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Abstract: CoCrNi alloys exhibit excellent strength and ductility. In this work, the CoCrNiV multi-
principal alloy with single-phase fine grained (FG) structure was prepared by rolling and heat treatment.
The characteristics of deformation microstructures and mechanical properties were systematically
investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM).
The results indicate that the CoCrNiV alloy successfully attains a yield strength of 1060 MPa while
maintaining a uniform elongation of 24.1%. The enhanced strength originates from FG structure and
severe lattice distortion induced by V addition. Meanwhile, the exceptional ductility arises from the stable
strain-hardening ability facilitated by dislocations and stacking faults. The deformation mechanisms
and the optimization strategies for attaining both strength and ductility are thoroughly discussed.

Keywords: CoCrNiV alloy; multi-principal element alloy (MPEA); stacking fault; solid solution
strengthening; fine grain (FG)

1. Introduction

Multi-principal element alloys (MPEA), as a novel type of metallic crystalline materials,
have been attracting much attention in the materials research community [1–7]. The
concept of MPEA offers significant compositional variability, enabling the alloy to activate
multiple deformation mechanisms to achieve desired properties, such as high hardness [8],
high strength [8,9], a remarkable strength-ductility synergy [10], exceptional oxidation
resistance [11,12], excellent corrosion resistance [13], superior wear resistance [14], and
high radiation resistance [15] and so on. In recent years, due to its advanced alloy design
concepts and outstanding properties, MPEAs featuring a single-phase face-centered cubic
(FCC) structure have garnered significant research interest. Among the various single-
phase FCC MPEAs, the CoCrFeMnNi alloy has been extensively investigated. Compared
with room temperature, the CoCrFeMnNi alloy had better strength and ductility at 77 K,
which were attributed to the synergistic effect of various deformation mechanisms such
as dislocation slip, stacking fault and nanotwin [16]. Furthermore, Laplanche et al. [17]
compared the mechanical properties of CoCrNi and CoCrFeMnNi alloys at 293 K and 77 K,
respectively. The stacking fault energy (SFE) of CoCrNi was observed to be 25% lower than
that of CoCrFeMnNi. And the yield strength and strain-hardening rate of CoCrNi were
higher than CoCrFeMnNi, which made CoCrNi alloy reach the critical stress of twinning at
lower strain. Consequently, the CoCrNi MPEA exhibited superior mechanical properties
compared to the CoCrFeMnNi MPEA.

In order to further improve the yield strength of FCC MPEAs, the researchers in-
creased the lattice friction stress by replacing or adding other alloying elements. The
volume mismatch was caused by the difference of atomic size, which led to serious lattice
distortion effect and hindered the dislocation movement to strengthen the materials [18–20].
For instance, the addition of elements such as C [21,22], Ti [23], Al [23–25], Mo [26,27],
and others to CoCrNi or CoCrFeMnNi MPEAs can significantly improve the mechanical

Materials 2023, 16, 6530. https://doi.org/10.3390/ma16196530 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16196530
https://doi.org/10.3390/ma16196530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2184-132X
https://orcid.org/0000-0002-6361-4785
https://doi.org/10.3390/ma16196530
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16196530?type=check_update&version=1


Materials 2023, 16, 6530 2 of 11

properties of the alloys. The addition of Al element to the CoCrNi alloy resulted in the
formation of (CoCrNi)87Al13. Compared to the CoCrNi alloy, the (CoCrNi)87Al13 alloy
exhibited an increased yield strength from 346 to 578 MPa and an improved ultimate tensile
strength from 605 to 960 MPa, and its ultimate elongation remained at 24% [24]. As a result,
exploiting lattice distortion to influence solid solution strengthening has become one of the
primary approaches to enhance the mechanical properties of MPEAs.

