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Abstract: The environmental impact of clay mining can be minimized using extractive mineral
circularity practices. Combining the available knowledge of the characteristics of different clays with
statistical tools was a decisive step for the improved use of mining resources. Through blends, all
the mined materials can be incorporated to produce quality ceramic products. This study identified
two types of clay from abandoned mining areas in the southern state of Santa Catarina, Brazil.
These raw materials were valued together with plastic clay, which is widely used in the region, to
develop 10 different formulations using a mixture design method. The clays were characterized
using average granulometric distribution, mineralogical composition, and chemical, thermal and
plasticity analyses. The specimens were shaped by extrusion, dried in an oven, fired in a muffle
furnace and characterized based on their shrinkage, water absorption and compressive strength
values. Two clays with varying characteristics—one with low workability and the other with a high
silica content—exhibited difficulties (generating defects) in the extrusion shaping process, which
compromised the final quality of the ceramic paste. Results showed that incorporating up to 45% by
mass of the low-workability clay resulted in an increase in water absorption. The more siliceous clay
improved dimensional control; however, its use at high contents (~80%) decreased the mechanical
resistance. Nevertheless, when used in controlled amounts, these clays can be beneficial to the
production of blocks and bricks because they have the potential to improve some properties of the
finished ceramic products.

Keywords: clay ceramic; sustainable mining; ceramic blocks; simplex design

1. Introduction

Clays are among the most abundant materials on the Earth’s surface [1,2]; thus, they
are the most commonly used raw materials for construction ceramics, such as bricks and
roof tiles [3–6]. Despite the introduction of newly developed materials in the construc-
tion industry, traditional clay ceramics are still widely used [7] and are considered the
foundation of this sector [8]. Brazil is among the largest producers and consumers of clay
ceramics [9]. Following a decline of 6.3% in 2020, the gross domestic product (GDP) of the
construction sector grew by 9.7% in 2021 [10].

According to data from the National Ceramic Industry Association (Associação Na-
cional da Industria Cerâmica-ANICER) [11], Brazil has 6903 factories throughout its national
territory, with most of them located in the southern and southeastern regions. The sector
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has an annual revenue of BRL 18 billion, representing 4.8% of the civil construction industry
in the country and generating approximately 293,000 direct and 900,000 indirect jobs. The
relevance of the ceramics industry at the national level is also highlighted by the fact that
approximately 90% of the masonry and roofing in the country is based on clay ceramics.
Furthermore, an average of 5.3 billion blocks and roof tiles are produced monthly according
to the National Ceramic Industry Association [11], resulting in a monthly consumption of
approximately 10.3 million tons of clay.

The Brazilian mining-ceramics sector is predominantly composed of small-scale and
family-owned companies [12], often lacking the technical knowledge related to raw mate-
rials. Therefore, these ceramists only exploit the mineral portions based on an empirical
evaluation of their texture [13]. This has led to the abandonment of less valuable mineral
pockets, that is, clay materials with properties that are unattractive to the ceramic sector.
This exploration method, which is known as ambitious mining, is an environmental con-
cern that has been addressed in Article 48 of the Mining Code-Decree No. 227/67. This
article assigns responsibility to the Federal Government for managing mineral resources,
the mineral production industry, and the distribution, trade and consumption of mineral
products with a specific focus on ambitious mining. Therefore, this article addresses mining
conducted with a pre-established plan of noncompliance and those performed in a way
that hinders the subsequent economic exploitation of the deposit [14].

Ambitious mining can result in the disposal of large volumes of clay material, leading
to the abandonment of the mined area and stagnation in the environmental recovery. Thus,
new areas must be explored to supply the ceramics sector. To postpone the need to obtain
new mineral sources, the utilization of different raw materials must be optimized to extend
the life of the deposit.

The southern region of Santa Catarina, Brazil, is a major center for clay ceramics,
accounting for 2.5% of the national production [15]; however, the abandonment of areas
after clay mining is a concern in the region [16]. According to the Cooperative of Mineral
Exploration in the Urussanga River Basin (Cooperativa de Exploração Mineral da Bacia do Rio
Urussanga-COOPEMI), a licensed area of approximately 120 ha is currently underutilized
because of two factors: (i) their intrinsic characteristics, such as low workability and high
silica concentration, and (ii) a lack of knowledge about the properties of these raw materials,
which requires a significant investment for research. Therefore, efforts are being made
in the Local Productive Arrangement (LPA) of the Mineral Base in Morro da Fumaça
to valorize these natural resources as alternative primary mineral sources for ceramic
formulations, with the aim of integrating the sector into the practices of circularity and
sustainable mineral resource exploitation.

In this study, abandoned areas in the region were identified and the characteristics of
the underutilized raw materials from each of these areas were determined using a statistical
mixture design method. Subsequently, clay-ceramic compositions were developed based
on this previous work. And finally, statistical analysis proved to be an allied tool in the
development of mixtures to solve problems of poor disposal of natural resources.

