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Abstract: Currently, efficient utilization of low-grade thermal energy is a great challenge. Thermoelec-
tricity is an extremely promising method of generating electrical energy from temperature differences.
As a green energy conversion technology, thermo-electrochemical cells (TECs) have attracted much
attention in recent years for their ability to convert thermal energy directly into electricity with
high thermal power. Within TECs, anions and cations gain and lose electrons, respectively, at the
electrodes, using the potential difference between the hot and cold terminals of the electrodes by
redox couples. Additionally, the anions and cations therein are constantly circulating and mobile via
concentration diffusion and thermal diffusion, providing an uninterrupted supply of power to the
exterior. This review article focuses mainly on the operation of TECs and recent advances in redox
couples, electrolytes, and electrodes. The outlook for optimization strategies regarding TECs is also
outlined in this paper.

Keywords: thermo-electrochemical cells; redox couples; quasi-solid-state electrolyte; electrode;
device integration

1. Introduction

Effective utilization of low-grade thermal energy is currently a great challenge. Ther-
moelectric (TE) effects are an extremely promising way of generating electrical power
from a temperature difference. Being noiseless and emission-free is the core advantages
of thermoelectric conversion technology. Moreover, a complete thermoelectric device
consisting of simply a thermoelectric material and electrodes can be integrated by circuit
design, which can be applied to small electronic and wearable devices, allowing for the
collection and utilization of thermal energy over a wider range of temperature differences.
Thermoelectric materials are categorized into electronic thermoelectric materials, ionic ther-
moelectric materials, and thermo-electrochemical cells (TECs), based on their mechanism
of operation [1–4].

The majority of research has focused on electronic thermoelectric materials, which are
categorized as p-type or n-type depending on whether the carriers are holes or electrons.
However, the Seebeck coefficient (S) of the electronic thermoelectric materials remains
on the scale of microvolts per Kelvin, and several hundred pairs of p-n legs need to be
connected in series to make the devices have a voltage output that is adequately high for
real application (Figure 1) [5–8].
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Figure 1. Schemes of thermoelectric device for power generation (a) and cooling (b). 

Ionic thermoelectric materials are based on the Soret effect, which involves an uneven 
distribution of ions in a conductor due to a temperature gradient. The difference in migra-
tion rates of anions and cations leads to a different stacking of ions at the hot and cold 
terminations, resulting in a potential difference between the two electrodes. However, 
ions cannot enter the external circuit and only depend on the accumulation of ions to gen-
erate an induced electromagnetic potential; therefore, the operation principle of ionic ther-
moelectric devices is similar to a capacitor, which cannot directly supply power to the 
outside world and can store thermal energy for converting to electrical energy (Figure 2) 
[9–12]. 

 
Figure 2. Schemes of ionic thermoelectric materials. 

Like metal-ion batteries, TECs use a redox couple contained in an electrolyte. When 
a temperature difference occurs between two electrodes, the anion and cation at the elec-
trode gain and lose electrons, respectively. Additionally, the internal anion and cation mi-
grate via the concentration difference diffusion and thermal diffusion constantly in a cyclic 
manner, thereby generating uninterrupted electricity supply to the exterior [13–15]. The 
Seebeck coefficients of TECs tend to be > 1000 µV K−1, two orders of magnitude higher 
than those of electronic thermoelectric materials. Meanwhile, the reaction inside the TECs 
is usually carried out in the solution system, which has the advantages of low cost, easy 
fabrication, etc. With the unique advantages of TECs, the optimization methods are grad-
ually being diversified as the research on TECs progresses and the understanding of the 
principle of operation of thermoelectric batteries is deepened accordingly [16,17]. How-
ever, the present energy conversion efficiencies of TECs are not satisfactory; therefore, the 
optimization of the TECs for further increasing the thermoelectric conversion efficiency 
remains necessary. 

Electrolyte, electrode, and mechanism layout are critical for optimizing TECs [18,19]. 
The optimization of electrode materials and the tuning of redox ions and electrolyte sol-
vents have been focused on the pursuit of high thermoelectric conversion efficiencies. 

Figure 1. Schemes of thermoelectric device for power generation (a) and cooling (b).

Ionic thermoelectric materials are based on the Soret effect, which involves an uneven
distribution of ions in a conductor due to a temperature gradient. The difference in
migration rates of anions and cations leads to a different stacking of ions at the hot and cold
terminations, resulting in a potential difference between the two electrodes. However, ions
cannot enter the external circuit and only depend on the accumulation of ions to generate an
induced electromagnetic potential; therefore, the operation principle of ionic thermoelectric
devices is similar to a capacitor, which cannot directly supply power to the outside world
and can store thermal energy for converting to electrical energy (Figure 2) [9–12].
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Figure 2. Schemes of ionic thermoelectric materials.

