure of the molecule and distortion of the surrounding molecules or polymer seg-
ments [35]. This phenomenon of coupling between a single or a pair of charge carriers and
“dressing” phonons can be described as a virtual particle known as a polaron. Therefore,
the photogenerated heat carriers of organic semiconductors are polarons. Thus, the change
in D with the illumination intensity depends on the density of photogenerated polarons in
P3HT:PCBM layers that are relaxed non-radiatively by converting the absorbed energy to
a heat producing the BDS signal. Although the absolute value of D differs among layers
of different content of PCBM, the 60% increase between the lowest and the highest illumi-
nation intensity demonstrate the role of photogenerated polarons in the heat transport of
organic solar cells.

The lowest value of D is obtained for P3HT:PCBM ratio of 1:3 whereas the highest
value of D is obtained for P3HT:PCBM ratio of 3:1. These results indicate that D is raising
with the P3HT fraction. In fact, thermal conductivity and diffusivity of PCBM were
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found to be significantly reduced due to strong localization of vibrations localized on
fullerene derivatives due to molecular side chains [36]. We therefore concluded that
the photogenerated polarons, which end on PCBM moieties, are lost in terms of heat
transport. Consequently, D is dropping with the increase in PCBM content in the whole
layer. Furthermore, the transport of photogenerated polarons depends on the structure
and chemical composition on the nanoscale. This is proved by measurements of thermal
conductivity of P3HT:PCBM blends as well as PEDOT:PSS in Ref. [37], which agree with
our results presented here and indicate that the thermal conductivity k of blends depends
on the ratio between individual components. In case of thermally annealed blends changes
in the values of k were observed. It should be stated that thermal annealing of organic solar
cells is used to remove residual solvents and to induce partial phase separation to form
nanostructured bulk heterojunction structure [38,39]. The nanostructured P3HT:PCBM
layer consists of a combination of nanometer-sized crystalline segments of polymer and
fullerenes, surrounded by amorphous polymer phases. It turns out that the thermal
transport is highly impeded at the boundaries between these segments [1,40,41]. In fact,
the thermal transport is enhanced along nanocrystals, nanorods and nanowires [34,42].
Therefore, thermal conductivity follows similar dependence on the morphology than the
charge carrier conductivity [43], which can be tuned by the modification of nanostructure
of organic semiconductors [44,45].

In the case of BDS measurement, the thermal diffusivity is the product of the mobility
of photogenerated polarons and their density, which increases nonlinearly with light
intensity. Photogenerated charge carriers results from the dissociation of photogenerated
exciton and subsequent separation of electron-hole pairs [46].

The free charge generation in P3HT:PCBM materials is very efficient [47,48], which
means that there are almost no losses due to inefficient exciton decay. However, the currents
in the presented solar cells are fairly small, which may indicate other loss processes.

Charge recombination of photogenerated polarons can be divided into radiative and
non-radiative recombination. As shown in Tables 1–3 τ decreases with the illumination
intensity. The recombination in organic solar cells can be approximated with the bimolecular
Langevin recombination [49], which increases with the square of the charge carrier density.
Hence, the decrease of τ results in the increase in carrier concentration and, consequently
in the surface recombination velocity that was found to be of about 103 and 104 cm·s−1 for
the carrier concentrations of 1022 and 1023 m−3, respectively.

In parallel to BDS measurements, we have studied P3HT:PCBM solar cell under AM1.5
illumination. I–V characteristics of OSCs under illumination and in dark are presented in
Figure 6, and typical figures of merit of parameters are summarized in Table 4. Serial and
parallel resistance were extracted as described in [50,51].

Table 4. Principal OSCs figures of merit: JSC—Current Density, VOC—Open circuit Voltage, FF—fill
factor, η—power efficiency.

Photovoltaic Cell JSC
[mA/cm2]

VOC
[V] FF η

[%]

P3HT:PCBM (3:1) 7.55 0.41 0.42 1.30

P3HT:PCBM (1:1) 2.20 0.50 0.31 0.34

P3HT:PCBM (1:3) 7.47 0.52 0.46 1.78

It can be seen that the highest and the lowest concentration of PCBM results in the
best values of power efficiency (1.30% and 1.78%, respectively) of the three. We note that
all other figures of merit of the OSCs presented here are lower than the present standard
values. This is because our experiments were not targeted to optimize OSCs performance.