The V element was considered as the most effective strengthening element for both
FCC and BCC MPEAs due to its unique atomic volume, which created a significant mis-
match with other primary elements [20,28]. Sohn et al. [29] used V to replace Cr in CrCoNi
alloys to obtain a disordered VCoNi alloy, and verified by density functional theory (DFT)
simulation that the addition of V increased the fluctuation of atomic spacing and caused
severe lattice distortion. Consequently, the VCoNi alloy with FCC structure exhibited
a yield strength of 1 GPa, primarily due to the high solid solution strengthening and
grain boundary strengthening effects. Chen et al. [30] designed an UFG V0.5Cr0.5CoNi
alloy with a stable dual-phase structure and exceptional overall mechanical properties
by incorporating 16.7% V content into the CoCrNi MPEAs. However, both the VCoNi
and V0.5Cr0.5CoNi alloys contained a high content of V. Therefore, it was necessary to
explore low V alloys to reduce the manufacturing cost and investigate the microstructure
and mechanical properties. In this study, through the preliminary experiment on the pro-
cess parameters of a wide range of exploration, the cold-rolled samples were annealed at
1023 K and 1073 K for 20 min to obtain a single-phase FCC Co33Cr24Ni33V10 alloy with
low V content, and the deformation mechanism of high strength and high plasticity was
explored by tensile deformation and microstructure characterization. This work introduces
a novel strategy for optimizing comprehensive mechanical properties by designing recrys-
tallized fine grains and is expected to be used to explore the excellent mechanical properties
of MPEAs in different systems.

2. Materials and Methods

Co33Cr24Ni33V10 alloy was prepared using raw materials with purity of 99.99 wt.%.
The composition of the studied alloy was 32.58Co-24.66Cr-32.29Ni-10.47V (in at.%), which
was analyzed using a scanning electron microscope (SEM, JEOL JSM-7001F) with an at-
tached X-ray energy dispersive spectrometer (SEM-EDS). The ingot was fabricated through
the vacuum induction melting technique, homogenized at 1473 K for 3 h, and subsequent
water quenched. Ingot with a thickness of 7.8 mm was rolled to 0.6 mm at room tempera-
ture. The total reduction in thickness after rolling was ~92.3%, and the corresponding true
strain is ~2.56. The cold-rolled sample is named as CR. In order to obtain fully recrystallized
specimens, the rolled sheets were annealed at temperatures of 1023 K and 1073 K for 20 min,
respectively, which were denoted as CR750 and CR800, correspondingly. The flowchart of
experimental methods is shown in Figure 1.

Tensile specimens were fabricated from annealed sheets using an electrical discharge
machine, with a gauge length of 10 mm, width of 4 mm, and thickness of 0.6 mm. The
surfaces of the specimens were further polished to a 2000# grid finish. Tensile tests were
conducted at room temperature using a CMT 5105 testing machine, employing an initial
strain rate of 10−3 s−1. Throughout the tensile test, a standard extensometer was employed
until the point of fracture. The loading direction is parallel to the rolling direction (RD).

The crystal structure of the samples was analyzed using a Smartlab (Rigaku, Tokyo,
Japan) X-ray diffraction (XRD) device, which scanned the angle range of 30◦–100◦ at a
rate of 2◦/min. The surface of the XRD samples was ground with SiC grit papers, and
electropolished in perchlorate alcohol to remove the strained layer in the surface. Mi-
crostructural characterizations were performed using a JSM-7001F field emission scanning
electron microscope (FE-SEM) equipped with a backscattered electron (BSE) detector. The
deformation microstructures after tensile tests were characterized by transmission electron
microscope (TEM, JEM-2100F). The TEM samples were twin-jet electropolished using a
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solution mixture of 10% perchloric acid and 90% ethanol. The electropolishing process was
performed at a direct voltage of 20 V and a temperature of 253 K.
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Figure 1. The flowchart of experimental methods.

3. Results
3.1. Microstructure of the Annealed Specimens

Figure 2 illustrates the BSE images and XRD patterns of the CR, CR750, and CR800. CR
exhibits typical rolling deformation microstructure characteristics, as shown in Figure 2a.
The grains have been severely fragmented after rolling deformation. After annealing treat-
ment, both the CR750 and CR800 have been fully recrystallized, with abundant annealing
twins. The average grain sizes of CR750 and CR800 were calculated using the line intercept
method, including and excluding twin boundaries (TBs), respectively. The statistical results
for CR750 (0.95 ± 0.18 µm, 1.51 ± 0.23 µm) and CR800 (1.08 ± 0.11 µm, 1.78 ± 0.15 µm) are
presented. It is noted that CR750 and CR800 shows fully recrystallized FG microstructure,
which is quite difficult to achieve due to the rapid grain growth. The XRD patterns in
Figure 2d confirm that the three samples obtain FCC single-phase structure. However,
MPEAs often tend to form the second phases or intermetallic compounds during heat
treatment process. The retained FCC structure in these alloys may be attributed to the
insufficient concentration of V, making it difficult to form hexagonal close-packed (HCP)
phase after element segregation. These results suggest that the Co33Cr24Ni33V10 alloy
maintains superior phase stability. The diffraction peak of the alloy rolled only at room
temperature is wider than that of the alloy completely recrystallized after annealing, which
is due to the greater degree of grain refinement of the alloy after rolling.

