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Abstract: The paper contains a parametric analysis of tensegrity structures subjected to time-inde-

pendent external loads. A complete dynamic stability analysis is a three-step process. The first stage 

involves the identification of self-stress states and infinitesimal mechanisms. The next stage concen-

trates on the static and dynamic behavior of tensegrities under time-independent external loads, 

whereas the third is under periodic loads. In this paper, the first two stages are carried out. The 

structures built with the most popular tensegrity modules, Simplex and Quartex, are considered. 

The effect of the initial prestress on the static parameters and frequency is analyzed. To assess this 

behavior, a geometrically non-linear model is used. 
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1. Introduction 

The paper concerns the static and dynamic behavior of tensegrity structures. Unlike 

conventional cable-strut frameworks, tensegrity structures are characterized by a system 

of internal forces, which keeps the elements of the structure in stable equilibrium (self-

stress state). The most interesting for all are tensegrity structures characterized by the oc-

currence of infinitesimal mechanisms. In the absence of self-stress (initial prestress forces), 

such systems are unstable, i.e., geometrically variable. The stabilization occurs only after 

the introduction of initial prestresses. Their modification allows for controlling the static 

and dynamic parameters of the structure. 

The subject of tensegrity systems is very popular. The main features of tensegrity 

structures are well-known. However, the topic of tensegrity systems is still being ex-

plored. The total number of papers on the Web of Science homepage using topic 

“Tensegrity” from 2001 to 2020 is approximately 1000 [1]. From the beginning of the idea 

of tensegrity, i.e., the 1960s, to the present day, the most popular subject of papers is the 

search for geometrical configuration (form-finding)—a few sample papers from the last 

two years [1–4]. Other popular applications can be divided into three main areas: 

• algorithms changing the shape of the structure—optimization algorithms aimed at 

generating new topologies; the new topology aims to achieve the desired perfor-

mance criteria, such as stiffness level [5–8], 

• shape control methods—methods examining the change of the shape of the structure 

under the influence of external forces [7,9–17], 

• parametric analysis taking into account the impact of the initial prestress on the static 

and dynamic behavior of structures [18–27]. 

The first area concerns the optimization of tensegrity structures. In [5], the influence 

of changing the position of the struts (control of the length of the cables) on the dynamic 

characteristics was investigated. The subject of the consideration was a tensegrity module 

consisting of six struts and 18 cables. Both the non-linear dynamic model and the 
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linearized version were used to describe the behavior of the module. It was shown that, 

with the increase in the prestress level, the differences between both approaches decrease. 

In [6], the process of optimizing the prestressing of a cantilever flat tensegrity structure 

was presented. In turn, Bel Hadj Ali [7] carried out the optimization of a tensegrity foot-

bridge built of six fifteen-strut pentagonal modules. Studying the dynamic efficiency of 

the footbridge, the author was looking for a cost-effective design solution. In [7], a method 

of designing the initial stresses using the eigenfrequencies of tensegrity structures was 

presented. The optimization of the self-stress state was carried out in conditions in which 

the tensegrity system can reach its maximum stiffness state. The analysis was carried out 

on the example of a flat structure built of three X modules and a three-dimensional struc-

ture, built with five Quartex modules. Caluwaerts and Carbajal [8] optimized the shape 

of a single tensegrity module—a regular polyhedron built of six struts and a tower built 

of three Quartex modules. The number of cables in these structures was determined in the 

optimization process. 

The most important research on the analysis of tensegrity structures focuses mainly 

on the second area, i.e., on the control of the shape of the structure under the influence of 

external forces. The search for the force-displacement relationship can be carried out by 

examining the damping and frequency of vibrations and by examining the change in ge-

ometry. Control methods are divided into passive and active. For example, Skelton and 

his team [9] used a passive method and developed a nonlinear dynamic analytical model 

of tensegrity structures. In the proposed method, the kinematics is described by the posi-

tion and velocity of the ends of the struts. The model was used for shape control and 

design of foldable structures. In another work [10], Skelton described further analytical 

models allowing for easier control of the shape of tensegrity structures. In turn, in [11], 

the behavior of pre-stressed tensegrity plates built with 36 and 256 Quartex modules was 

investigated. The considerations take into account the influence of the number of loose 

cables on the behavior of the plates. Fraternali, with a team [12], studied the behavior of a 

tower built of four three-strut modules (Simplex modules). Faroughi and Lee [13] ana-

lyzed the behavior of pre-stressed tensegrity plates composed of 20 and 36 Quartex mod-

ules. The authors investigated the change in the displacement of plates loaded with a har-

monic force. They used a linear model in the analysis. In turn, in [14], a new spatial 

tensegrity element was proposed for modelling the nonlinear dynamics of trusses sub-

jected to a time changing load. The application of the model was presented on the example 

of a pre-stressed Quartex module and a tensegrity plate made of 20 such modules. In [15], 

the authors used the Euler-Bernoulli beam element to analyze the dynamic behavior of 

planar and spatial tensegrity structures, taking into consideration the influence of the axial 

force on the transverse stiffness. A different model was used in [16]. Initially, the authors 

formulated the single-element member and then introduced a grouped multi-element 

member, which was used to develop a dynamic model to study the dynamic properties 

of tensegrity structures. In [17], a model using the dynamic relaxation method in combi-

nation with neural networks was proposed to calculate the nodal displacements of 

tensegrity structures. In [7], the authors investigated the influence of the self-stress state 

on the dynamic behavior of the structure. 

Compared to the abundant literature on the above-mentioned areas, the parametric 

analysis, determining the influence of initial prestress on the static and dynamic proper-

ties of tensegrity structures, has been developed slightly. In [18], the influence of the initial 

prestress on the static properties of full-scale tensegrity skeleton of White Rhino was car-

ried out. The static parametrical analysis of structures build with tensegrity modules, i.e., 

Simplex and Quartex, was performed, among others, in [19–21]. In turn, in [22–24], the 

influence of the initial prestress on the dynamic properties of the Simplex module was 

analyzed. In [25], the impact of the initial prestress on the dynamic properties of a six-

strut spherical module and a two-module cylindrical tensegrity model was considered. 