Like metal-ion batteries, TECs use a redox couple contained in an electrolyte. When a
temperature difference occurs between two electrodes, the anion and cation at the electrode
gain and lose electrons, respectively. Additionally, the internal anion and cation migrate via
the concentration difference diffusion and thermal diffusion constantly in a cyclic manner,
thereby generating uninterrupted electricity supply to the exterior [13–15]. The Seebeck
coefficients of TECs tend to be >1000 µV K−1, two orders of magnitude higher than those
of electronic thermoelectric materials. Meanwhile, the reaction inside the TECs is usually
carried out in the solution system, which has the advantages of low cost, easy fabrication,
etc. With the unique advantages of TECs, the optimization methods are gradually being
diversified as the research on TECs progresses and the understanding of the principle of
operation of thermoelectric batteries is deepened accordingly [16,17]. However, the present
energy conversion efficiencies of TECs are not satisfactory; therefore, the optimization of
the TECs for further increasing the thermoelectric conversion efficiency remains necessary.

Electrolyte, electrode, and mechanism layout are critical for optimizing TECs [18,19].
The optimization of electrode materials and the tuning of redox ions and electrolyte solvents
have been focused on the pursuit of high thermoelectric conversion efficiencies. How-
ever, traditional liquid electrolytes suffer from complicated encapsulation and integration
problems for wearable applications. To circumvent these issues, a possible approach is
to consolidate the liquid electrolyte into a quasi-solid hydrogel electrolyte [20,21]. Unfor-
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tunately, there have been relatively few studies in this field, and this article reviews the
advancement of gel-based TECs in recent years. Meanwhile, some problems and challenges
are pointed out, and some new perspectives are offered for future research.

2. Wearable Thermo-Electrochemical Cells
2.1. Thermo-Electrochemical Cells

TECs are constructed with electrolytes containing a redox couple with two electrodes
and connected via an external circuit (Figure 3). A temperature gradient is applied to the
electrode terminals with a changed electrode potential for redox ions due to the change in
temperature. The high-potential electrode is the anode where oxidation reaction occurs,
providing electrons to the external circuit; the low-potential electrode is the cathode where
reduction reaction occurs, obtaining electrons from the external circuit. The valence state of
ions changes at the electrode, which results in the formation of a concentration difference
between the two terminals of the electrode, and the ions continuously migrate within the
electrolyte through concentration difference diffusion and thermal diffusion, thus making
the redox reaction continue and maintaining a consistent output of current and voltage.
The operation of TECs involves two critical processes: (1) redox reactions at the electrodes
and (2) ion transport processes in the electrolyte. In particular, the redox reaction at the
electrode is associated with the Seebeck coefficient of TECs, and the ion transport in the
electrolyte is associated with the conductivity and thermal conductivity of TECs [22,23].
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2.1.1. The Seebeck Coefficient of TECs

With the given temperature difference, the magnitude of the potential difference
capable of being generated is one of the dominant factors in the energy conversion efficiency
of TECs, i.e., the Seebeck coefficient.

S =
∆VOC

∆T
(1)

In Formula (1), ∆VOC is the open-circuit voltage and ∆T is the temperature difference
between the two electrode terminals. This is the definition equation for the Seebeck
coefficient of a thermoelectric material which applies to any thermoelectric material. The
thermochemical effects in TECs can be described through redox reactions [24,25]:

A + ne− → B (2)

The Seebeck coefficient (Se) of the TECs is defined as:

Se =

(
∂E
∂T

)
t=∞

(3)
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In Formula (3), E is the electrode potential, which can be calculated using the Nernst
equation, and T is the temperature. If the electrolyte is homogeneous internally, there
exists [16,19,25,26]:

Se =

(
∂E
∂T

)
t=∞

=

(
1

nF

)
×

[(
SB + ŜB

)
−

(
SA + ŜA

)
− n

=
Se

]
(4)

In Formula (4), n is the number of charges transferred in the redox reaction, F is
Faraday’s constant, and SA and SB are the partial molal entropy of the ions, which result
from taking one partial derivation of the total entropy of the ions with respect to the molar
quantity of the ions. ŜA and ŜB are Eastman entropy, primarily derived from the interaction
of the ions and their solvated shell structures with the surrounding solvent molecules as

they move, which would be ignored in the majority of solutions.
=
Se is the transport entropy

of electrons in the external circuit and usually only at the order of microvolts per Kelvin
which is similarly negligible. Therefore, Equation (4) can be simplified to:

Se =

(
∂E
∂T

)
t=∞
≈ SB − SA

nF
(5)

In Formula (5), when the partial molar entropy of the reduced ions is greater than that
of the oxidized ions, the Seebeck value is positive for the p-type TECs’ ion couple, whereas
the partial molar entropy of the reduced ions is less than that of the oxidized ions when the
Seebeck coefficient is negative for the n-type TEC’s ion couple [27].

2.1.2. Performance Index of TECs

During TECs’ operation, the Seebeck coefficient is not the only determinant of device
performance; the electrical conductivity (σ) and thermal conductivity (κ) of a unit cell
deserve to be considered in equal measure. Three primary sources of overpotentials exist
in TECs: (1) ohmic overpotentials, which are mainly caused by the internal resistance
of the cell itself, the electrode resistance, and the circuit resistance. (2) Charge transfer
overpotentials, which are related to the kinetics of redox charge transfer at the electrode
surfaces. (3) Mass transfer overpotentials, which are related to the rate of movement of
ions through the electrolyte and which encompasses diffusion of the ions, migration, and
convection of the overall solution. Combined, these three factors influence the conductivity
of the cell device [28].