3.2. Mechanical Properties

The tensile stress-strain curves and strain-hardening curves of the alloys at room
temperature are depicted in Figure 3. The engineering stress-strain curves are depicted
in Figure 3a. The CR exhibits a high yield strength of 1513 MPa, but the strain-hardening
ability is very limited, and the uniform elongation is only 2.2%. This mechanical response
is typical for severely deformed materials. Upon annealing, the CR750 demonstrates a
significant increase in uniform elongation, reaching 24.1%. Meanwhile, the yield strength
decreases but still remains at 1060 MPa, which is remarkable for single-phase FCC alloys.
It is important to note that in the CR800, the relatively large grain size weakens the effect
of fine-grain strengthening. This leads to a decrease in yield strength to 846 MPa but an
increase in uniform elongation to 29.6%. In the comparison of the mechanical properties
among the three states of the alloys, the CR750 exhibits excellent comprehensive mechanical
properties. Its uniform elongation is significantly improved compared with the CR, while
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still maintaining a yield strength above 1 GPa. In contrast, due to the increase of grain size,
the ductility of CR800 increases slightly, but the yield strength decreases obviously.
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The measurement of the strain-hardening rate is performed using the true stress-strain
curve (Θ = dσ/dε), as shown in Figure 3b. The Considére criterion predicts that necking
occurs when Θ = σ. Therefore, the ductility of the alloy is closely associated with its
strain-hardening ability [31]. The CR specimen almost lost its strain-hardening ability
after cold rolling deformation. The strain-hardening rate curve of the sample contains
only the rapid decline part caused by dynamic recovery in the initial deformation stage.
The strain-hardening rate of both the CR750 and CR800 alloys follows a similar pattern,
characterized by a multi-stage strain-hardening response. Initially, the strain-hardening
rate decreases rapidly, then rises sharply to reach the maximum value. This phenomenon
can be attributed to the discontinuous yield behavior of alloys [32]. Subsequently, the
strain-hardening rate continues to decrease until necking occurs. Since mobile dislocations
have been mostly removed in FG and UFG materials with fully recrystallized structure,
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the stress required for activating dislocation sources significantly increases. However,
the required stress decreases after dislocation multiplication, resulting in a discontinuous
yield phenomenon [32].

3.3. Microstructure after Tensile Tests

The formation of defects during the deformation process, such as dislocation entangle-
ment, twins, and stacking faults (SFs), will impede the movement of dislocations, resulting
in strain-hardening of alloys [33]. Additionally, SFE influences the mechanical properties
of alloys by affecting the deformation mechanisms. In cases where the SFE is low, it can
not only generate high-density dislocations but also activate twinning-induced plasticity
(TWIP) or transformation-induced plasticity (TRIP) effects [34]. To reveal the reasons for
comprehensive mechanical properties of CR750 and CR800, the deformation microstruc-
tures after tensile tests were characterized using XRD, TEM, and selected area electron
diffraction (SAED). The results are presented in Figures 4 and 5.
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The TEM results reveal that both CR750 and CR800 exhibit similar deformation
microstructures. Within the grains of both samples, high-density dislocations and SFs were
observed, whereas deformation twinning and phase transformation were rarely observed.
By examining the XRD patterns in Figures 4a and 5a, it can be clearly observed that the
diffraction peaks of the materials after tensile deformation are significantly broadened
compared to those of the annealed samples. This can be attributed to the significant presence
of dislocations and SFs that are generated during the deformation process. In addition, the
tensile deformation may also induce the lattice distortion, which cause the lattice constants
in the crystal to be non-uniform, resulting in the broadening of the diffraction peaks.
Combining the XRD results with the SAED illustrations in Figures 4d and 5d, it can be
inferred that CR750 and CR800 retain FCC single-phase structure after tensile deformation,
which confirms the absence of deformation twinning and phase transformation. However,
in CoCrNi MPEA with a lower SFE, deformation twinning and phase transformation are
often activated during the deformation process. He et al. [35] found that the deformation
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microstructures were predominantly composed of dislocations and twinning at room
temperature. As the temperature decreases to 15 K, twinning and the HCP phase could
be clearly distinguished. However, in this study, the absence of twinning or HCP phase
can be attributed to the addition of V to increase the SFE of Co33Cr24Ni33V10 alloy, which
inhibits the TWIP and TRIP effects [30]. The presence of V induces severe lattice distortion.
In accordance with classical dislocation theory, significant lattice distortion leads to the
deviation of atoms from their equilibrium positions, which affects the nucleation and
movement of dislocations [36,37]. When the motion of perfect dislocations is suppressed,
it will be dissociated into Shockley partial dislocations, resulting in the formation of SFs.
This corresponds to the observed high-density dislocations and SFs in Figures 4 and 5.
In the plastic deformation process of lower SFE alloys, the perfect dislocation is prone to
be dissociated into partial dislocations, leading to the formation of numerous SFs. The
interaction between SFs and dislocations hinders dislocation movement and reduces the
free path of dislocations [38], which improves the strain-hardening rate of the alloys.
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4. Discussion
4.1. Formation of FCC Single-Phase FG Structure