Bel Hadj Ali and Smith [26] determined the effect of the self-stress level on the vibration 
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frequency of a footbridge built of six fifteen-strut modules. However, the dynamic of 

tensegrity structures built with three- and four-strut modules were analyzed in [27]. 

The analysis of the literature shows that the vast majority of works concerns the 

tensegrity design, the search for stable forms, optimization algorithms, methods of con-

trolling the shape of tensegrity structures under the influence of external loads and dis-

cusses the use of these structures. Against this background, parametric analysis evaluat-

ing the influence of the state of self-stress on the static and dynamic properties of 

tensegrity structures is the subject of a few studies. In addition, these works relate to spe-

cific solutions. No monographic studies concisely describe the behavior of the full spec-

trum of structures. The studies known to the authors lack the analysis of dynamic stability 

understood in terms of the Bolotin approach [28]. This problem is often confused with the 

issues of impulse loads. Dynamic stability analysis leads to the determination of paramet-

ric resonance areas (dynamic instability) that are dangerous for the durability of the struc-

ture. From the point of view of the physical interpretation of the phenomenon of dynamic 

instability, if the load parameters are within the defined limits of instability, the structure 

experiences vibrations with increasing amplitude. There is an abundant literature on par-

ametric vibrations that essentially defines all the basic issues. Nevertheless, tensegrities 

are a special example of structures. They are characterized by an additional parameter, 

which is the self-stress state, which affects the shape and range of instability areas. 

Taking the above into account, it seemed reasonable to take up the subject of dynamic 

analysis, in particular the analysis of dynamic stability of tensegrity structures. The main 

purpose of the work was to examine the behavior of tensegrity structures under the influ-

ence of periodic loads and to find the answer to the question of whether and to what extent 

initial prestress affect the distribution of areas of dynamic instability. The implementation 

of the formulated objective required: 

• performing a qualitative assessment involving the identification of self-stress states 

and infinitesimal mechanisms, 

• performing a quantitative assessment of the behavior of tensegrity structures under 

time-independent external loads: 

− determination of the minimum and maximum initial prestress levels, 

− assessment of the impact of initial prestress on the structural displacements, 

− assessment of the impact of initial prestress on the rigidity of structure, 

− assessment of the impact of initial prestress on the normal forces, 

− assessment of the impact of initial prestress on the effort of structure, 

• performing parametric analysis determining the influence of initial prestress on dy-

namic properties, including the frequency and forms of vibrations, 

• conducting a dynamic stability analysis leading to the determination of the resonance 

frequency of periodic extortions and instable areas as a function of initial prestress. 

Due to the wide scope, the work was divided into two parts. The first part contains 

the identification of self-stress states and infinitesimal mechanisms, the analysis of the 

static and dynamic behavior of tensegrities under time-independent external loads, 

whereas the second part will contain a dynamic stability analysis under periodic loads. 

This study aims to describe the behavior of the full spectrum of tensegrity structures in 

order to indicate the general characteristics of tensegrity structures, allowing for a better 

understanding of the specificity of this type of structure. 

First, to illustrate the behavior of structures characterized by self-stress states and 

infinitesimal mechanisms, the authors propose to consider the simplest truss consisting of 

two elements. Despite the fact that this structure is not a tensegrity, its behavior fully re-

flects the behavior of tensegrity structures and makes it possible to determine of impact 

of initial prestress level 𝑆 on the static and dynamic parameters in explicit form contained 

in this study. 

Next, tensegrity structures built with the modified Simplex and Quartex modules are 

considered. The aim of analysis was to compare three towers build with the most popular 
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tensegrity modules. In this work, the authors tried to cover many different examples of 

tensegrity structures. The linear connection with various ways of joining the modules and 

different support conditions are considered. The Simplex modules could only be con-

nected in one way, whereas the Quartex modules could be in two ways. In the first con-

nection, the struts overlap in a plan view, while in the second, they form a star. The anal-

ysis was intended to fully describe the static and dynamic behavior of tensegrities by 

tracking the effort of the structures and checking the stability of the examined structures 

at each step of the analysis. The static behavior was studied by the analysis of the influence 

of initial prestress and external load on normal forces and on the rigidity of the structures. 

In the literature on tensegrity structures known to the authors, the influence of initial pre-

stress level on stiffness was studied only as the effect on the displacements. In a structure 

with one non-zero displacement, the measure of stiffness depends only on this non-zero 

displacement. In this case, the assessment of the behavior of this displacement (local as-

sessment) is also an assessment of the behavior of the entire structure (global assessment). 

In the case of structures with many degrees of freedom, it is not possible to trace all dis-

placements for objective reasons. Therefore, it seems reasonable to introduce a parameter 

that will reliably determine the effect of the state of self-stress on the total rigidity of the 

structure at a given load. In the literature on tensegrity structures, however, no parameter 

characterizing the change in rigidity has been found. The authors propose a parameter to 

compare the rigidity of the structures. This parameter expresses the ratio of two strain 

energies, measured at the minimum and at the i-th level of initial prestress. It is the meas-

ure of changes in the stiffness caused by the influence of the initial prestress on the total 

stiffness of the structure at a given load. This parameter expresses the ratio of two strain 

energies, measured at the minimum and at the i-th level of initial prestress. It is the meas-

ure of changes in the stiffness caused by the influence of the initial prestress on the total 

stiffness of the structure at a given load. In turn, the dynamic behavior was studied by 

analyzing the influence of initial prestress  

and external load on frequencies. 

A nonlinear analysis is used, assuming the hypothesis of large displacements. The 

presented study proves that some tensegrities are characterized by an abnormal dynam-

ical behavior. These parametric considerations are crucial for the dynamic stability analy-

sis of the behavior of tensegrity structures under periodic loads, which will be the subject 

of the second part of the paper. The dynamic stability analysis cannot be carried out with-

out the analysis presented in this paper. 

