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Abstract: Organic, single crystals have emerged as unique optoelectrical materials due to their
highly ordered structure and low defects. In this work, pentacene nanoribbons and nanosheets were
selectively fabricated by controlling their growth temperature. The results show that their photo-
luminescence (PL) activity and electrical properties were strongly dependent on their geometrical
morphology and molecular stacking mode such as the degree of π-orbital overlap and intermolecular
interaction. The pentacene nanoribbon crystal exhibited a higher PL intensity compared with the
nanosheet configuration; conversely, its electrical conductivity was poor. The low-temperature PL
measurement indicated that there are stronger π–π stacking interactions in the nanosheet crystal
than in the nanoribbon crystal, leading to exciton quenching and higher conductivity. Our study
demonstrated that a unique optoelectronic property of organic crystals can be obtained by controlling
the crystal’s morphology, which offers potential guidance for the future design and development of
organic crystal optoelectronics.

Keywords: single crystal; pentancene; morphology

1. Introduction

Organic semiconductors have recently attracted intense interest due to their numerous
advantages with respect to electronic and photonic devices owing to their easy synthesis
and the tenability of their optoelectronic properties brought about by molecular design and
engineering [1–4]. Furthermore, organic semiconductors can be solution-processed on any
substrate inexpensively and even at relatively low temperatures, which is highly advan-
tageous for their scale-up from fundamental studies to industrial-level production [5–8].
Current examples of developed organic semiconductors include field-effect transistors
(OFETs) [9–12], photodetectors (OPDs) [13–16], solar cells [17–19], light-emitting diodes
(OLEDs) [20–22], and so on. To date, a large number of organic optoelectronic devices have
been constructed using amorphous or polycrystalline films [23–25]. However, extrinsic
structural defects in the films impede their photon, electron, or exciton migration inside
the semiconducting layers. Low-dimensional organic single-crystals with a well-ordered
structure, low impurity defects, and high carrier mobility provoke greater interest in the
field of optoelectronics. Their low-dimensional structure reveals the intrinsic physical
properties of an organic semiconductor, thus offering new opportunities to investigate
the impacts of basic molecular interactions on structure–property relationships [26–28].
Unlike their inorganic counterparts, the optoelectronic characteristics of organic materials
strongly rely on molecular (π–π) stacking. In addition, the crystallization rates of differ-
ent facets govern the macroscopic morphologies of crystals and their products, such as
nanosheets, nanodishes, nanorods, and nanowire, and these correspond to the molecular
stacking direction. Differently shaped crystals have different applications according to our
requirements, even with respect to the same material [29–34]. Owing to their desirable
optoelectronic properties, high-quality, organic, single-crystalline materials are heavily
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demanded components in optoelectrical functional devices [13]. Therefore, it is crucial to
control the crystal growth process and generate different morphologies, especially along
the π–π stacking direction. Over the past few decades, tremendous progress has been made
with respect to developing strategies for highly ordered crystal growth, such as vapor and
solution-processing techniques [35,36]. Physical vapor transport (PVT) usually produces
single crystals with high quality and in dense contact with the substrate. However, this
process requires a vacuum or an inert carrier gas environment, which are relatively compli-
cated conditions and incur high costs. For the solution-processing method, it is difficult to
fully dissolve organic molecules with a long π-conjugated system in a solvent. Recently, an
efficient and simple method with which to evaluate crystalline materials was provided by
Ye et al., consisting of micro-spacing in-air sublimation (MAS) growth [37] incurring low
costs and yielding crystals with just as good of a performance as other techniques. However,
only one shape of organic crystals was studied, and the internal relation of optoelectrical
performance with the molecular packing has not been reported. In fact, polycrystalline
pentacene has been reported in many references [38–41]. Previous experiments have devel-
oped pentacene with nanoribbon or nanosheet configurations, but the presented analysis
of different photoelectric phenomena was insufficiently comprehensive [41–43].