The thermal conductivity of an electrolyte is also an important factor in the per-
formance of TECs. For the liquid electrolyte, the thermal conductivity of the solution,
convection, heat transfer, and ion mobility are all factors that influence the overall thermal
conductivity. If the thermal conductivity is too high, the temperature gradient cannot be
maintained between the two electrode terminals, resulting in a decrease in the temperature
difference, a decrease in the voltage and current output, and, eventually, a temperature
equilibrium TEC ceases to operate. Therefore, the performance of thermoelectric materials
usually is evaluated by a dimensionless parameter, the thermoelectric merit value ZT [29].

ZT =
S2σ

κ
T (6)

Similarly, thermoelectric device performance may be evaluated by the energy conver-
sion efficiency η:

η =
Pout

Qh
(7)

In Formula (7), Pout is the output power of the device and Qh is the thermal energy
supplied by the hot terminal. The output power is parabolic to the magnitude of the
load resistance of the external circuit, and the output power reaches the maximum when
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the battery resistance is equal to the load resistance. The maximum energy conversion
efficiency ηmax can be calculated from the ZT value:

ηmax =
Thot − Tcold

Thot
·
√

1 + ZT − 1
√

1 + ZT + Tcold
Thot

(8)

In Equation (8), Thot is the temperature of the hot terminal of the device, Tcold is the
temperature of the cold terminal of the device, and the temperature adopted in the calcula-
tion of ZT value is the average temperature of the hot and cold terminals. Thermoelectric
devices are still heat engines, essentially, and their maximum energy conversion efficiency
is limited by the Carnot efficiency [26].

2.2. Electrochemical Thermogalvanic Effect

The electrochemical thermogalvanic effect consists of two main processes: (1) the
oxidation-reduction reaction occurring at the electrode surface and (2) the electrolyte
migration. The conversion efficiency of a thermo-electrochemical cell is intimately related
to the ZT value; hence, the Seebeck coefficient and electrical conductivity can be increased,
or the thermal conductivity can be decreased according to Equation (6). The magnitude of
S is determined by the thermal power of the redox couple of materials in the electrolyte;
the magnitude of σ is dependent on the resistance of the redox reaction occurring at the
electrode surface and the transport resistance of the electrolyte, whereas the magnitude of
κ is related to both the thermal conductivity in the presence of a temperature difference
and the convection of the electrolyte [27,30].

S is dependent on the solvation-structure entropy difference (∆S) and concentra-
tion difference (∆Cr) between redox substances. The absolute value of the charge of
the redox substance in the electrolyte and the type of solvent and solute surrounding it
deeply affect the magnitude of ∆S. Among the studies in the liquid thermocells system,
[Fe(CN)6]3−/[Fe(CN)6]4−, Fe2+/Fe3+, and I−/I3

− are the most interesting. In general, re-
dox couple with large absolute charge values and complicated complex structures possesses
large ∆S [28,31,32].

For Fe2+/3+ redox ions, their anions with different coordination sites have a bigger
effect on the Seebeck coefficient. Kyunggu et al. have specifically investigated the ef-
fect of anions on the Seebeck coefficient of three common iron salts: Fe2(SO4)3/FeSO4,
FeCl3/FeCl2, and Fe2(ClO4)3/FeClO4. The excellent performance of Fe2+/3+ perchlorate is
attributed to the uncoordinated nature of its perchlorate anion, which inhibits the reduction
of S and prevents the formation of ionic couples (Figure 4a shows the voltage of different
ferric salts at various temperature differences.) [33]. [Fe(CN)6]3−/[Fe(CN)6]4− is the redox
couple that has achieved the highest thermal power to date, and it remains possible to alter
the solvent environment of the ions to increase the Seebeck coefficient. Kim et al. reported
that with the addition of an organic solvent with appropriate solubility parameters to the
aqueous electrolyte of [Fe(CN)6]3−/[Fe(CN)6]4−, the electrochemical thermopower can be
more than doubled to 2.9 mV K−1. The addition organic solvent results in a noticeable rear-
rangement of the solvation shells which, in turn, leads to an increase in the entropy change
of the whole redox system, thereby increasing the electrochemical thermopower (Figure 4b
shows the Seebeck coefficient before and after methanol rearrangement of [Fe(CN)6]4− sol-
vent shell and the voltage at different temperature with methanol.) [34]. Prediction of heat
power (i.e., thermoelectric temperature coefficient) with molecular dynamics simulations
could allow for simpler and more convenient optimization of redox couples. Chen et al.
noticed the S of Fe2+/3+ can reach 3.8 ± 0.5 mV K−1 in a mixture of acetone–water solvent
with molecular dynamics simulation, which matches the experimental value. The discovery
provided insight into the design of solvation shell sequences to develop electrolytes with
high S. Apart from changing the solvent environment, the addition of other additives
which modify the redox ion hydration shell to optimize the Seebeck coefficients is com-
monly employed [35]. Duan et al. introduced guanidine salt with high ionic sequence and
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amide derivative urea with high polarity into Fe(CN)6
4−/3− aqueous solution, and their

synergistic effect resulted in the enhancement of the Seebeck coefficient of Fe(CN)6
4−/3−