2. Methods of Analysis 

The tensegrity structure is an 𝑛-element spatial truss (𝑒 = 1, 2, … , 𝑛) with 𝑚 degrees 

of freedom described by a displacement vector 𝐪(∈ ℝ𝑚×1). The most characteristic feature 

of tensegrity structures is the self-stress state that stabilizes existing infinitesimal mecha-

nisms. The modification of the level of self-stress state in tensegrity structures allows for 

controlling their dynamic properties. Another specific property of these systems is the size 

of the displacements, which can be large even with small deformations. To evaluate the 

static and dynamic behavior, a geometrically non-linear model is used, assuming the hy-

pothesis of large displacements [20,21,29–31]. The non-linear theory of elasticity in terms 

of the Total Lagrangian (TL) was adopted as the basis for formulating tensegrity lattice 

equations. The non-linear equation of motion is as follow: 

𝐌𝐪̈(𝑡) + [𝐊𝐿 + 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) + 𝐊𝑁𝐿(𝐪)]𝐪(𝑡) = 𝐏 (1) 

where 𝐌(∈ ℝ𝑚×𝑚) is a consequent matrix of masses, 𝐪̈(∈ ℝ𝑚×1) is an acceleration vector, 

𝐊𝐿(∈ ℝ𝑚×𝑚) is a linear stiffness matrix that depends on an expansion matrix 𝐁(∈ ℝ𝑛×𝑚) 

and an elasticity matrix 𝐄(∈ ℝ𝑛×𝑛), 𝐊𝐺(𝐒)(∈ ℝ𝑚×𝑚) is a geometric stiffness matrix that 

depends on an initial prestress 𝐒, 𝐊𝐺𝑁(𝐍)(∈ ℝ𝑚×𝑚) is a geometric stiffness matrix that 

depends on axial forces 𝐍, which results from external loads, 𝐊𝑁𝐿(𝐪)(∈ ℝ𝑚×𝑚) is a non-

linear displacement stiffness matrix and 𝐏(∈ ℝ𝑚×1) is an external load vector. In this part, 
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the time-independent loads 𝐏 = 𝐏(𝑡 = 0) are considered. The explicit matrices forms can 

be found, for example, in [20]. 

The first stage of the analysis leads to the identification of the immanent features, 

which are self-stress states and infinitesimal mechanisms. The existence of these features 

depends only on the expansion matrix 𝐁(∈ ℝ𝑛×𝑚), so the geometrical and mechanical 

characteristics do not affect them (the elasticity matrix is an identity matrix 𝐄 = 𝐈). The 

self-stress state is considered as an eigenvector 𝐲𝑆 related to the zero eigenvalue of the 

compatibility matrix 𝐁𝐁𝑻(∈ ℝ𝑛×𝑛), whereas the mechanism is an eigenvector 𝐱𝑆 related 

to the zero eigenvalue of the stiffness matrix 𝐁𝑻𝐈𝐁(∈ ℝ𝑚×𝑚) [18,19,21,22,32]. 

The second stage of analysis leads to the determination of the influence initial pre-

stress levels on the static and dynamic behavior of structures. First, it is necessary to de-

termine the range of initial pre-stresses, which is characteristic for each structure. The 

minimum prestress level 𝑆𝑚𝑖𝑛 is related to the appropriate distribution of normal forces 

in the elements of the structure. The external load can cause a different distribution of 

normal forces, and it can be corrected by the introduction of a proper level of initial pre-

stress. The maximum prestress level 𝑆𝑚𝑎𝑥 is related to the load-bearing capacity of the 

most stressed elements. 

2.1. Static Analysis 

For traditional lattice structures, the static analysis can be performed assuming small 

displacements, i.e., a linear geometric model. It is an improper approach for the analysis 

of tensegrity structures. The quasi-linear model (second order theory) is also inadequate. 

Both approaches do not take into account the stiffening of the structure under the influ-

ence of external load. In tensegrity structures, the load causes displacements in accordance 

with the form of the infinitesimal mechanism that induces additional prestress of the 

structure—tensile forces generate additional tension in the cables and compression in the 

struts. For such regimes, the initial response should not be used to determine the behavior 

of the structure. Therefore, the analysis must be carried out with the assumption of the 

hypothesis of large displacements (third order theory). 

To illustrate the influence of external loads on the stiffening, two approaches are 

used. The applied methods are the quasi-linear approach (second order theory): 

[𝐊𝐿 + 𝐊𝐺(𝐒)]𝐪 = 𝐏, (2) 

and non-linear approach (third order theory): 

[𝐊𝐿 + 𝐊𝑆]𝐪 = 𝐏;      𝐊𝑆 = 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) + 𝐊𝑁𝐿(𝐪) (3) 

Through the analysis, the influence of initial prestress level 𝑆 (𝐒 = 𝐲𝑆𝑆) on the fol-

lowing parameters is determined: Displacements 𝐪, normal forces N, effort of the struc-

ture 𝑊𝑚𝑎𝑥 = 𝑁𝑚𝑎𝑥 𝑁𝑅𝑑⁄  (where: 𝑁𝑚𝑎𝑥 is the maximum normal force and 𝑁𝑅𝑑 is the load-

bearing capacity) and stiffness of the structure, assessed by the global stiffness parameter 

(𝐺𝑆𝑃) [20,21]: 

𝐺𝑆𝑃 =
 [𝐪(𝑆𝑚𝑖𝑛)]𝑇𝐊𝑆(𝑆𝑚𝑖𝑛)𝐪(𝑆𝑚𝑖𝑛)

[𝐪(𝑆𝑖)]𝑇𝐊𝑆(𝑆𝑖)𝐪(𝑆𝑖)
, (4) 

where 𝐊𝑆(𝑆𝑚𝑖𝑛) and 𝐪(𝑆𝑚𝑖𝑛) are a secant stiffness matrix and a design displacement vec-

tor with a minimum initial prestress level, and 𝐊𝑆(𝑆𝑖) and 𝐪(𝑆𝑖) at 𝑖-th prestress level. 