In this work, we demonstrated that the shape of a pentacene single crystal can be
changed through the growth temperature using the MAS method. The optoelectronic
characteristics of pentacene nanoribbons are different from those of the nanosheet configu-
ration. The results show that the PL intensity of the nanoribbon is well above that of the
nanosheet, while it shows an opposite phenomenon with respect to electrical conductivity.
It is apparent that the optical and electric properties are highly related to a crystal’s shape,
which is mainly governed by molecular orientation and packing modes. The different
crystals show morphology-dependent properties, which may fulfill different requirements
in practical applications.

2. Experimental Methods
2.1. Materials and Crystals Fabrication

Pentacene powder was purchased from commercial company (Alfa Aesar) without
further purification (98% purity). Pentacene crystals were produced using MAS equipment,
which has the same setup as the one well-documented in the literature. A silicon wafer
substrate was cut into 1 cm × 1 cm pieces, which acted as the substrate for the source holder
and for growth of Pentacene crystals. The spacing distance between the two wafers set at
300 µm. For the heating stage, heating temperatures of 180 and 260 ◦C were employed for
the growth of pentacene nanoribbon and nanosheet, respectively.

2.2. Characterizations of Pentacene Crystals

Cross-polarized optical microscopy images were obtained by a Zeiss Imager A2m
fluorescence-microscope from Carl Zeiss ZESISS, Oberkochen, Germany. Atomic force
microscopy (AFM) measurements were performed using a Bruke Icon atomic force mi-
croscope from Bruker, Washington, America operating at room temperature and under
ambient conditions. X-ray diffraction (XRD) of the crystals was performed with a Pana-
lytical X’pert3 MRD from Malvern Panaco, UK with a Cu Kα anode operating at 40 kV
and 40 mA. Unless otherwise stated, all electrical measurements were carried out with a
Keithley 4200 from Tektronix, Beaverton, Oregon, America. Parameter Analyzer at room
temperature and under ambient conditions. Low-temperature photoluminescence spectra
were acquired using a Horiba Jobin Yvon LabRam HR 800 spectrometer from HORIBA
Jobin Yvon, Paris, France with a CCD-1024 × 256-FIVS-3S9.

3. Results and Discussion

As shown in Figure 1a, the crystals grown at 180 ◦C display a nanoribbon-like mor-
phology with four right angles. The morphology of the product is highly consistent with
previous research [41,42]. The length of the nanoribbon crystal is approximately 60 µm,
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with a width of ~3 µm (thick ~50 nm, see in Figure 1b). Contrary to fabrication at a lower
temperature, a nanosheet with a length and width of 10–20 µm can be obtained at a higher
temperature. Its thickness is about 20 nm (Figure 1e). From Figure 1c,f, it can be clearly
seen that the nanoribbon has a clear fluorescence signal, while the sheet has no obvious
fluorescence intensity. This particular optical difference has previously been reported in
a similar way [41–43]. The quality of single crystals can be measured by a polarizing test.
The obvious brightness variation dependent on the angles offered by the two crystals’
morphologies is shown in Figure S1 (see Supplementary Information), which indicates that
the constructed products have high crystallinity.
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small amount of crystal nucleus was formed. However, the growth of nuclei that were 
inclined to form a morphology corresponding to a nanosheet crystal began, because the 
growth temperature of a nanosheet crystal is higher than that of nanoribbon crystal. After 
the heating temperature in the heating stage reached 260 °C, the grains grown rapidly 
formed nanosheet crystals, while the nanoribbon crystals quickly disappeared due to high 
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the growth behavior of nanoribbon crystals, the growth rates of the nanosheet crystals 

Figure 1. Morphological characterization of the pentacene crystal grown by MAS method. (a,d) Mi-
croscope images of nanoribbon and nanosheet crystals grown at the temperatures of 180 ◦C and
260 ◦C, respectively; scale bar: 20 µm. (b,e) The corresponding AFM images; the inset shows the
thickness; scale bars: 2 µm and 1 µm. (c,f) The corresponding PL images, λex = 365 nm, scale bars:
40 µm and 20 µm.