Chen et al. [30] proposed a new low SFE V0.5Cr0.5CoNi alloy, and observed that an
increased propensity for high-density SFs within the FCC matrix after cold rolling. During
the annealing process, solutes with a greater negative mixing enthalpy (specifically, the V
element) readily segregated into SFs via the Suzuki mechanism. As a result, the formation
of the HCP phase was promoted at an intermediate annealing temperature [39]. Salishchev
et al. [40] introduced a certain content of V element into CoCrFeMnNi and CoCrFeNi alloys.
Since V is a stronger σ phase-forming element compared to Cr, the addition of V improved
the instability of the FCC phase [41]. Consequently, it becomes easier for the alloys to form
a V-rich σ phase, with an increase in the V content, there is a corresponding increase in
the volume fraction of the σ phase. The results showed that when a certain amount V was
added to the CoCrNi alloys, the annealed alloys exhibited V segregation behavior and the
formation of the second phase [30]. In contrast, when the V content was reduced to 10% in
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this study, the locally enriched element concentration was insufficient to form the second
phase, thus resulting in the retention of a single-phase FCC structure after annealing.

According to experimental results and theoretical calculations, it has been determined
that the influence of Cr on reducing the SFE of the alloys was greater than V [30]. Compared
to the equiatomic CoCrNi MPEA, the Co33Cr24Ni33V10 alloy exhibits a higher SFE, the
deformed structure of the alloy after cold rolling exhibits high-density dislocations and SFs,
without activating twinning or phase transformation. Consequently, the alloy maintains
its single-phase FCC structure even after deformation and retains excellent mechanical
properties. Furthermore, the development of the FG microstructure in the CR750 and
CR800 can be attributed to the characteristic hysteresis diffusion effect observed in HEAs
and MEAs.

4.2. Deformation Mechanisms

The CR750 alloy exhibits outstanding comprehensive mechanical properties, with yield
strength up to 1060 MPa and remarkable uniform elongation of 24.1% at room temperature.
Tensile deformation results in the formation of microstructures primarily composed of
highly entangled dislocations and SFs. However, there is no formation of deformation
twinning or HCP phase. Based on these observations, the deformation behavior and
exceptional ductility of the CR750 can be elucidated.

Firstly, the SFE plays a crucial role in dictating the deformation mechanisms observed
in metals and alloys during plastic deformation. A higher SFE results in a narrow SF width
and frequent cross-slip, leading to a dominant wavy slip behavior. Conversely, When
the SFE of the alloys is lower, the partial dislocations with wide spacing will inhibit the
cross-slip, and the dislocation slip shows a planar slip mode, and even the TWIP and TRIP
effects appear, which improves the comprehensive mechanical properties of the alloys [34].
In CoCrNi alloy with a low SFE, a large number of SFs are often generated during the
deformation process, leading to deformation twinning [16]. Under specific temperature and
strain rate conditions, deformation-induced martensite transformation may also occur [34].
However, theoretical calculations indicated that the SFE of VCoNi was higher than that
of CoCrNi when the Cr was replaced with the V [30]. It has been confirmed that Cr has a
greater effect in reducing the SFE compared to V. In this study, as for Co33Cr24Ni33V10 alloy,
the deformed microstructures do not contain twinning and HCP phase after tensile tests.
Shockley partial dislocations are more likely to dissociate from full dislocations, forming
SFs during the plastic deformation process. The reason is that when Cr is replaced by V
in the Co33Cr24Ni33V10 alloy, it causes an increase in the SFE compared to the equiatomic
CoCrNi alloy. As a result, the Co33Cr24Ni33V10 alloy does not exhibit deformation-induced
twinning phenomenon during tensile process at room temperature. The deformation
mechanisms are primarily governed by dislocations and SFs. Meanwhile, the twinning and
HCP phase are formed by the initial SFs as the nucleation sites, and partial dislocations
slip through different pathways [35]. Consequently, an increased SFE makes it challenging
for twinning and HCP phase to form, leading to the presence of high-density dislocation
tangles and SFs after deformation. Secondly, there exists a relationship between the grain
size and the critical stress necessary for twinning. The larger the grain size, the smaller
the critical stress required for twinning formation [37]. Therefore, the FG structure of the
Co33Cr24Ni33V10 alloy makes twinning difficult.

