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Abstract: A comprehensive study of the statistical distribution of the auto-adhesion lap-shear strength
(σ) of amorphous polymer–polymer interfaces using various types of statistical tests and models is a
useful approach aimed at a better understanding of the mechanisms of the self-healing interface. In
the present work, this approach has been applied, for the first time, to a temperature (T) range below
the bulk glass transition temperature (Tg

bulk). The interest of this T range consists in a very limited or
even frozen translational segmental motion giving little or no chance for adhesion to occur. To clarify
this issue, the two identical samples of entangled amorphous polystyrene (PS) with a molecular
weight (M) of 105 g/mol or 106 g/mol were kept in contact at T = Tg

bulk − 33 ◦C for one day. The
as-self-bonded PS–PS auto-adhesive joints (AJ) of PSs differing in M by an order of magnitude were
fractured at ambient temperature, and their σ distributions were analyzed using the Weibull model,
the quantile-quantile plots, the normality tests, and the Gaussian distribution. It has been shown that
the Weibull model most correctly describes the σ statistical distributions of the two self-bonded PS–PS
AJs with different M due to the joints’ brittleness. The values of the Weibull modulus (a statistical
parameter) m = 2.40 and 1.89 calculated for PSs with M = 105 and 106 g/mol, respectively, were
rather close, indicating that the chain length has a minor effect on the σ data scatter. The Gaussian
distribution has been found to be less appropriate for this purpose, though all the normality tests
performed have predicted the correctness of the normal distribution for these PS–PS interfaces.

Keywords: amorphous polystyrene; contact; auto-adhesion strength; statistics; molecular weight

1. Introduction

Generally, the arithmetic mean values of a certain mechanical property (e.g., strength
σav, Young’s modulus E, strain at break εb) are estimated from a rather limited number
(3–5) of measurements of identical samples used for materials’ characterization (see, e.g.,
Refs. [1–4]). However, a larger number of tests – numbering in the dozens, for instance–
undoubtedly provides not only higher precision regarding the estimated characteristics,
but also supports their reliability through additional parameters such as the standard
deviation of the mean. In this case, moreover, an opportunity to investigate the statistical
distribution of the chosen property appears. In turn, learning the most correct form of this
distribution can give complementary useful information aimed at in-depth analysis of the
deformation and fracture mechanisms in materials of various chemical origins. Indeed,
on one hand, for the materials characterized by both extremely high (σ > 1 GPa [5–7],
both organic and inorganic fibers) and extremely low strengths (σ < 1 MPa [8–11], weak
polymer–polymer interfaces), i.e., for the materials drastically differing in the σ value,
by 3 orders of magnitude, the σ statistical distributions have been found to follow the
same distribution form: the Weibull distribution [12–19]. In this case, one observes a
linear plot in the specific coordinates lnln [1/(1 − Pj)] = f(lnσ), where Pj is the cumula-
tive probability of failure. These distribution behaviors seem to be unsurprising since
these two completely different materials types have one common feature, brittleness, and
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the Weibull model was initially proposed for such materials systems [12]. On the other
hand, the materials with ‘intermediate strengths’, of the order of some dozens of MPa,
which include many commercially-available polymers of general use such as polystyrene
(PS), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), PS-PPO blends [20], and others, have
demonstrated the statistical distribution behaviors of several mechanical properties (σ, E,
and εb), which are characteristic of the Gaussian distribution representing the bell curve. It
is interesting to note that these statistical behaviors have been observed despite completely
different deformation ability of these polymers (quasi-brittle PS and PS-PPO blends, and
ductile PPO).

It is important to note that the validity of a given distribution type implies a certain
mechanism of deformation or fracture. For instance, if the Weibull distribution for σ
holds [12–19], it indicates that the fracture process is dominated by the presence of surface
cracks and their propagation across the sample cross-section [6]. By contrast, if the Gaussian
model is most correct, it suggests that the deformation or fracture process is controlled by
many factors which are independent and equally weighted [21–23]. Therefore, by finding
out which type of the statistical distribution is most appropriate, one may conclude which
of the mechanisms dominates in the case considered.