from 1.4 mV K−1 to 4.2 mV K−1 and the growth of power density from 0.4 mW K−2 m−2

to 1.1 mW K−2 m−2. Guanidine salts are one of the highest cationic salts in the chaotropic
sequence which can destabilize non-covalent bonding forces or destroy the structure of
macromolecular proteins [36].
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In addition to increasing ∆S, an alternate way to increase Se is to increase ∆Cr [37].
However, redox couples cannot permanently maintain a state of concentration difference
between the hot and cold ends. Because the concentration difference state is unstable from
a thermodynamic perspective, it spontaneously decays to a homogeneous state. The ∆Cr
equals zero while the electrolyte is in a stable state. Zhou et al. exploited the temperature-
sensitive properties of cyclodextrins and the host-guest interaction with I3− to create an
I−/I3− concentration difference between the hot and cold ends, resulting in an increase
in the Seebeck coefficient from 0.86 mV K−1 to 1.97 mV K−1. Figure 5 shows that at the
cold terminal, the hydrophobic property of the inner ring of α-CD is exploited to form an
α-CD-I3− complex by combining with the similarly hydrophobic I3−, which prevents I3−

ions from participating in the reaction and decreases the concentration at the cold terminal.
However, the α-CD-I3− composite has a temperature-sensitive property and releases I3−

ions upon dissolution at the hot terminal, consequently resulting in a different concentration
level of I3− at the hot and cold terminals, increasing the Seebeck coefficients [38]. Yu et al.
employed guanidine salts and Fe(CN)6

4− to form thermosensitive crystals that reduced
the concentration of Fe(CN)6

4− at the cold terminal and resolved at the hot terminal, with
no effect on the rate of the redox reaction. This results in the formation of a continuous
concentration gradient in the solution, which increases the Seebeck coefficient from 1.4 mV
K−1 to 3.73 mV K−1. Meanwhile, the solid crystals formed also effectively suppress the
thermal conductivity of the liquid and, ultimately, increase the relative Carnot efficiency
to 11% [39]. Furthermore, concentration theory may also be applied to change the sign of
the Seebeck coefficient, i.e., to change the type of reaction that occurs at the hot and cold
terminals. Duan et al. achieved an increase in the absolute value of the Seebeck coefficient
of the I−/I3− ion pair and a change in the sign of the Seebeck coefficient from a p-type
to an n-type thermocell via the incorporation of a temperature-sensitive nano-microgel
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(PNIPAM) into an aqueous solution of I−/I3−. PNIPAM has a hydrophilic to hydrophobic
phase transition at around 32 ◦C, which also changes the gel polymer chain backbone from
stretching to condensation and controls the equilibrium of the I−/I3− redox reaction. The
hydrophobic phase of PNIPAM dominates at the hot terminal, and the I3− ion combines
with PNIPAM due to the hydrophobic effect; thus, the concentration of I3− ion decreases
at the hot terminal, and the oxidation reaction of conversion from I3− to I− occurs at the
hot terminal. The hydrophilic phase of PNIPAM dominates the backbone stretching at the
cold terminal, and PNIPAM-I3− releases I3− ions, which leads to the reduction reaction
of I− to I3− conversion at the cold terminal, thus changing the original I−/I3− redox
direction and altering the sign of the Seebeck coefficient. The concentration difference
constructed in this manner resulted in a higher absolute Seebeck value, from 0.71 mV K−1 to
−1.91 mV K−1 [40]. Concentration difference effects focus on regulating the Seebeck
coefficient, which requires a specific ion in the redox couple to combine with the additive
to form a temperature-sensitive substance in order to enable the formation of concentration
difference effects of ions at the hot and cold terminals of the electrodes. This effect has
a great ability to regulate the Seebeck coefficient and can also change the direction of
the redox reaction; however, the resulting conjugates may influence the rate of the redox
reaction, resulting in irreversible side-reactions during the thermal cell cycling, which
causes a decrease in the cycling performance and, finally, an attenuation of the output
power [27,41–43].
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2.3. Quasi-Solid-State Electrolyte

In general, the conductivity of the liquid electrolyte is approximately three orders
of magnitude higher than that of conventional solid state thermoelectric cells. However,
thermal convection would be unavoidable in the mass transfer process in liquid electrolyte.
Thermal convection reduces the thermal gradient between the electrodes, thereby reducing
the Seebeck coefficient of TECs. Inhibiting thermal convection has become an effective
method of optimizing the performance of TECs [44,45]. Zhang et al. achieved an im-
provement in the thermal gradient within the electrolyte through the application of an
electrolyte-filled porous material (called a thermal separator) to the cold electrode of the
hot cell. This new thermocell structure shifts the interelectrode temperature gradient in the
electrolyte towards the cold electrode, thereby increasing the average ionic conductivity
along the interelectrode ion path and increasing the temperature difference by ~20 ◦C,
resulting in a high power density of ∼12 W m–2 [30]. However, the reduction of thermal



Materials 2023, 16, 6574 8 of 16

convection in the liquid electrolyte is a complex and costly process. Fortunately, thermal
convection in the gel electrolyte is attenuated, favoring the establishment and maintenance
of a temperature gradient, thereby achieving higher energy conversion efficiencies. What is
more, in the practical application of TECs, the leakage issue of liquid batteries and non-
portability are significant hindrances to the process of adoption. And the gel electrolyte
allows for arbitrary cutting and shaping, which essentially solves the leakage problem
of liquid electrolyte solutions. Therefore, quasi-solid electrolytes are gradually attracting
attention due to their advantages of self-encapsulation, leakage prevention, and flexible
characteristics. Meanwhile, thermal convection is ignored in gel electrolytes by the property
of the quasi-solid state; hence, thermal conduction becomes the dominant form of heat
transfer in gel electrolytes, which reduces the thermal conductivity significantly [46–50].
The thermopower of several typical redox couples in gel electrolytes is presented in Table 1,
including those examples reviewed above.