Figure 7 represents τ dependence as a function of P3HT:PCBM ratio. The shortest
lifetime is observed in case of 3:1 P3HT:PCBM ratio, and the longest for 1:3 P3HT:PCBM
ratio. This behavior is opposite to the behavior of thermal diffusivity. Knowing that τ



Materials 2023, 16, 617 10 of 13

is limited by the non-radiative recombination, since only that one produces BDS signal,
the 3:1 ratio exhibits the highest non-radiative recombination. The recombination was
found to reduce the open-circuit voltage of organic solar cells and is discussed in the
forthcoming paper [19]. The negative correlation between the thermal diffusion length and
VOC, which is related to exciton lifetime results from the fact that thermal diffusion length
µth determines the depth in the material that is penetrated by induced TOs. Longer µth,
implies higher concentration of the photoexcited charge carriers. Higher charge density
results in a higher recombination rate, and consequently shorter lifetime.
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The light intensity impinging onto the samples of the AM1.5 source during I-V char-
acterization was 0.1 W cm−2. On the other hand, the power of incident excitation light
during BDS experiments was of 35 mW, 95 mW and 155 mW, focused to the spot diameter
of 2 mm. This resulted in the light intensity of 1.1 W cm−2, 3.0 W cm−2and 4.9 W cm−2

for 35 mW, 95 mW and 155 mW, respectively. Although AM1.5 illumination comprises
of full spectrum of the visible light, the excitation during BDS is approximately an order
of magnitude higher. Nevertheless, we observe similar trend of the Voc compared to τ
(Figure 7). Voc in an ideal, recombination-free OSC would retain the value of Eg. In real
OSCsVoc is reduced by the radiative and non-radiative recombination [52]. Since τ is
proportional to the recombination rate, Voc is proportional to ln(τ−1). This is demonstrated
in Figure 7, where Voc is presented by a boxplot as a function of P3HT:PCBM ratio.

4. Conclusions

In this work, a novel approach of determining the thermal and charge transport
properties of organic solar cells based on photothermal effect was presented. From the
measurement point of view, it should be emphasized that using the frequency domain
method, such as photothermal beam deflection method (BDS), it is possible to investigate a
multi-layered structure especially when the layer under investigation exhibits the highest
optical absorption. Moreover, the presented method is a unique, sensitive and universal
spectroscopic technique, which allows one to determine the thermal and transport proper-
ties during a single non-destructive measurement in different environmental conditions.
To demonstrate the capabilities of BSD we characterized thermal diffusivity, energy gap
and charge carrier lifetime of prototypical organic solar cell comprising of P3HT:PCBM
layers on top of PEDOT:PSS and ITO. Using different illumination intensities, we found
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that thermal diffusivity exhibits a strong dependence on the density of the photogenerated
polarons and on the ratio between P3HT and PCBM fraction. The measured energy gap
was dependent on the P3HT:PCBM ratio and the photogenerated carrier lifetime was
decaying inversely to thermal diffusivity. The latter was assigned to the non-radiative
recombination and compared to electrical properties of organic solar cells under AM1.5
illumination. Similar dependence exhibited charge carrier lifetime on the open-circuit
voltage of illuminated solar cells. We also found that the best photovoltaic properties were
found for P3HT:PCBM in the ratio of 1:3 and 3:1. The obtained parameters indicate that the
studied solar cells show attractive photovoltaic behavior and can be modified due to the
different P3HT: PCBM ratio.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16020617/s1.

Author Contributions: Conceptualization, D.K. (Dorota Korte); methodology, D.K. (Dorota Korte)
and M.P.; software, D.K. (Dorota Korte) and M.P.; validation, D.K. (Dorota Korte); formal analysis, D.K.
(Dorota Korte) and E.G.; investigation, D.K. (Dorota Korte) and M.P.; resources, D.K. (Dorota Korte),
B.D.-Z.; data curation, D.K. (Dorota Korte), B.D.-Z. and M.P.; solar cells fabrication and characteriza-
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