Of particular interest for the investigation of mechanical properties is the statistical
analysis of the strength development at the early stages of self-bonding at polymer–polymer
interfaces, when two polymer pieces are brought into contact at a rather low temperature
T, well below the bulk glass transition temperature (Tg

bulk), and kept at that T for a chosen
period of time (t). During this period, the interface strength develops from “zero value”
upon the contact (van der Waals interactions between the molecular groups located at
the sample surface are too weak to give rise to practical adhesion [24]) to a certain value
originating from the physical links formed by the interdiffusing chains ends (also mainly
van der Waals interactions, but taking place between a larger number of links per contact
area). Although this molecular mechanism is believed to be non-realistic at T < Tg

bulk, it
can be activated in a T interval Tg

interface < T < Tg
bulk if Tg

interface < Tg
bulk, as was suggested

by Boiko and Prud’homme [24] and further developed by Boiko in [25]. In fact, the strength
developed at these T conditions is rather low (<1 MPa [24]). Nevertheless, it is sufficient for
the interface to bear a mechanical load. Consequently, this strength origination represents
the early stages of the phenomenon of self-bonding at T < Tg

bulk.
Indeed, in the absence of the segmental interdiffusion across the interface, the interface

resistance to a mechanical load is provided exclusively by wetting forces. In terms of
the interface fracture energy (G), the value of G is equal to the thermodynamic work of
adhesion (Wa) required to reversibly separate the surfaces-in-contact; for the two fully
identical samples, Wa = 2γ where γ is the free surface energy. For the majority of polymers,
Wa is very low, Wa < 0.1 J/m2 [26]. For instance, since γ = 0.042 J/m2 for PS, one obtains
Wa = 0.084 J/m2 for the two contacting PS samples. This Wa value is smaller by over an
order of magnitude compared to the smallest value G = 2 J/m2 measured in the T-peel test
geometry after self-bonding of a PS–PS interface at a rather low T = Tg

bulk − 43 ◦C [27].
It indicates that this G value was mainly developed due to the contribution of the chain
segments’ interdiffusion at this low T, which, at first glance, is rather unexpected. However,
this behavior seems to be explainable in view of its occurrence above the local Tg of the
interface layer (and, hence, of the surface layer prior to contact).

It should be noted that the impact of some molecular and structural factors such as
the chain architecture, and the presence or the absence of crystallites on the statistical adhe-
sion strength of weak polymer–polymer interfaces, has already been investigated [8–11].
However, little is known about the influence, if any, of such an important molecular factor
as the chain length on the adhesion strength statistics. Moreover, the statistical lap-shear
strength developed at the amorphous polymer–polymer interfaces at T < Tg

bulk has not
yet been analyzed on its validity to normal (or Gaussian) distribution [21–23]. Thus, in
order to address these issues, the goal of this study is twofold: to find out (i) which of the
types of the well-known statistical distributions is most correct to describe the distribution
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of the lap-shear strength (σ) developed during the contact of the two identical pieces of
an amorphous polymer, and (ii) how the chain length affects this process at a rather low
temperature, which was by 33 ◦C below Tg

bulk. For this purpose, two atactic (amorphous)
PSs differing in chain length by an order of magnitude, with molecular weights (M) M = 105

and 106 g/mol, were used. The as-self-bonded PS–PS auto-adhesive joints were fractured
at ambient temperature, and their σ distributions were analyzed using the Weibull model,
the quantile-quantile plots, normality tests, and the Gaussian distribution.

2. Materials and Methods
2.1. Polymers and Samples

The polymers used in this study were two near-monodisperse PSs with a number-average
molecular weight (Mn) and a weight-average molecular weight (Mw) of Mn = 97,000 g/mol
and Mw = 102,500 g/mol, and Mn = 965,600 g/mol and Mw = 1,110,500 g/mol, abbreviated
as PS1 and PS2, respectively, purchased from Polymer Source, Inc. (Dorval, QC, Canada).
The Tg

bulks of the two PSs were measured on a differential scanning calorimeter Q1000
(TA Instruments, New Castle, DE, USA) at a heating rate of 10 ◦C/min and estimated as
the middle points of the corresponding heat capacity jumps at 105 ◦C (PS1) and 106 ◦C
(PS2). The amorphous PS thick bulk films with a thickness of 100 µm were produced
by compression molding of the PS powders between smooth surfaces of a silica glass at
T = 165 ◦C (PS1) and T = 180 ◦C (PS2). The as-produced films were cut into rectangular
strips of a width of 5 mm and a length of 30 mm.