2. Materials and Methods
2.1. Geological Configurations of the Study Region

The clay ceramic production center of Morro da Fumaça is located in the southeastern
region of the state of Santa Catarina; the lithological description of the production area
is shown in Figure 1. In this region, sedimentary and volcanic rock outcrops form the
sequence of the eastern edge of the Paraná Basin along with unconsolidated sediments
from the coastal plain and current alluvial deposits. The regional crystalline basement is
composed of late-post-tectonic granitoid rocks [17].
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Figure 1. The geographical location of the study areas, referred to as A1, A2 and A3. Universal 
Transverse Mercator-UTM Projection. Datum Sirgas 2000. Zone 22S. Data source: IBGE (2021). 

In this region, there is a geological alteration trend from the Serra Geral Mountain 
range to the coastal region. The Serra do Rio do Rastro can be found in the interior, where 
the White Column [18] is located, along with formations of the Paraná Basin—an 
intracratonic basin filled with sedimentary and volcanic rocks that developed between the 
Ordovician and Cretaceous periods. The coastal region exhibits a diversity of sand, silt 
and clay deposits related to both marine and continental processes, with geological 
representations from the Quaternary period. In the Criciúma Sheet, the outcropping 
sequences have ages ranging from Permian to Cretaceous [19]. 

2.2. Sample Preparation and Characterization Techniques 
Three clays were used in this study: two from abandoned areas (referred to as A1 and 

A2), while the other (A3) was collected from a commonly used clay in the ceramic 

Figure 1. The geographical location of the study areas, referred to as A1, A2 and A3. Universal
Transverse Mercator-UTM Projection. Datum Sirgas 2000. Zone 22S. Data source: IBGE (2021).

In this region, there is a geological alteration trend from the Serra Geral Mountain
range to the coastal region. The Serra do Rio do Rastro can be found in the interior,
where the White Column [18] is located, along with formations of the Paraná Basin—an
intracratonic basin filled with sedimentary and volcanic rocks that developed between
the Ordovician and Cretaceous periods. The coastal region exhibits a diversity of sand,
silt and clay deposits related to both marine and continental processes, with geological
representations from the Quaternary period. In the Criciúma Sheet, the outcropping
sequences have ages ranging from Permian to Cretaceous [19].

2.2. Sample Preparation and Characterization Techniques

Three clays were used in this study: two from abandoned areas (referred to as A1
and A2), while the other (A3) was collected from a commonly used clay in the ceramic
manufacturing process. Representative samples (~90 kg) of each clay were collected from
different locations (Figure 1) for characterization tests.

Chemical characterization was performed using X-ray fluorescence spectrometry
(Axios Max Panalytical, Malvern, UK) with wavelength dispersion (WDXRF). The loss
on ignition (LoI) of the samples was performed after thermal treatment at 1000 ◦C, and
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with 3 h of dwell-time. For the characterization of the crystalline phases present in the clay
samples, an X-ray diffractometer (XRD-D8 Advance Bruker, Billerica, MA, USA) was used.
Data collection was conducted in the 2-theta range of 4◦–72◦ at 40 kV and 40 mA using
CuKα radiation at a wavelength of 1.5406 Å. Crystalline phases were quantified using the
Rietveld method [20].

Thermal characterization was performed using differential scanning calorimetry (DSC)
and thermogravimetric analysis (TGA) with a simultaneous analyzer (TA Instruments,
model SDT Q600, New Castle, DE, USA). Samples were heated from room temperature to
1100 ◦C at a rate of 10 ◦C/min.

Particle size distribution was determined by laser diffractometry using the CILAS 1064
instrument between the range of 0.04 µm and 500 µm for 60 s and using sodium polyacrylate
as the dispersant (Disperlan LP/G, Lamberti Brazil, Nova Odessa, Brazil). A small sample
of each formulation was collected to obtain coarse particles, which are the portion of the
material that cannot be disaggregated without the aid of a tool or comminution method [21].
The test involved analyzing the percentage of the materials retained on a 325 ASTM mesh
sieve (45 µm) using Equation (1).

Cp =
wr

w0
× 100 (1)

where Cp = coarser particles (%), wr = retained weight (g) and w0 = initial gross weight (g).
Tests were performed on each clay to measure the Atterberg plasticity index [22]

through the liquid limit (LL) and plastic limit (PL) based on ISO 17892-12:2018 [23]. The
samples were prepared for both tests, which consisted of dehydrating the material and
passing it through a 4.8 mm sieve. The test was performed using the Casagrande method.
Based on the obtained limits, the plasticity index (PI) was determined using Equation (2).

PI = LL − PL (2)

where PI = plasticity index, LL = liquid limit and PL = plastic limit.