In order to investigate the growth process of the two different crystals at different
temperatures, an experiment consisting of the in situ growth of the crystals under a micro-
scope was conducted. As a traditional silicon wafer is opaque, clean transparent quartz
wafers were adopted as the surface-grown crystals. As presented in Video S1, as the
temperature of the heating stage increased to 180 ◦C for one minute, a large number of
finely dispersed vapor molecules could be observed on the top substrate. Due to the
continuous mass transmission of the bottom substrate, the small crystals continued to grow.
This is different from the formation of the nanoribbon crystal. While the other conditions
remained unchanged, the growth process of the nanosheet was observed in real time under
a microscope, as shown in the Video S2; when the heating temperature reached 170 ◦C,
a small amount of crystal nucleus was formed. However, the growth of nuclei that were
inclined to form a morphology corresponding to a nanosheet crystal began, because the
growth temperature of a nanosheet crystal is higher than that of nanoribbon crystal. After
the heating temperature in the heating stage reached 260 ◦C, the grains grown rapidly
formed nanosheet crystals, while the nanoribbon crystals quickly disappeared due to high
intolerance. It can be observed from the Supplementary Videos that the growth rates of the
ribbon crystals in the b-axis were significantly higher than those in the a-axis. Unlike the
growth behavior of nanoribbon crystals, the growth rates of the nanosheet crystals along
the a-axes and b-axes are comparable, resulting in the observed aspect ratio of nanosheet
crystals that was lower than that of the nanoribbon crystals.

Furthermore, the structural characterizations of the as-prepared two types of crystals
were carried out using X-ray diffraction (XRD). Figure 2a represents the XRD patterns,
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which clearly indicates the crystals’ quality and that both the pentacene nanoribbon crystal
and the nanosheet crystal are single crystals. The corresponding XRD patterns agree well
with the previously reported data concerning pentacene single crystals grown by gas phase
transport, as all the patterns show strong diffraction peaks from the plane [41,43]. The
theoretical equilibrium morphology of the nanosheets was found in previous theoretical
simulations but note that the theoretical morphology of the nanoribbons was lacking [38].
For auxiliary verification, the crystal form prediction of the pentacene material was per-
formed using the BFDH module in the Materials Studio software (as shown in Figure 2b).
(The parameters of the crystals have been indexed with lattice constants that were reported
previously: a = 0.6266 nm, b = 0.7775 nm, c = 14.530 nm, α = 76.475◦, β = 87.682◦, and
γ = 84.684◦ [44].) The simulation verified the reliability of the experimental results, which
presented crystals with different morphologies.
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Figure 2. (a) XRD patterns of the pentacene nanoribbon crystal (red) and nanosheet crystal (blue).
(b) Theoretically predicted morphology of the nanoribbon crystal and nanosheet crystal. (c,d) Selected-
area electron diffraction (SAED) pattern images of pentacene nanoribbon and nanosheet depicting
zone axes of (21–1) and (011), respectively. The insets are the corresponding TEM images.

Meanwhile, the crystals with different morphologies possess different tightness pack-
ing modes. The well-defined molecular-packing model and preferential molecular growth
behavior in the nanoribbon crystals and nanosheet crystals provide valuable guidance
for further investigation of their optoelectronic properties. Individual nanoribbon and
nanosheet crystals were characterized by transmission electron microscopy (TEM) (the
inset), and their corresponding selected area electron diffraction (SAED) patterns are pre-
sented in Figure 2c,d. Typical single-crystal features of nanoribbon and nanosheet single
crystal diffraction patterns were obtained. It was clearly shown that the nanoribbon grew
along the (0−1−1) and (102). This is different from the pentacene nanoribbon, which
showed molecular packing growth along (100) and (0−11).