Table 1. Thermopower values for the typical redox couples in gel electrolytes.

Redox Couple Matrix Thermopower (mV K−1)

FeCN4−/3− Gelatin 17 (∆T = 7 K) [51]
FeCN4−/3− Cellulose 14 (∆T = 15 K) [46]
FeCN4−/3− Poly(sodium acrylate) −1.09 ± 0.04 (∆T = 25 K) [48]
FeCN4−/3− PVA −1.21 (∆T = 10 K) [47]

I−/I3− N-isopropylacrylamide −1.91 (∆T= 10 K) [40]

[Co(bpy)3]2+/3+[NTf2
−]2/3

Poly(vinylidene
fluoride-co-hexafluoropropene)

(PVDF-HFP)
1.56 ± 0.01 (∆T = 15 K) [52]

Co(bpy)3]2+/3+[NTf2
−]2/3

Polyvinylidene difluoride and
3-methoxypropionitrile

(PVDF-MPN)
1.84 ± 0.01 [53]

Due to the quasi-solid nature of the gel electrolyte, a solvation effect similar to that
observed in liquid electrolytes is present. The solvation effect in gel electrolytes refers to
the interaction between solvent molecules and electrolyte ions. When a solvent molecule
approaches an electrolyte ion, it electrostatically attracts the ion, forming a solvation layer.
This formation alters the movement characteristics of electrolyte ions and impacts the
conductivity of the gel electrolyte.

Specific effects of solvation include (1) enhancement of ionic solubility (the formation
of a solvation layer increases the solubility of electrolyte ions in solution, rendering them
more soluble in solvents). (2) Slowing down ion migration (the presence of a sol ion
movement results in slower migration rates for electrolyte ions within the gel electrolyte).
(3) enhanced ion conduction (although individual ion migration is slowed by the presence
of a solvation layer, it also increases). The formation of this layer enables ionic flow, thereby
enhancing conductivity within the gel electrolyte.

Organic solvents can indeed provide a wider potential range or electrochemical win-
dow which can enable higher voltage cells. This can be an advantage over aqueous gel
electrolytes, as it can potentially lead to higher energy densities. Furthermore, organic
solvents can dissolve a wider range of materials, including many that cannot be dissolved
in water, which offers more flexibility in terms of electrode material choice. However, the
volatility of organic solvents can be a significant drawback, as it can lead to safety issues.
Solvents can evaporate or leak, potentially causing harm to people or the environment.
They can also contribute to the flammability of a battery system. Other challenges with
organic solvents include their typically lower ionic conductivities compared to aqueous
systems and their compatibility with other battery components. For instance, certain or-
ganic solvents can dissolve or swell certain plastics used in battery construction, leading to
mechanical instability. In brief, whether organic solvents provide an “edge” over aqueous
electrolytes depends on the specific requirements of the application, and a balance must be
struck between performance, safety, and cost considerations [54–57].
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PVA is a promising candidate for quasi-solid electrolyte substrates due to its biocom-
patibility, non-toxicity, non-corrosivity, and excellent water solubility. Zhou et al. synthe-
sized a PVA-FeCl2+/3+ gel electrolyte with high mechanical strength and low charge transfer
resistance, which uses HCl as a supporting electrolyte, with a Se of 0.8 ± 0.02 mV K−1,
current density of 16.1 A m−2, and power density of 63.7 mW m−2 at a ∆T of 20 K [58].
Liu et al. combined stretch-induced crystallization with the thermoelectric effect to present
a high-strength quasi-solid stretchable PVA thermoelectric thermocouple (SPTC) with a
tensile strength of 19 MPa and a thermopower of 6.5 mV K−1. The SPTC has a high ten-
sile strength of 1300%, an ultra-high toughness of 163.4 MJ m−3, and an output power
density of up to 1969 µW m−2 K−2 [59]. Gao et al. designed PVA anisotropic polymer
networks to produce aligned channels for ionic conduction and hierarchically assembled
crystalline nanoprotofibres for crack passivation. The ionic conductivity of the anisotropic
thermocouples was increased by more than 400% and the power density was comparable
to that recorded for state-of-the-art quasi-solid thermocouples. Furthermore, compared
to available quasi-solid thermocouples with the best mechanical properties, the material
achieves bionic strain stiffness, with toughness and strength improved by more than 1100%
and 300%, respectively [60]. Employing PVA (a commercially available polymer) as a gel
electrolyte is an economically effective approach that offers the possibility of large-scale
integration of TECs in the future.