2.2. Self-Bonding of PS–PS Interfaces

The PS strips were self-bonded (i.e., PS1 with PS1, and PS2 with PS2) at T = 72 ◦C
(PS105) and T = 73 ◦C (PS106), i.e., at T = Tg

bulk − 33 ◦C for the two polymers investigated,
for 24 h. To form the PS–PS single lap-shear auto-adhesive joints (AJs) that are capable
of bearing a mechanical load, 10 pairs of the identical amorphous PS strips were held in
contact at an overlapped length of 5 mm and set in a fan-equipped oven. To facilitate
good wetting, a small contact pressure of 0.2 MPa was applied to each of the contact areas
individually by dead loads. This made it possible to avoid an undesirable non-uniformity
of the contact pressure from joint to joint. To obtain reliable results, each self-bonding
procedure was repeated. Thus, 20 identical joints were formed and tested for each of the
PSs used.

2.3. Fracture Tests

The as-formed PS–PS AJs were fractured on an Instron tensile tester at ambient tem-
perature at a crosshead speed of 5 mm/min. The distance between the tester clamps was
50 mm with the joint located in the middle. The auto-adhesion lap-shear strength (σ) was
calculated as the AJ fracture load divided by the contact area of 25 mm2. The scheme of the
procedures of the self-bonding interface and fracture is shown in Figure 1.
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2.4. Statistical Analysis
2.4.1. Weibull’s Statistics

The Weibull analysis of the lap-shear strength distribution was carried out using
Equation (1) [12–19]:

lnln [1/(1 − Pj)] = −m·lnσ0 + m·lnσ, (1)

where Pj = (j − 0.5)/n, n is the auto-adhesive joint number, m is the Weibull modulus (or
the shape parameter), and σ0 is the scale parameter. Equation (1) can be simplified to:

y = a + bx, (2)

where y = lnln [1/(1 − Pj)], b is the m, x is the lnσ, and a = −m·lnσ0 is the curve intersection
with the y axis. By estimating m as the tangent to the curve lnln [1/(1 − Pj)] = f(lnσ)
using the standard procedure of the linear regression analysis, one can calculate σ0 as σ0 =
exp(−a/m); σ0 is an equivalent of σav.

2.4.2. Normality Tests

To investigate the validity of the normal distribution, the σ data sets measured
were analyzed–first, by constructing the normal probability (NP) or quantile-quantile
(Q-Q) plots, and second, by computing them using several standard normality test proce-
dures (Kolmogorov–Smirnov, Shapiro–Wilk, Lilliefors, Anderson–Darling, D’Agostino–K
squared, and Chen–Shapiro tests) [22,23]. Thereafter, the histograms of the probability den-
sity function (PDF) vs. σ were constructed and analyzed to determine their correspondence
to the Gaussian distribution.

3. Results and Discussion

In Figure 2a, the values of σ evolved at the PS1–PS1 and PS2–PS2 interfaces at
T = Tg

bulk − 33 ◦C for 24 h and measured thereafter at ambient temperature are plot-
ted in ascending order. As is seen, the σ values for the PS1–PS1 joints are markedly higher
as compared to those for the PS2–PS2 joints—approximately twice as high. The next step
was to determine whether this σ difference with M agreed with Wool’s minor chain repta-
tion model predicting σ~1/M1/4 [26] which is valid for self-bonding between polymers
at T > Tg

bulk, when the long-range chain snake-like motion is feasible. According to this
approach, one can write σ = k/M1/4 where k is a constant depending on the chain chem-
ical structure. Hence, for the two PSs investigated, the ratio between σ(PS1) and σ(PS2),
σ(PS1)/σ(PS2), has the form σ(PS1)/σ(PS2) = [Mn(PS2)/Mn(PS1)]1/4. To put it differently,
the value of σ(PS1) reduced to that of σ(PS2) can be expressed as σ(PS1) = [σ(PS2)] ×
(965,600/97,000)1/4, i.e., it can easily be calculated as σ(PS1) = 1.776σ(PS2). Compare the
calculated and measured values of σ(PS1) in Figure 2b. As is seen, the two σ data sets
overlap. This observation supports the validity of the minor chain reptation model at
T < Tg

bulk, though it was proposed initially for the temperature range T > Tg
bulk. This

apparent contradiction can be omitted in view of the fact that the PS surface Tg is lowered
with respect to the PS Tg

bulk by roughly 50 ◦C [24], and by assuming that this effect persists
at the early stages of self-bonding [25], the activation of the snake-like chain motion at a
temperature which is not markedly lower than Tg

bulk, at T = Tg
bulk − 33 ◦C, seems to be

realistic if it occurs at T > Tg
interface.