As shown in Figure 3a, we found that the nanoribbon showed a stronger PL intensity
(λex = 532 nm), which was about an order of magnitude higher than that of the nanosheet.
This is consistent with the results from the PL images (Figure 1c,f) as mentioned above.
The main peak of the nanoribbon is about 650 nm, while that of the nanosheet is about
690 nm, revealing that the energy difference between them is 0.3 eV (shown in Figure 3b).
In order to analyze a single crystal that exhibits a strong PL phenomenon, we further
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investigated the internal arrangement of the crystal. It is worth considering that the
existence of pentacene polycrystals has been reported several times in previous reports, and
the structure of polycrystals has been explained with respect to different aspects, such as
molecular orientation [38–41,45]. Studies have shown that crystals with different molecular
densities show different PL levels [26–28,46]. Interestingly, the nanoribbon and nanosheet
crystals of pentacene may have distinctly different fluorescence emission properties due
to their different molecular-packing models in the solid state. This is because nanosheet
crystals exhibit stronger π–π interaction than nanoribbon crystals, resulting in a redshift
of their fluorescence spectra. The important factor determining PL activity consists of a
crystal’s relative molecular arrangements [47]. Molecular arrangements that favor J-type
aggregation are presented in nanoribbon crystals. The difference is that the nanosheet
crystals are inclined to H-type aggregation, resulting in a lower PL intensity. To confirm
the PL homogeneity of the samples, nanoribbon and nanosheet contour mapping of the
PL intensity were performed. The fluorescence intensity distribution of the nanoribbon
crystal is consistent with the PL image. Compared with the nanoribbon crystal, the surface
fluorescence intensity of the nanosheet crystal is more uniform (as illustrated in Figure 3c,d).
The difference in the luminescence intensity indicates that the radiative recombination
channel is enhanced by low-temperature crystallization as opposed high-temperature
growth [48].
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Figure 3. (a) PL spectra of pentacene nanoribbon (black) and nanosheet (red). (b) The normalized PL
data of pentacene nanoribbon (black) and nanosheet (red). (c,d) PL-mapping images of pentacene
nanoribbon crystal and nanosheet crystal, respectively.

To verify the conjugate intensity of the crystals with different morphologies, a low-
temperature (from 123 to 298 K) PL test was carried out. A further exploration for the
characteristics of aggregation structures with fluorescence efficiency was carried out. As
shown in Figure 4a,b, it is evident that as the temperature decreases, the emission intensity
of both crystals increase. This result indicates that the free vibration of molecules inside
the crystal could be weakened, and the aggregation state could be reduced at the lower
temperature, which increases the intensity of the fluorescence emission. From 298 to 123 K,
the changes reveal a 2.6-fold increase in the intensity of the low-temperature spectroscopy
in the nanoribbon and a 9.2-fold increase in the nanosheet. This phenomenon suggests
that there are stronger molecular interactions inside the sheet crystals at room temperature,
while the interactions in the ribbon crystals are weaker due to the larger intermolecular
distance [47,49–51]. The luminescence properties of organic solid-state materials depend
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heavily on intermolecular interactions, and small changes in the intermolecular aggregation
structures can produce large changes in luminescence properties [52–54]. Intermolecular
interactions play an essential role with respect to the PL properties of organic, solid state,
luminescent materials. Shorter molecular packing leads to tighter intermolecular interac-
tions, contributing to the weaker emission in the longer wavelength region. We concluded
that a tighter packing structure causes red-shifting in the spectrum of the nanosheet crystal,
which is consistent with the cause of the fluorescence emission. Our findings will lay a
foundation for the development of high-performance organic luminous materials.
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Figure 4. Low-temperature (the range of 123–298 K) PL spectra of (a) pentacene nanoribbon and
(b) nanosheet crystal.