In addition to PVA, gelatin, cellulose, agar, sodium polyacrylate, polyacrylamide,
and other polymers are also promising materials for composing hydrogel matrices, which
possess more abundant functional groups and may offer more possibilities for optimizing
the performance of TECs. While the gels formed from these materials do not have the
same electrical conductivity as the polyelectrolyte gels designed and synthesized, these
materials will remain prospective considering the factors of industrialization. Currently,
the majority of designed and synthesized polyelectrolytes are primarily utilized in lithium
batteries, with limited research conducted on their application in thermal batteries [61,62].
The investigation of polyelectrolyte utilization in TECs holds significant value as it offers
potential insights into the design and optimization of gel electrolytes. Zeng et al. fabricated
a series of semi-interpenetrating network (semi-IPN) polymer electrolytes based on novel
liquid crystals (C6M LCs) and poly(ethylene glycol) diglycidyl ether (PEGDE). The LCs
dramatically improved not only the mechanical properties of the electrolyte membranes
by constructing a network structure with PEGEDE but also created a stable ion transport
channel for ionic conduction. This freestanding flexible SPE exhibits an excellent ionic con-
ductivity (5.93 × 10−5 S cm−1 at 30 ◦C) with a very wide electrochemical stability window
of 5.5 V [63]. The challenge, however, lies in the incorporation of cost-effective commercial
polymers into TECs and enhancement of their performance. Chen et al. proposed a flexible
quasi-solid-state TEC, via the rational design of a hydrogel electrolyte, which simultane-
ously modulates the thermoelectric effect and mechanical robustness by redox-coupled
multivalent ions (Figure 6) [64]. The enhancement of the mechanical strength of the gel
electrolyte establishes a solid foundation for the integration of more intricate wearable
flexible electronic devices.



Materials 2023, 16, 6574 10 of 16Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

  
Figure 6. Illustration of the forming process of the covalently cross-linked network and the ionically 
cross-linked network within the hydrogel body. The molecular schematics reveal the structures of 
covalent and ionic cross-links (a). Illustration of the working mechanism of a TEC based on ther-
mogalvanic effect (b). Adapted from ref. [64] with permission. Copyright 2022, Springer Nature. 

Chen et al. also introduced the high electrochemical potential of redox couple 
(Sn4+/Sn2+) into a flexible and stretchable (within a strain of 100%) composite hydrogel 
(polyacrylamide/acidified SWCNTs) and constructed a gel state with a large and stable Se 
of 1.59 ± 0.07 mV K−1. The strain sensitivity originated from the well-dispersed acidified 
SWCNT network, and the polyacrylamide hydrogel matrix endows the TEC with an ad-
ditional role as a self-powered strain sensor for monitoring various human motions relat-
ing to the finger, wrist, and elbow [65]. The introduction of redox couple not only provides 
the hydrogel with excellent thermoelectric conversion capability but also acts as an ionic 
cross-linking agent to generate double cross-linking structures, which result in the for-
mation of reversible bonds for effective energy dissipation. With a high Seebeck coefficient 
of 1.43 mV K−1 and a significantly improved fracture toughness of 3555 J m−2, the optimized 
TECs are able to maintain stable thermos-electrochemical properties under various harsh 
mechanical stimuli [64]. Furthermore, Chen et al. designed an aqueous eutectic gel elec-
trolyte based on a concentrated lithium bis(trifluoromethane) sulfonimide (LiTFSI) solu-
tion, which can be used to achieve freezing resistance and self-humidification capability 
by regulating the hydrophobicity in the hydrogel. It also exhibits long-term environmen-
tal stability without the requirement for encapsulation or packaging. Hydrogel electrolyte 
collision properties can inhibit ice crystallization, and molecular dynamics simulations 
suggest that the strong coordination effect between lithium ions and water molecules 
across a wide range of temperatures is an important potential mechanism [66]. As a result, 
to further advance the development of efficient design strategies for gel electrolytes in 
order to regulate and optimize their thermoelectric properties, two crucial issues need to 
be addressed. Firstly, it is necessary to manipulate the gel structure in order to modify the 
partial molar entropy of the redox reaction and achieve higher Se. Secondly, there is a need 
to establish a well-structured network within the gels that facilitates ion/charge transport, 
resulting in faster ion diffusion rates, reduced mass transfer resistance, and lower interfa-
cial transfer resistance. 

2.4. Electrode 
In general, Pt has been employed as an electrode to maintain the simplicity and re-

verse ability of the redox reaction in the HCF electrolyte (hexacyanoferrates), however, Pt 
remains rare and expensive, which prevents the commercialization of TECs. Some non-
precious metals, including copper, nickel, tungsten, and stainless steel, have also been uti-
lized as materials for electrodes [19,32,67,68]. Carbon is a widely available material and 

Figure 6. Illustration of the forming process of the covalently cross-linked network and the ionically
cross-linked network within the hydrogel body. The molecular schematics reveal the structures
of covalent and ionic cross-links (a). Illustration of the working mechanism of a TEC based on
thermogalvanic effect (b). Adapted from ref. [64] with permission. Copyright 2022, Springer Nature.