2.2. Dynamic Analysis 

The important feature of tensegrity structures is the ability to control both static and 

dynamic parameters. The dynamic response can be studied by modal analysis [7,14–

16,23,24,26,27,29]. Without load, (𝐏 = 𝟎) the equation (1) is quasi-linear. Taking into ac-

count the harmonic motion 𝐪(𝑡) = 𝐪̃ sin(2𝜋𝑓𝑡), where 𝐪̃(∈ ℝ𝑚×1) is the amplitude vector, 

the Equation (1) could be written as: 
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[𝐊𝐿 + 𝐊𝐺(𝐒) − (2𝜋𝑓)2𝐌]𝐪̃ = 𝟎. (5) 

The modal analysis (5) leads to the determination of the natural frequencies of vibra-

tions 𝑓𝑖(0). For a tensegrity structure characterized by mechanisms, the omission of the 

influence of prestress (𝐒 = 𝟎) in the Equation (5) leads to zero natural frequencies. These 

zero values correspond to the vibrations patterns that implement the mechanisms. If the 

mechanism is infinitesimal, the eigenvalues of the stiffness matrix [𝐊𝐿 + 𝐊𝐺(𝐒)] are pos-

itive numbers—the prestress forces 𝐒 stabilize the structure. If the eigenvalue still re-

mains zero, then the related mechanism is not infinitesimal. In turn, if the eigenvalue are 

negative numbers, the structure is not stable. 

Taking into account the time-independent external load 𝑃, the frequencies 𝑓𝑖(𝑃) are 

considered. The load is treated as the initial disturbance of the equilibrium state, i.e., as 

the imposition of the initial conditions. Hence, in the further part of the paper, the fre-

quencies 𝑓𝑖(𝑃) are called free. Considering the external load, the modal analysis is non-

linear. The calculations are carried out in six steps: 

• Step 1—determination of the displacements from the non-linear system of equilib-

rium equations: 

    [𝐊𝐿 + 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) + 𝐊𝑁𝐿(𝐪)]𝐪 = 𝐏 (6) 

Note! In this step, the structure stability should be verified. The eigenvalues of the 

tangent stiffness matrix [𝐊𝐿 + 𝐊𝐺(𝐒) + 𝐊𝑁𝐿(𝐪)] must be positive numbers. 

• Step 2—determination of deformation of elements 𝜀𝑒 (a spatial finite tensegrity ele-

ment in an undeformed configuration (initial) 𝐶 
0  and a deformed configuration (ac-

tual) 𝐶 
𝑡  (Figure 1) is taken into account. In the initial configuration, the cross-sec-

tional area and length are 𝐴𝑒and 𝑙𝑒, respectively, whereas in the actual configuration 

it is 𝐴1
𝑒 and 𝑙1

𝑒: 

𝜀𝑒 =
1

2

(𝑙1
𝑒)2 − (𝑙𝑒)2

(𝑙𝑒)2
, (7) 

where 

𝑙1
𝑒 = (Δ𝑢2

)
2

√(Δ𝑢2
)

2
+ (Δ𝑢3

)
2

+ (𝑙𝑒 + Δ𝑢1
)

2
 ;   Δ𝑢𝑖

= 𝑞𝑖
2 − 𝑞𝑖

1;  𝑖 = 1,2,3 (8) 

 

Figure 1. Spatial finite tensegrity element. 

• Step 3—determination of the real normal forces in elements 𝑁𝑒: 

𝑁𝑒 = 𝐸𝑒𝐴𝑒𝜀𝑒√1 + 2𝜀𝑒. (9) 

• Step 4—determination of the geometric stiffness matrix of the structure depending 

on the initial prestress level 𝐊𝐺(𝐒) and normal forces 𝐊𝐺𝑁(𝐍) caused by the exter-

nal load. 
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Note! In this step, the prestress range should be determined. The lowest level of ini-

tial prestress 𝑆𝑚𝑖𝑛 must ensure the appropriate identification of the element type (cables 

or struts). Additionally, 𝑆𝑚𝑖𝑛  must provide the positive definite matrix [𝐊𝐿 + 𝐊𝐺(𝐒) +

𝐊𝐺𝑁(𝐍)]. In turn, the maximum 𝑆𝑚𝑎𝑥 cannot generate the exceedance of the load-bearing 

capacity of elements. 

• Step 5—determination of the free frequencies 𝑓 = 𝑓(𝑃) from the equation: 

[𝐊𝐿 + 𝐊𝐺(𝐒) + 𝐊𝐺𝑁(𝐍) − (2𝜋𝑓)2𝐌]𝐪̃ = 𝟎. (10) 

3. Behavior of Structures Characterized by the Self-Stress State and Infinitesimal 

Mechanism 

To illustrate the behavior of the structures characterized by self-stress states and in-

finitesimal mechanisms, the simplest truss consisting of two elements (𝑛 = 2) is consid-

ered (Figure 2a) [33,34]. The elements are characterized by the Young modulus 𝐸, the 

cross-sectional area 𝐴 and the length 𝐿. The structure is characterized by two degrees of 

freedom (𝑚 = 2) − 𝐪 = [𝑞3 𝑞4]𝑇. The compatibility matrix takes the form: 

𝐁 = [
1 0

−1 0
]. (11) 

 

Figure 2. (a) Two-element truss and (b) infinitesimal mechanism. 

The spectral analyses (1) and (2) lead to the following eigenvalues 𝛍 = [2 0] and 
𝛌 = [2 0]. The zero eigenvalues are respectively correlated to the existence of one self-

stress state considered as an eigenvector 𝐲2(𝜇2 = 0) = [1 1] (self-stress forces amount 

to 𝑁1 = 𝑆, 𝑁2 = 𝑆) and one mechanism considered as an eigenvector 𝐱2(𝜆2 = 𝟎) = [0 1] 

(Figure 2b). In turn on, the eigenvalues of the problem (3) are as follows: 

𝜎1 =
2(𝐸𝐴 + 𝑆)

𝐿
,        𝜎2 =

2𝑆

𝐿
. (12) 

For real structures, the first value (12)1 is always a positive number, while the second value 

(12)2 depends on the value of axial force 𝑆: 

• if 𝑆 = 0—the eigenvalue (12)2 is equal to zero which corresponds to the finite mech-

anism, 

• if 𝑆 > 0—the eigenvalue (12)2 is positive and the structure is stable; it means the self-

stress states stabilizes mechanism, i.e., the mechanism is infinitesimal, 

• if 𝑆 < 0—the eigenvalue (12)2 is negative and the structure is instable. 