The diffusion-controlled mechanism of the lap-shear strength evolution at
T = Tg

bulk − 33 ◦C can further be confirmed as follows. When the interface self-bonding
process at this T was interrupted by removing the samples-in-contact from the oven after
a short-term exposure for 1 min, thus minimizing or even excluding the interdiffusion
contribution and only the wetting contribution to the lap-shear strength development
remaining active, the upper sample was separated easily from the bottom sample just by
careful handling. To put it differently, in this case, the adhesion force of physical attraction
between the surfaces (Fa) is smaller than the sample weight which is equal to the product
of its volume (0.01 × 0.5 × 3 cm3) and density (~1 g/cm3), which gives Fa = 0.015 gf or
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0.147 mN. Hence, for a contact area (S) of 25 mm2 used in the self-bonding experiments
here, one obtains a higher limit of the adhesion strength σa = Fa/S ≤ 5.9 × 10−6 MPa for
the PS–PS interfaces investigated. This value of σa (corresponding to G = Wa = 0.084 J/m2

in terms of fracture energy) is markedly, by four order of magnitude, smaller than the
smallest value of σ = 0.03 MPa measured in this work. Therefore, even this smallest σ value
was developed due to the build-up of new van der Waals bonds between the molecular
groups of the chain segments diffused from one PS sample and those of the counter PS
sample they penetrate. Their concentration per unit of the PS–PS contact area has been
estimated to be roughly 0.02 nm−2 at T = Tg

bulk − 33 ◦C [28].
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Figure 2. (a) Lap-shear strength σ ascending order as a function of joint number developed at
symmetric PS–PS interfaces with (open triangles) M = 105 and (open circles) M = 106; (b) data of
Figure 2a where the σ values for PS2 with M = 106 are reduced to the σ values for PS1 with M = 105

by the multiplication of the formers by (965,600/97,000)1/4 (see text).

Let us turn to the statistical analysis of the measured lap-shear strength data sets. First,
consider the applicability of the Weibull model. For this purpose, the data of Figure 2a
were replotted as lnln [1/(1 − Pj)] vs. lnσ in Figure 3 and investigated using a linear
regression analysis.
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As follows from Figure 3, the experimental data points for the two PSs investigated
are fitted with rather high values of root mean square deviation R2 = 0.982 (M = 105) and
R2 = 0.987 (M = 106). Hence, the results of this procedure are correct. The values of the
Weibull modulus calculated from these plots are m = 1.89 and 2.40 for the PSs with M = 106

and 105, respectively. A higher m value for the PS1 with a lower molecular weight indicates
that the data scatter for it is narrower. However, the difference between these two m values
of ~20% seems to be rather small, especially with respect to the drastic difference in M and
in the chain end concentrations (an order of magnitude). Therefore, although the chain
ends represent structural defects, their increased concentration at the interface does not
play a negative role in the σ data scatter.

Now, investigate the correspondence of the data of Figure 2a to the normal distribution.
For this purpose, these data are presented as the quantile–quantile plots in Figure 4a,b
for AJ PS1−PS1 and PS2−PS2, respectively. As is seen, the two data sets can be fitted
satisfactorily with the linear curves, suggesting that they can be appropriate for representing
the normal distributions.

To investigate this issue in more detail, these data sets were analyzed using several
normality tests, and the results of this analysis are presented in Tables 1 and 2.

Table 1. Statistical parameters of the lap-shear strength distribution estimated for two PS–PS interfaces
in five normality tests.