Chen et al. also introduced the high electrochemical potential of redox couple (Sn4+/Sn2+)
into a flexible and stretchable (within a strain of 100%) composite hydrogel (polyacry-
lamide/acidified SWCNTs) and constructed a gel state with a large and stable Se of
1.59 ± 0.07 mV K−1. The strain sensitivity originated from the well-dispersed acidified
SWCNT network, and the polyacrylamide hydrogel matrix endows the TEC with an addi-
tional role as a self-powered strain sensor for monitoring various human motions relating
to the finger, wrist, and elbow [65]. The introduction of redox couple not only provides
the hydrogel with excellent thermoelectric conversion capability but also acts as an ionic
cross-linking agent to generate double cross-linking structures, which result in the forma-
tion of reversible bonds for effective energy dissipation. With a high Seebeck coefficient of
1.43 mV K−1 and a significantly improved fracture toughness of 3555 J m−2, the optimized
TECs are able to maintain stable thermos-electrochemical properties under various harsh
mechanical stimuli [64]. Furthermore, Chen et al. designed an aqueous eutectic gel elec-
trolyte based on a concentrated lithium bis(trifluoromethane) sulfonimide (LiTFSI) solution,
which can be used to achieve freezing resistance and self-humidification capability by
regulating the hydrophobicity in the hydrogel. It also exhibits long-term environmental
stability without the requirement for encapsulation or packaging. Hydrogel electrolyte
collision properties can inhibit ice crystallization, and molecular dynamics simulations
suggest that the strong coordination effect between lithium ions and water molecules across
a wide range of temperatures is an important potential mechanism [66]. As a result, to
further advance the development of efficient design strategies for gel electrolytes in order
to regulate and optimize their thermoelectric properties, two crucial issues need to be
addressed. Firstly, it is necessary to manipulate the gel structure in order to modify the
partial molar entropy of the redox reaction and achieve higher Se. Secondly, there is a need
to establish a well-structured network within the gels that facilitates ion/charge transport,
resulting in faster ion diffusion rates, reduced mass transfer resistance, and lower interfacial
transfer resistance.

2.4. Electrode

In general, Pt has been employed as an electrode to maintain the simplicity and reverse
ability of the redox reaction in the HCF electrolyte (hexacyanoferrates), however, Pt remains
rare and expensive, which prevents the commercialization of TECs. Some non-precious
metals, including copper, nickel, tungsten, and stainless steel, have also been utilized as
materials for electrodes [19,32,67,68]. Carbon is a widely available material and therefore
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carbon electrodes have attracted widespread attention recently, especially nanostructured
carbon materials which typically have high electrical conductivity, rapid redox kinetics,
large electrochemically active surface area (ESA), and energetic behavior in relation to
HCF redox couples [69–72]. However, the manufacturing process for these carbon-based
electrodes is complicated, not to mention the inherent hydrophobicity which hinders ion
transport and thus prevents further performance improvements. Hence, a simplification of
the fabrication process of carbon-based electrodes is necessary to make them easily scalable
and to improve their hydrophilicity for better penetration into the electrolyte [73].

MXenes, a two-dimensional transition metal carbide and nitride material, have emerged
to provide a promising approach to the construction of high-performance TEC electrodes.
The high conductivity and hydrophilicity of Mxenes allow for high electron transport
speeds and mass transfer. Meanwhile, the reduction activity of the transition metal atoms
on the surface is more favorable for electrochemical processes, with a large surface area
providing a high ESA. The layered architecture of MXenes, which facilitates the insertion
of molecules and ions, is beneficial for the regulation of properties and the assembly of
multilayers [74–77].

Wei et al. constructed flexible thin-film electrodes with ternary composites of Ti3C2Tx,
polyaniline (PANI), and single-walled carbon nanotubes, which showed significantly
enhanced thermo-electrochemical properties compared to the widely used precious metal
platinum electrodes. A porous layered structure with a large electrochemically active
surface area was formed in the ternary composite electrode. Results of experiments and
simulations indicate that the synergetic effect of Ti3C2Tx and PANI promotes the mass
and charge transport at the electrolyte–electrode interface, generating a TEC with an
output power of 13.15 µW cm−2 at a ∆T of 40 K. TEC can also respond rapidly to minute
temperature differences between human bodies and the environment, indicating that it has
great potential for harvesting low-grade heat to power small electronic devices [73].

3. Device Integration and Applications

In the application of TECs, the thermoelectric conversion efficiency is one of the
standards for evaluating the performance of the device. The methods commonly employed
to enhance the thermoelectric conversion efficiency of TECs include:

1. Optimizing thermoelectric materials: materials with high Seebeck coefficients and
low thermal conductivity should be selected. A high Seebeck coefficient can increase
the thermoelectric conversion efficiency, while a low thermal conductivity can reduce
heat dissipation.

2. Increasing the temperature gradient: the thermoelectric conversion efficiency is di-
rectly proportional to the temperature gradient. It can improve the temperature
gradient by increasing the temperature of the high-temperature heat source or de-
creasing the temperature of the low-temperature heat source, thus improving the
thermoelectric conversion efficiency.

3. Reducing heat dissipation: optimization of the insulating material and structural
design of the thermocells can reduce heat dissipation and improve the thermoelectric
conversion efficiency.