This structure is not a tensegrity because it is stable only for tensile forces (there are 

no compressed elements—struts). Nevertheless, its behavior fully reflects the behavior of 

tensegrity structures and makes it possible to determine the impact of initial prestress 

level 𝑆 on the static and dynamic parameters in explicit form. The non-linear equation of 

motion (3) for this truss takes the following form: 

{
𝐸𝐴

𝐿
 [

2 0
0 0

] +
𝑆

𝐿
 [

2 0
0 2

] +
𝐸𝐴

𝐿3
 [

𝑞3
2 𝑞3𝑞4

𝑞3𝑞4 𝑞4
2 ] −

(2𝜋𝑓)2𝜌𝐴𝐿

6
[
4 0
0 4

]} [
𝑞3

𝑞4
] = [

0
𝑃4

] (13) 
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where 𝑃4 is the concentrated force applied in node 2 in the vertical direction. 

In next analysis, it was assumed that the cables with length 𝐿 = 1 m and diameter 

𝜙 = 20 mm are made of steel with Young modulus 210 GPa and density 𝜌 = 7860 kg/m3. 

In order to illustrate the influence of external loads on the behavior, four values of load 

𝑃4 are considered, i.e., 𝑃4
1 = −0.5 kN, 𝑃4

2 = −1 kN, 𝑃4
3 = −3 kN and 𝑃4

4 = −5 kN. When 

applying initial prestressing forces, the load capacity 𝑁𝑅𝑑 = 110.2 kN [35] did not exceed 

85% (𝑆𝑚𝑎𝑥 = 70 kN). 

3.1. Static Analysis 

In the static analysis, due to the symmetry of the structure and load, the displacement 

q3 is zero, and the Equation (13) takes the form of a static equilibrium: 

(
2𝑆

𝐿
+

𝐸𝐴

𝐿3
𝑞4

2) 𝑞4 = 𝑃4. (14) 

The application of non-linear theory (III order theory) takes into account the stiffen-

ing of the structure under the influence of external load, which is responsible for the dis-

placements consistent with the infinitesimal mechanism (
𝐸𝐴

𝐿3 𝑞4
3). If this influence is ne-

glected (II order theory), the solution of Equation (14) leads to the following relationship: 

𝑞4 =
𝑃4𝐿

2𝑆
. (15) 

The absence of initial prestress (𝑆 = 0) caused the displacement (15) to increase to 

infinity. The impact of the initial prestress level S on the displacement 𝑞4 is shown in 

Figure 3a. 

 

Figure 3. Impact of the initial prestress level S on the: (a) Displacement 𝑞4 and (b) axial force 𝑁. 

The stiffness of the considered structure is not only conditioned on the geometry and 

material characteristics, but also on the level of initial prestress 𝑆, which stabilizes the 

infinitesimal mechanisms, and on the external load 𝑃4
𝑖. With the increase of prestressing 
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forces, the differences between the calculations made according to the second and third 

order theory are decreasing. The influence of non-linearity is most significant at low val-

ues of initial prestress forces. With lower values of the load, the initial prestress has a 

higher impact on the total rigidity of the structure—the differences between the displace-

ments obtained using the second and third order theory at 𝑃4
1 = −0.5 kN are smaller than 

at 𝑃4
4 = −5 kN. The external load prestresses the structure—additional tensile forces are 

generated in the cables. However, after introducing the initial prestress, the normal forces 

from the external load successively decrease, and thus its influence on the displacement 

decreases. Figure 3b shows the change in the value of normal forces arising from loads 

(𝑃) and normal forces generated jointly by the load and prestress forces (𝑃 + 𝑆). 

In the presented structure, there is only one non-zero displacement, so the assessment 

of the behavior of this displacement (local assessment) is also an assessment of the behav-

ior of the entire structure (global assessment). In the case of structures with many degrees 

of freedom, it is not possible, to trace all displacements for objective reasons. Therefore, 

the authors propose a parameter that helps to assess the influence of the self-stress state 

on the total rigidity of the structure at a given load. The literature on tensegrity structures 

does not contain any parameter characterizing the change in rigidity. In the paper, the 

global stiffness parameter (𝐺𝑆𝑃) (6) is used. In the case of the analyzed structure, the na-

ture of changes in the 𝐺𝑆𝑃 can be expressed explicitly: 

𝐺𝑆𝑃 =
𝑞4(0)

𝑞4(𝑆𝑖)
 (16) 

The parameter (16) is presented in Figure 4a. At the maximum of initial prestress for 

𝑃4
1, 𝐺𝑆𝑃 is 3.5 times higher than for 𝑃4

4. This confirms the previous conclusions that, 

with lower external load, the initial prestress forces have a higher impact on the overall 

stiffness of the structure. Additionally, due to the effect of the initial prestress forces on 

the normal forces 𝑁, the effort of structure 𝑊max, depending on the level of initial pre-

stress, is also monitored (Figure 4b). In the case of the effort of the structure, as in the case 

of the stiffness, the influence of initial prestress decreases as the load increases. 

 

Figure 4. Impact of the initial prestress level S on the: (a) Global stiffness parameter 𝐺𝑆𝑃 and (b) 

effort of structure 𝑊max. 
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3.2. Dynamic Analysis 

In the dynamic analysis, Equation (13) for the two-element truss takes the following 

form: 

{
𝐸𝐴

𝐿
 [

2 0
0 0

] +
𝑆

𝐿
 [

2 0
0 2

] −
(2𝜋𝑓)2𝜌𝐴𝐿

6
[
4 0
0 4

]} [
𝑞3

𝑞4
] = [

0
0

] (17) 

The non-trivial solution of Equation (17) leads to the determination of the natural frequen-

cies: 

𝑓1 = √
3𝑆

2𝜋𝜌𝐴𝐿2
,         𝑓2 = √

3(𝐸𝐴 + 𝑆)

2𝜋𝜌𝐴𝐿2
, (18) 

and corresponding to them the vibration modes: 

𝐪̃(𝑓1) = [
0
1

],              𝐪̃(𝑓2) = [
1
0

]. (19) 

The most dependent on the self-stress state is the first frequency (18)1: 

• if 𝑆 = 0—the frequency (18)1 is equal to zero which corresponds to the mechanism 

described by the vibration mode (19)1 (Figure 4a), 

• if 𝑆 > 0—the frequency (18)1 is positive and increases proportionally to the square 

root of the prestressing amplitude, 

• if 𝑆 < 0—the frequency (18)1 is an imaginary number and the structure is instable. 