Molecular Weight, g/mol Test Type Statistic p-Value Decision at Level 5% *

105 Shapiro–Wilk 0.92935 0.15004 +
106 0.93979 0.2614 +

105
Lilliefors

0.15347 0.2 +
106 0.15788 0.2 +

105
Kolmogorov–Smirnov 0.15347 0.70769 +

106 0.15788 0.70223 +

105
Anderson–Darling 0.49761 0.18727 +

106 0.41675 0.29844 +

D’Agostino–K squared:

105
Omnibus 1.95367 0.3765 +
Skewness 1.36904 0.17099 +
Kurtosis −0.28178 0.77811 +

106
Omnibus 1.94532 0.37808 +
Skewness 0.79625 0.42589 +
Kurtosis −1.14512 0.25216 +

* “+” in column 5 means “cannot reject normality”.
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Figure 4. Quantile–quantile plots for (a) AJ PS1–PS1 and (b) AJ PS2–PS2.

Table 2. Statistical parameters of the lap-shear strength distribution for two PS–PS interfaces estimated
from the Chen–Shapiro normality test.

Molecular
Weight, g/mol Statistic 10% Critical

Value
5% Critical

Value
Decision at
Level 5% *

105 −0.00868 0.01371 0.05109 +
106 −0.03627 0.01427 0.05232 +

* “+” in column 5 means “cannot reject normality”.

As follows from the analysis performed, all the normality test types give the same
result—“cannot reject normality”, assuming that the σ statistical distributions of the two
PSs investigated are expected to follow the Gaussian distribution, i.e., to have the form
of the bell curve. Therefore, the final conclusion concerning the validity of the Gaussian
distribution can be received after the construction of the histograms PDF(σ) for the AJs of
PS1 and PS2. The results of this procedure are shown in Figure 5, and it is seen that they do
not correspond to the classical symmetrical bell curves with well-defined maxima.
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Nevertheless, qualitatively, the histograms constructed for the two PSs investigated
can be fitted at first approximation with a Gaussian function, albeit with various degrees
of success. A better fitting result is observed for PS1 (see Figure 5a). This observation
correlates with the smaller p-values for the PS1−PS1 AJ as compared to those for the
PS2−PS2 AJ, in particular, for the Shapiro–Wilk and Anderson–Darling tests (see Table 1):
0.150 and 0.261, and 0.187 and 0.298 for PS1 and PS2, respectively. In fact, the p-values
estimated mean there is a >15% chance of finding a result less close to expectation for the
AJ PS1−PS1 while that for the AJ PS2−PS2 of >26% indicates a less reliable result for the
latter (the Shapiro–Wilk test). By analogy, basing on the Anderson–Darling test results, the
probabilities to find a less reliable result are >19% and >30% for PS1 and PS2, respectively.
One may also notice the correlation for the sharpness and asymmetry of the peak (Kurtosis
and Skewness in the D’Agostino–K squared test): the peak for PS2 is less symmetrical
(larger p-value) and sharper (smaller p-value) with respect to that for PS2. Thus, one may
conclude that both the Weibull analysis and the normality tests indicate that the more
reliable results are obtained for the PS1−PS1 AJ.
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4. Conclusions

For the first time, the comprehensive statistical analysis of the lap-shear strength σ
evolved in the course of self-bonding between the two contacting PS samples realized via
the chains interdiffusion across the PS–PS interface below Tg

bulk, at the rather low T = Tg
bulk

− 33 ◦C, has been performed. It has been shown that the σ distributions of the two PSs with
drastically differing chain lengths, by an order of magnitude, can be correctly described
using the Weibull standard distribution function. The values of the Weibull modulus
m = 2.40 and 1.89 calculated for the two PSs with M = 105 and 106 g/mol, respectively, are
fairly close despite the marked difference in M. However, a small 20 percent increase in the
m value (i.e., a decrease in the data scatter) with a decrease in M indicates that the larger
number of the interdiffusing chain ends in the polymer with a smaller M value makes the
self-bonding process more uniform. The Gaussian distribution has been found to be less
appropriate to correctly describe the σ distribution at the two PS–PS interfaces involved,
despite the fact that all the normality tests performed have predicted the correctness of the
normal distribution. A better suitability of the Weibull model for this purpose is because
the PS–PS AJs were weak and quasi-brittle, and this model was first proposed namely for
this class of materials. The results presented in this work stimulate further investigations in
the field of the statistical distribution of the lap-shear strength developed after self-bonding
at T < Tg

bulk of the PS–PS interfaces over broader temperature intervals, down to T = Tg
bulk

− 80 ◦C, and of the interfaces of the polymers with other chain architectures using the
combined approach involving various statistical tests and models.
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