4. Cascade thermoelectric module: multiple thermoelectric modules are cascaded to-
gether to improve the thermoelectric conversion efficiency. In the cascade thermoelec-
tric module, the waste heat from the high-temperature heat source can be further uti-
lized, thus improving the energy conversion efficiency of the whole
system [2,19,27,78].

Besides enhancing the efficiency of a single cell, a further research focus is on de-
vice integration and applications. Enhancing the integration of thermal cells stands as
a paramount strategy for bolstering the efficacy of thermoelectric conversion processes.
The main integration methods are Z-shaped, a serrated connection of identical single cells
in series, and Π-shaped, a combination of p-type and n-type cells in series (Figure 7).
Thermocouples, where oxidation reaction occurs at the hot electrode, are typically defined
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as p-type, whereas thermocouples in which reduction reaction proceeds at the hot electrode
are defined as n-type. In thermoelectric devices, Π-type and Z-type configurations are
two prevalent connection modes. Comparatively, the Π-type connection is more efficient
due to the following reasons:

1. Current distribution: in Π-type connections, the current distribution across the ther-
moelectric elements is more uniform, with each element carrying the same current.
However, in Z-type connections, the current is distributed across different elements
due to their series connection, resulting in an uneven current distribution that affects
efficiency.

2. Thermal resistance: in Π-type connections, each thermoelectric element exhibits the
same thermal resistance due to their parallel connection, thereby reducing the overall
thermal resistance. In contrast, in Z-type connections, the thermal resistance increases
due to the series connection of the thermoelectric elements, hence affecting their
efficiency.

3. Voltage distribution: in Π-type connections, the voltage distribution is more uniform,
with each element having the same voltage. However, in Z-type connections, the
voltage is distributed across different elements due to their series connection, leading
to an uneven voltage distribution that affects the efficiency.
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Overall, the Π-type connection outperforms the Z-type connection in terms of current
distribution, thermal resistance, and voltage distribution, making it more efficient. The
Π-shaped connected device has the advantage of achieving maximum power output with
a single state-of-the-art cell [1,40,47,79,80].

Shi et al. designed a fatigue-resistant and highly conductive hydrogel thermocouple
with photothermal conversion capability for non-contact self-powered applications. At
a temperature difference of 20 K, the output voltage rises from ≈0.05 V to 0.85 V when
individual thermocouples are assembled into an array of 20 cells [21]. However, the
device integration process using Z-shaped connections is complex, with a large contact
resistance between the electrodes and the Z-shaped wires. The Π-shaped connection, on
the other hand, simplifies the integration process and enables good contact between the
electrodes and the collector. Xu et al. designed a p-n pair hydrogel electrolyte by choosing
Fe(ClO4)3/Fe(ClO4)2 as the n-type ion couple. By integrating and fabricating a conformal
portable thermal battery device, 14 pairs of p-n-connected cells achieved an output voltage
of 0.16 V at ∆T = 4.1 K [81]. Unfortunately, integrated devices via Π-shaped connections
remain inefficient due to a lack of high-performance n-type batteries.

4. Summary and Outlook

TECs represent an emerging technology for thermoelectric conversion which has
attracted extensive attention from researchers in both academia and industries. Despite the
significant advances in TECs which have been achieved via the optimization of electrolytes,
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electrodes, insulation materials, and device modules, numerous challenges remain to be
overcome.

Regarding the electrolyte, the modification of existing redox pairs or the development
of new ionic pairs, the alteration of the solvent environment and the addition of additives
to form a concentration difference, or the destruction of the ionic solvent shells, in addition
to the use of quasi-solid electrolytes, have all contributed to the great enhancement of the
Seebeck coefficient of the thermal batteries or the output power. However, the following
shortcomings still exist and require further development and optimization.

The interaction of redox ions with solvent molecules is one of the important factors
determining the Seebeck coefficient. However, none of the relevant solvent parameters
exhibit regularity in the effects on the ionic Seebeck coefficients; therefore, the specific
mechanism of the solvent molecules’ influence on the redox ions has not been clarified,
with a lack of exploration into the in-depth mechanism of exactly how the solvent affects
the Seebeck coefficients.

Integrated device reliability is also one of the factors to be considered. In general,
thermoelectric devices require the integration of multiple p-type and n-type TECs to obtain
a stable voltage output. Although existing p-type TECs (e.g., the [Fe(CN)6]3−/[Fe(CN)6]4−

system) have been relatively sophisticated, the development of corresponding n-types
are still unsatisfactory. Further research on high-performance n-type redox couple is
critical for the optimization of devices for TECs. For example, perchlorate redox pair
(Fe2+/Fe3+) exhibited a high Seebeck coefficient of 1.76 mV K−1 and high solubility (>1 M)
in aqueous electrolytes [33,34]. Another focus is on the stability of TEC devices in extreme
environments. The effects of cryogenic and high temperatures on material properties should
be taken into account in the design of TECs, and the widening of operating temperature
range of TECs, in particular, should be an additional focus.

The application of flexible thermoelectric devices for thermal batteries in wearable
devices lacks extensive research, especially the adaptation of flexible electrodes and gel
electrolytes and the improvement of electrodes for the qualities of gel electrolytes, while
the comprehensive performance of thermoelectric devices after their integration remains to
be explored.
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