In the case of the second frequency (18)2, the influence of initial prestress is negligible, 

because under the condition of the bearing capacity, the values of prestressing forces S are 

much lower than the longitudinal stiffness (S ≪ EA). The second form of vibrations (Fig-

ure 5b) is described by the vector (19)2. 

The impact of initial prestress 𝑆 on the natural frequency 𝑓𝑖(0) is showed in Figure 

5. The value of the first frequency varies from 𝑓1(0) = 0 to 𝑓1(0) = 44.6 Hz (Figure 5c), 

while the second frequency is practically insensitive to the change—at the prestress level 

at 𝑆 = 0 it is 𝑓2(0) = 1424.9 Hz and at 𝑆𝑚𝑎𝑥 = 70 kN—1425.6 Hz (Figure 5c). 

Additionally, the free frequencies 𝑓𝑖(𝑃) are calculated on the basis of the equation 

(10). In the case of the first frequency (Figure 5c), the external load prestresses the structure 

—additional tensile forces are generated in the cables and the initial dynamic response (at 

𝑆 = 0) corresponds to the values of the natural frequency at the following force levels: 

𝑁(𝑃4
1 = −0.5 kN) = 12.72 kN , 𝑁(𝑃4

2 = −1 kN) = 20.20 kN,  𝑁(𝑃4
3 = −3 kN) = 42.11 kN 

and 𝑁(𝑃4
4 = −5 kN) = 59.12 kN. The second free frequency does not depend on the initial 

prestress and is equal to the natural frequency—𝑓2(0) = 𝑓2(𝑃). 

The conducted analysis showed that the influence of the self-stress state on the first 

vibration frequency diminishes with the rise in the load value. The second vibration fre-

quency is not correlated to both the change in the level of prestress and the impact of 

external loads. 
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Figure 5. Vibration modes: (a) The first mode (19)1 and (b) the second mode (19)2; Impact of the 

initial prestress level S on the: (c) First frequency (18)1 and (d) second frequency (18)2. 

4. Tensegrity Structures 

The paper presents static and dynamic parametric analyzes of tensegrity structures 

built with the use of modified Simplex and Quartex modules. The dimensions of the con-

sidered single module allow it to fit into a unit cube. By inscribing the upper surface of 

the modules into the lower one, it is possible to easily combine single units into multi-

module structures. A linear connection is considered with different ways of connecting 

modules and different support conditions. 

Firstly, the immanent features are determined (qualitative analysis). Next, the influ-

ence of initial prestress level on static and dynamic parameters of the structures is consid-

ered (quantitative analysis). The time-independent external loads are taken into account. 

To perform the calculations, a program using a geometrically non-linear model was writ-

ten in the Mathematica environment. 

4.1. Qualitative Analysis 

The qualitative analysis leads to the identification of immanent features. Thanks to 

this, the geometric and mechanical properties do not influence the unique properties of 

tensegrity, and all constants were assumed as unitary so the elasticity matrix is an identity 

matrix 𝐄 = 𝐈. The first considered structures are the single modified Simplex (Figure 6a) 

and Quartex (Figure 6b) modules. Two support conditions variants are considered. In the 

first case, the number of elements and the number of degrees of freedom are equal—the 

models with six (for Simplex—S1-1) and eight (for Quartex—Q1-1) bonds are considered. 

In the second variant, all degrees of freedom of the bottom nodes are taken away—the 

models with nine (S1-2) and twelve (Q1-2) bonds are considered, respectively. The results 

of the qualitative analysis for the single modules are showed in Table 1. 
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Figure 6. Simple modified modules: (a) Simplex and (b) Quartex. 

Table 1. Results of the qualitative analysis for single modules. 

No. of: S1 Q1 

elements 12 16 

nodes 6 8 

bonds 
S1-1 S1-2 Q1-1 Q1-2 

6 9 8 12 

degrees of freedom 12 9 16 12 

mechanisms 1 1 1 1 

self-stress states  1 4 1 5 

In the first case of support, the modules are characterized by one self-stress and one 

mechanism. In Figure 7, the values of normalized self-stress forces (force in struts is equal 

to −1) are shown. The cables are marked in red (bottom), green (top) and blue (diagonal), 

whereas the struts—in black. The different colors of cables correspond to the different 

values of the self-stress state. In the second support variant, one mechanism is identified 

for both modules, but the number of self-stress states is different. For Simplex module 

four self-stress states are identified, whereas for the Quartex module it is five. The identi-

fied self-stress states do not stabilize the modules. In such case, a superposition of the all 

self-stress states is required. The superposition leads to the prestressing forces obtained 

for the first support variant. 
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Figure 7. Values of normalized self-stress states 𝐲𝑆: (a) Simplex and (b) Quartex. 

The structures built with linearly connected modules (towers) are considered as next. 

The units are connected node-to-node. The Simplex modules could be connected only in 

one way (Figure 8a), whereas the Quartex modules—in two ways (Figure 8b,c). In the case 

of the connection A, the struts overlap in a plan view, while in the connection B, they form 

a star. The structures built with n (n = 2, 3, 4, 5, 6) modules are considered. The results of 

the qualitative analysis for tensegrity towers built with Simplex (Sn) and Quartex (Qn) 

modules are shown in Tables 2 and 3, respectively. 

Regardless of the type of modules and the way they are connected, the structures 

behave the same. Only support conditions affect the result of the analysis. In the first case, 

i.e., Simplex towers with six bonds and Quartex ones with eight bonds, the number of self-

stress states and mechanisms are equal the number of modules. In the second case (models 

with nine and twelve bonds), the number of identified mechanisms does not change, but 

the number of self-stress states increases by three for Simplex models and by four for 

Quartex models. None of the identified self-stress states stabilize the towers. Only the su-

perposition of self-stress states from the single modules ensures the stability of structures. 

Table 2. Results of the qualitative analysis for linear models built with Simplex modules. 