Although the addition of V increases the SFE of the Co33Cr24Ni33V10 alloy, but it still
maintains a low SFE level, which is favorable for the activation of SFs during the plastic
deformation process. Besides dislocations interaction, SFs can also contribute to continuous
strain-hardening [42]. SFs interact with dislocations and effectively impede dislocations
motion. When dislocations are intercepted by SFs, the SFs may either decompose into
smaller fragmented sections or absorb the impeded dislocations and generate new dis-
locations [43]. These new dislocations can penetrate SFs or cross-slip along them, but
both mechanisms require higher stress levels [44]. Therefore, the fully recrystallized FG
structure, dislocation slip, and the interaction between SFs and dislocations in the CR750
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alloy collectively enhance the strain-hardening ability and plastic deformation capacity.
Therefore, they endow the alloy with excellent strength and ductility.

4.3. Strengthening Mechanisms

The CR750 alloy, with its single-phase FCC structure, demonstrates excellent me-
chanical properties, including an outstanding yield strength of up to 1060 MPa at room
temperature. The ultra-high yield strength can be mainly attributed to two factors: the
FG structure of the alloy and the solid solution strengthening effect introduced by the V
element. According to the Hall-Petch relationship, when the grain size of the alloys is
smaller, a larger number of grain boundaries inhibit dislocation motion, thus enhancing
the strength of the alloys. Previous research has indicated that refining the grain size to
503 nm could result in a yield strength of 888 MPa for the fully recrystallized CoCrFeMnNi
alloy [45]. However, even with a finer grain size, the yield strength of the CoCrFeMnNi
alloy is considerably inferior to that of the CR750 alloy. This implies that, apart from grain
size refinement, the enhancement of the yield strength in the CR750 alloy is significantly
influenced by the presence of additional strengthening mechanisms.

MPEAs exhibit stronger lattice distortion compared to traditional materials, which
results in a higher resistance for dislocation movement. This phenomenon highlights the
significant solid solution strengthening effect of MPEAs. Based on the theory of dislocation
and interaction energy in disordered alloys, the large difference in atomic size between V
and other main elements enables it to exert a solid solution strengthening effect, thereby
enhancing the mechanical properties of FCC HEAs [28]. The presence of V in FCC alloys
leads to variations in atomic spacing, inducing localized fluctuations in Peierls’ potential
for dislocation glide and consequently increasing frictional stress [18,29]. Calculation
predictions indicate that the addition of V to the CoCrFeMnNi alloys is capable of producing
large atomic volume misfits, and thus, V can produce higher strength than other alloy
elements [38]. Figure 6 illustrates a comparison of the mechanical properties of the CoCrNi
alloys after incorporating the fourth elements. But in contrast, the Co33Cr24Ni33V10 alloy
studied here demonstrates exceptional comprehensive mechanical properties. In summary,
the ultra-high yield strength of CR750 is attributed to the combined strengthening effects
of FG structure and high lattice friction stress.
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5. Conclusions

Fully recrystallized FG Co33Cr24Ni33V10 alloys, CR750 and CR800, were produced
by cold rolling at room temperature and heat treatment. By conducting tensile tests and
microstructure characterization, the main conclusions can be summarized as follows:

1. The Co33Cr24Ni33V10 alloy maintained a single-phase FCC structure and exhibited
superior phase stability throughout the processes of rolling, heat treatment, and
tensile deformation.

2. The primary deformation mechanisms of the CR750 and CR800 alloys were dislocation
slip and SFs, with no occurrence of twinning or phase transformation.

3. The fully recrystallized FG structure of CR750 alloy with the minimum mean grain
size of 0.95 µm exhibited a high yield strength of 1060 MPa and a uniform elongation
of 24.1%. The exceptional strength can be attributed to the presence of the FG structure
and solid solution strengthening effect, while the remarkable ductility arises from the
excellent strain-hardening ability primarily governed by dislocations and SFs.
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