To investigate the charge transport properties of the grown pentacene single crystals, field
effect transistors were prepared based on the pentacene nanoribbon and nanosheet’s micro-
crystalline structures. As shown in the inset of Figure 5a, a top-contact bottom gate architecture
was adopted. To ensure a clean conductive interface, two Au electrodes were mechanically
transferred on both sides of the pentacene nanosheet as source/drain contact electrodes. The
representative optical micrograph of the OFET based on the nanosheet single crystal is shown in
Figure 5a. At the same time, we fabricated OFET based on nanoribbon crystals; no field effect
properties were detected (see Figure S2 in the Supplementary Materials). The above-mentioned
different electrical phenomena of the different crystals can be ascribed to two aspects:
(1) poor contact property with the electrode due to defects on the crystal surface and
(2) the weak π–π interactions in the crystal. Another reason is the poor quality of the
single crystals grown at low temperature, which can be verified from the wide PL spec-
trum. To further investigate why nanoribbon crystals do not conduct electricity, their
KPFM parameters were tested. The potential diagrams indicate that the potential of the
nanosheet crystal is higher than that of gold; however, the potential in the region of the
nanoribbon crystal is lower than that of Au. It can be concluded that the uneven potential
inside the nanoribbon crystal causes the phenomenon in which a steady current is not
formed (see Figure S3 in the Supplementary Materials). Typical p-type field effect modula-
tion was attributed to the nanosheet single crystals as evidenced by their representative
transfer curves attained on the OFET device (Figure 5b). It can be surmised that there
is good contact between the electrode and the pentacene nanoribbon crystal (Figure 5c),
which is due to the good degree of matching between the Fermi level of the gold electrode
and the pentacene single crystal. In contrast, the field-effect performance with respect to
the OFET based on the nanoribbon crystal was not measured in this experiment. It can
be seen from Figure 5c that the source-drain (IDS) increases with the negative increase
in the source-drain voltage (VDS) and the gate voltage (VG). At the same time, it can
be seen from the transfer characteristic curve of the device that at VDS = 10 V, the de-
vice’s “on/off” current ratio (Ion/off) is 107, which exhibits a typical p-type field effect
modulation. The transistor exhibits an excellent photocurrent upon its illumination with
excitation light (658 nm) under a constant bias voltage (VDS = 10 V; VG = 0 V; shown in
Figure 5d). The carrier mobility histograms corresponding to the as-prepared 10 devices are
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illustrated in Figure S4 in the Supplementary Information, showing an average mobility of
0.46 cm2 V−1 s−1 and the highest mobility of 1.2 cm2 V−1 s−1.
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Figure 5. (a) Optical image of nanosheet crystal based on OFETs. (L = 15 µm, W = 19 µm.) Inset
shows a schematic of the device’s configuration. The representative (b) transfer curves and (c) output
curves of OFET based on nanosheet crystal. (d) Time-dependent photoresponse of the device under
658 nm illumination (VDS = 10 V, VG = 0 V).

4. Conclusions

In this work, pentacene nanoribbon and nanosheet crystals that exhibit completely
different optical and electrical properties were selectively prepared using the microspace
sublimation method. This was facilitated by the different molecular arrangement char-
acteristics provided by the different crystals. At the same time, we verified the existence
of different forms of pentacene by theoretical simulation experiments. Furthermore, a
low-temperature PL test was carried out to verify the phenomenon in which molecular
packing governs intermolecular interactions. It is worth noting that field effect transistors
are prepared based on nanoribbon crystals and nanosheet crystals. Unlike a strip crys-
tal device, a device based on a sheet crystal offers good charge transfer characteristics.
Moreover, such a device exhibits an excellent photocurrent upon its illumination. The
discovery of this particular photovoltaic phenomenon has important implications for future
applications, such as the development of organic semiconductor-based optical waveguides
and photodetectors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16020557/s1, Figure S1: The cross-polarized optical microscopy
images of the nanoribbon crystal and nanosheet crystal in different polarization directions; Figure
S2: Microscopy image of a representative nanoribbon crystal device, and the corresponding transfer
curve of device based on the nanoribbon crystal; Figure S3: The KPFM images of the nanoribbon
crystal device and the nanosheet crystal device and the corresponding surface potential profiles.;
Figure S4: Carrier mobility distribution of 10 OFETs fabricated on pentacene sheet-like single crystals.
The Video S1: The growth process of the nanoribbon crystals. The Video S2: The growth process of
the nanosheet crystals.
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