No. of: S2 S3 S4 S5 S6 

elements 21 30 39 48 57 

nodes 9 12 15 18 21 

bonds 
S2-1 S2-2 S3-1 S3-2 S4-1 S4-2 S5-1 S5-2 S6-1 S6-2 

6 9 6 9 6 9 6 9 6 9 

degrees of freedom 21 18 30 27 39 36 48 45 57 54 

mechanisms 2 2 3 3 4 4 5 5 6 6 

self-stress states  2 5 3 6 4 7 5 8 6 9 

Table 3. Results of the qualitative analysis for linear models built with Quartex modules. 

No. of: Q2 Q3 Q4 Q5 Q6 

elements 28 40 52 64 76 

nodes 12 16 20 24 28 

bonds 
Q2-1 Q2-2 Q3-1 Q3-2 Q4-1 Q4-2 Q5-1 Q5-2 Q6-1 Q6-2 

8 12 8 12 8 12 8 12 8 12 

degrees of freedom 28 24 40 36 52 48 64 60 76   72 

mechanisms 2 2 3 3 4 4 5 5 6 6 

self-stress states  2 6 3 7 4 8 5 9 6 10 
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Figure 8. Linear four-module models: (a) S4, (b) Q4-connection A, and (c) Q4-connection B. 

4.2. Quantitative Analysis 

Through the quantitative analysis, the influence of the initial prestress level 𝑆 (𝐒 =

𝐲𝑆𝑆) on the static and dynamic parameters is considered. It was assumed that the param-

eter 𝑎 presented in Figure 5 is equal 𝑎 = 1 m and the structures are made of steel with 

density 𝜌 = 7860 kg/m3. The cables with diameter 𝜙 = 20 mm are made of steel S460N 

with the load-bearing capacity 𝑁𝑅𝑑 = 110.2 kN [35]. The type A cables with Young mod-

ulus 𝐸 = 210 GPa are used. The struts are made of a hot-finished circular hollow section 

with diameter 𝜙 = 76.1 mm  and thickness 𝑡 = 2.9 mm  (steel S355J2) with the Young 

modulus 𝐸 = 210 GPa and the load-bearing capacity 𝑁𝑅𝑑 = 203.5 kN [36] for the Sim-

plex module and 𝑁𝑅𝑑 = 193.9 kN for the Quartex module [36]. The calculations were 

made using a geometrically non-linear model implemented in a proprietary program 

written in the Mathematica environment. For the single modules, the minimum prestress 

value is assumed as 𝑆𝑚𝑖𝑛 = 0 kN, whereas for structures—𝑆𝑚𝑖𝑛 = 5 kN. The maximum 

value is assumed as 𝑆𝑚𝑎𝑥 = 110 kN. 

4.2.1. Static Analysis 

In this paper, the static analysis includes the determination of the influence of the 

level of initial prestress 𝑆 on the global stiffness parameter 𝐺𝑆𝑃 and the effort of struc-

ture 𝑊max. The structures are loaded with a z-direction force applied to one top node. Two 

load variants are considered. For the single modules, it is 𝑃𝑧
1 = −10 kN and 𝑃𝑧

2 = −20 kN 

(Figure 9), whereas for the six-modules structures—𝑃𝑧
1 = −1 kN and 𝑃𝑧

2 = −5 kN (Figure 

10). 

The Simplex module is more sensitive to changes in the level of initial prestress. At 

the maximum level of initial prestress, regardless of the load variant, the 𝐺𝑆𝑃 for Simplex 
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is 1.3 times higher than for Quartex. In the case of multi-module structures (Figure 10), 

the behavior is comparable. 

 

Figure 9. Single modules. Impact of the initial prestress level S on the: (a) Global stiffness parameter 

𝐺𝑆𝑃 and (b) effort of the structure (cables) 𝑊max. 

 

Figure 10. Structures build with six modules. Impact of the initial prestress level S on the: (a) Global 

stiffness parameter 𝐺𝑆𝑃 and (b) effort of structure 𝑊max. 

4.2.2. Dynamic Analysis 

The dynamic analysis included calculations of the natural vibrations 𝑓(0) and of the 

free vibrations of structures loaded with time-independent force 𝑓(𝑃). The structures are 

loaded with a z-direction force applied to one top node. Only one case of load is taken into 
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account, i.e., 𝑃 = −5 kN. The influence of initial prestress 𝑆 on the dynamic response of 

structures is considered. For example, the dynamic behavior of the six-modules structure 

is presented. The structures built with the Simplex modules are presented in Figure 11, 

while structures built with the Quartex modules are showed in Figure 12 (Q6a) and Figure 

13 (Q6b). The number of the natural frequencies, which are zero in the case of 𝑆 = 0, is 

equal to the number of infinitesimal mechanisms. In all cases, it is six frequencies. These 

frequencies increase when the initial prestress is applied. Higher frequencies are more 

susceptible to the change in prestressing. Generally, the natural frequencies of the struc-

ture built with the Simplex modules (S6) are higher in the structure built with the Quartex 

(Q6a, Q6b) modules. The value of the six frequency for S6 varies from 0 to 48.14 Hz, for 

Q6a—from 0 to 24.40 Hz and for Q6b—from 0 to 29.63 Hz. The obtained results con-

firm that the way of connecting the Quartex modules is important. For the structure with 

star-forming struts (Q6b), the six frequencies for 𝑆max is 1.3 times higher than for the 

structure with struts overlapping in a plan view (Q6a). The free frequencies 𝑓𝑖(𝑃) are 

calculated from the Equation (10). The external load prestresses the structures, and the 

initial dynamic responses at 𝑆 = 0 are not zero (Figures 11b, 12b and 13b). As the pre-

stress increases, the free frequencies become equal the natural frequencies. 

Theoretically, it is well known that the number of natural frequencies, depending on 

the prestressing, is equal to the number of infinitesimal mechanisms. However, in the case 

of some analyzed structures it is different. Only structures built with Simplex modules 

behave according to this rule. In Figure 14, the seventh natural and free frequency for 

structures built with six modules is showed. In the case of the Simplex structures (Figure 

14a), the natural and free are the same 𝑓7(0) = 𝑓7(𝑃) and do not depend on the initial 

prestress. However, for the Quartex structures (Figure 14b,c), the seventh frequency is 

additionally dependent on initial prestress. In the absence of initial prestress (𝑆 = 0), the 

natural frequency is not zero and their values vary with the change of prestress. The free 

seventh frequency behaves the same. The structures built with four and five Quartex mod-

ules behave similarly. Table 4 shows all values of natural frequencies sensitive to the 

change in the level of self-stress (white cells) and the following value of the natural fre-

quency independent of the prestress level (blue cells). Yellow cells indicate the abnormal 

behavior on the structure—these values should theoretically also remain independent of 

the prestress level, but they are not. 
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Figure 11. Simplex structure S6: (a) Natural frequencies 𝑓𝑖 (0) and (b) free frequencies 𝑓𝑖 (𝑃). 

 

Figure 12. Quartex structure Q6a: (a) Natural frequencies 𝑓𝑖 (0) and (b) free frequencies 𝑓𝑖 (𝑃). 
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Figure 13. Quartex structure Q6b: (a) Natural frequencies 𝑓𝑖 (0) and (b) free frequencies 𝑓𝑖 (𝑃). 

 

Figure 14. Seventh natural 𝑓7 (0) and free 𝑓7 (𝑃) frequencies for: (a) S6, (b) Q6a, and (c) Q6b. 

Table 4. Natural frequencies. 

 
𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 

0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 0 𝑆𝑚𝑎𝑥 

S1 

0 

37.8 152.6 152.8             

Q1a 24.6 200.8 201.2             

Q1b 24.6 200.8 201.2             

S2 

0 

14.5 

0 

34.7 67.9 68.0           

Q2a 11.6 21.2 62.3 62.4           

Q2b 11.2 29.2 64.1 64.2           
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S3 

0 

11.0 

0 

29.9 

0 

39.8 31.4 31.4         

Q3a 8.9 15.7 27.2 28.5 38.0 29.4 29.5       

Q3b 8.1 25.7 30.1 29.8 38.9 31.3 31.4       

S4 

0 

8.1 

0 

20.3 

0 

25.2 

0 

39.6 17.2 17.2       

Q4a 6.7 12.3 17.0 23.0 10.7 25.8 16.5 16.6     

Q4b 6.0 16.2 23.2 27.6 11.2 30.9 17.8 17.8     

S5 

0 

7.1 

0 

18.5 

0 

22.7 

0 

38.0 

0 

48.8 12.6 12.7     

Q5a 5.9 11.0 16.2 24.4 29.2 5.2 32.2 11.6 11.7   

Q5b 4.9 14.0 25.1 25.9 28.5 4.8 31.0 11.7 11.8   

S6 

0 

6.0 

0 

16.2 

0 

20.3 

0 

23.9 

0 

37.0 

0 

48.1 9.0 9.0   

Q6a 5.0 9.6 14.0 20.1 23.0 24.4 2.1 30.6 8.4 8.4 

Q6b 4.1 11.7 17.6 20.4 27.0 29.6 1.9 31.3 8.1 8.1 

The dynamic response of tensegrity structures is also affected by external loads. To 

illustrate this fact, as an example, the free frequency for the Q6a model for different values 

of the external load are shown in Figure 15. Regardless of the number of frequencies, the 

impact of loads is greater at a lower level of initial prestress and as the prestress increases, 

the free frequencies become equal the natural frequencies. Additionally, for the level of 

self-stress higher than 𝑆 > 20 kN, the relationship frequency-prestress becomes linear. 

 

Figure 15. Natural and free frequency for Q6a: (a) f1, (b) f6, and (c) f7. 

5. Conclusions 

In this paper, the static and dynamic behavior of tensegrity structures is explored. 

First, to illustrate the behavior of the structures characterized by self-stress states and in-

finitesimal mechanisms, the simplest truss, consisting of two elements, is considered. For 

such a simple structure, it is possible to obtain the static and dynamic parameters in an 

explicit form. This approach makes it easier to understand behavior of tensegrity struc-

tures. Next, the structures built of linearly connected the most popular tensegrity modules 

(modified Simplex and Quartex modules) are considered. Two ways of connecting the 

Quartex modules are considered, i.e., connection A—the struts overlap in a plan view, 

and connection B—the struts form a star. Additionally, different support conditions are 

analyzed. Particularly, the impact of initial prestress on the static and dynamic parameters 

is analyzed. 
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In the case of the qualitative analysis, which leads to the identification of immanent 

features, regardless of the type of modules and the way they are connected, the structures 

behave the same. Only the support conditions affect the result of the analysis. In contrast, 

for the quantitative static and dynamic analysis, the behavior of structures depends on the 

type of modules and the way they are connected. 

In the dynamic analysis of tensegrity structures, it is well known that the number of 

prestress-dependent natural frequencies is equal to the number of infinitesimal mecha-

nisms. With no prestress, these frequencies are zero, and the correlated forms of vibrations 

implement the mechanisms. After applying the self-stress state, the frequencies increase 

in proportion to the square root of that state. The sensitivity of these natural frequencies 

to the self-stress state is so great that the change in the level of prestress can be auspi-

ciously used to control the dynamic properties of the structure. Other frequencies theoret-

ically should be practically insensitive to self-stress changes. If several mechanisms are 

identified, the higher frequencies are more susceptible to the initial prestress changes. 

Considering the examples presented in this paper, the highest frequencies were ob-

tained for the structures built with the Simplex module, followed by structures built with 

the modified Quartex with the struts forming a star, while the lowest frequencies were 

obtained for the structures built with the modified Quartex with the overlapping struts. 

In addition, the Simplex towers behave typically, whereas both Quartex towers exhibit an 

abnormality in the dynamic analysis. Theoretically, as mentioned before, the number of 

natural frequencies, depending on the prestressing, is equal to the number of infinitesimal 

mechanisms. However, in the case of some analyzed structures it is different. Only struc-

tures built with Simplex modules behave according to this rule. However, for the Quartex 

structures, there is an additional frequency dependent on the initial prestress. In the ab-

sence of initial prestress (𝑆 = 0), the natural frequency is not zero and its value varies 

with the change of prestress. The additional free frequency behaves the same. The consid-

erations contained in this paper indicate the unusual behavior of tensegrity structures. 

The obtained results are important for the dynamic stability analysis of the behavior of 

tensegrity structures under the periodic loads, which will be the subject of the second part 

of the paper. The dynamic stability analysis cannot be carried out without the analysis 

presented in this paper. 
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