2.3. Composition Development

The compositions were determined using the experimental design (simplex centroid),
which involved defining formulations with different proportions of clays/studied materials
(Figure 2). In this study, ten formulations were defined (Table 1)—three pure clays (A1, A2,
and A3), two-way interactions (sides) and three-way interactions (centroids). The mixture
design was based on an effective mathematical model to predict the properties of each
original component, as well as their specific proportions.
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Table 1. Ceramic compositions of the selected clays according to the mixture design.

Formulations
Raw Material (%)

Clay 1 (A1) Clay 2 (A2) Clay (A3)

F1 100 0 0
F2 0 100 0
F3 0 0 100
F4 50 50 0
F5 50 0 50
F6 0 50 50
F7 33.3 33.3 33.3
F8 66.6 16.7 16.7
F9 16.7 66.6 16.7

F10 16.7 16.7 66.6

The formulations were prepared on a wet basis, and for this purpose, a portion of
each raw material was dried in an oven (DeLeo oven No. 2211) at 60 ± 10 ◦C for 24 h to
determine the natural moisture content (Equation (3)).

W =
(ww − wd)

ww
× 100 (3)

where W = water content (%), ww = wet weight (g) and wd = dry weight (g).
The water used in the study was the natural water of the raw materials. To carry out

the mixtures, the water was disregarded but not removed. Approximately 10 kg (dry mass)
was used for each formulation.

Subsequently, the compositions were weighed and dosed in their natural state using a
scale (Marte balance, AC 10 K, precision of 0.1 g), then mixed in a laboratory-scale laminator
(BERTAN equipment) and homogenized for 24 h in a sealed container.

The samples forming were determined using the vacuum extrusion method (NATREB,
model NTB 140) at a vacuum pressure of 760 mmHg and a helix speed of 20 rpm. Thirty
test specimens with dimensions of 36.5 × 51 × 70 mm3 were prepared for each formulation.

Finally, these specimens underwent thermal treatment—drying (DeLeo oven No. 2211)
at 50 ± 5 ◦C for 24 h then at 100 ± 5 ◦C for an additional 24 h—to eliminate the forming
moisture. All pieces were measured with a manual caliper (UNIVERSAL, precision of
0.02 mm) to determine the drying shrinkage according to Equation (4).

Shd =

(
L0 − L f

)
L0

× 100 (4)

where Shd = drying shrinkage (%), L0 = initial length of the green pieces (mm) and L f = final
length after drying the pieces (mm).

Firing was performed in a muffle furnace (Jung, model J200) at a heating rate of
1.7 ◦C/min to up to a temperature of 900 ◦C and with a firing dwell-time of 120 min; firing
was performed in triplicate. Firing followed the traditional/representative cycle used in
the ceramic industries in the Mineral LPA in the Morro da Fumaça region. All fired pieces
were manually measured with calipers (UNIVERSAL, precision of 0.02 mm) to obtain their
firing shrinkage according to Equation (5).

Sh f =

(
L0 − L f

)
L0

× 100 (5)

where Sh f = firing shrinkage (%), L0 = the initial length after drying the pieces (mm) and
L f = the final length after firing (mm).

After firing, a visual analysis of the pieces was conducted to identify systematic defects,
such as cracks, irregular surfaces or deformations that could disqualify the product/piece.
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The fired pieces were weighed (Marte AC 10 K, precision of 0.1 g) and submerged in
water to determine their water absorption (WA) content. The test was conducted based on
Equation (6).

WA =
(ww − wd)

wd
× 100 (6)

where WA = water absorption (%), ww = weight before oven-drying (g) and wd = weight
after oven-drying (g).

The mechanical compressive strength test was performed on 15 fired test specimens,
5 from each firing cycle. The tests were performed using a universal testing machine (EMIC
DL 10000) with a force application rate of 100 N/s.

To validate the findings, the technological tests were evaluated using the analysis
of variance (ANOVA) statistical technique; response surfaces were plotted to aid in their
interpretation. The confidence level (probability) was set to 95%. For the analysis, the
highest F-value (indicating higher significance) and lowest p-value (indicating higher
reliability) were considered (p = 100 × (1 − p-value)). A model was selected based on its
output and the adjusted coefficient of determination (R2). Statistical analysis was performed
using the Statistica 10.0 software (Tulsa, OK, USA, StatSoft©).

After statistical analysis, the boundaries with the best results were identified to validate
the study. The areas on the response surface that exhibited water absorption outside the lim-
its established by the standard (between 8% and 25%) and mechanical strength < 1.5 MPa
were disregarded. ANOVA plays a pivotal role in the fine-tuning of clay ceramic formula-
tions by pinpointing the key factors influencing their properties. This statistical analysis
allows you to improve product quality and performance.

3. Results and Discussion
3.1. Raw Materials Characterization

The chemical characterization of the studied clays (Table 2) showed that they were
primarily composed of silica (SiO2) followed by alumina (Al2O3). The silica content of A2
(85.33%) was higher than that of the other clays. This may be associated with the high
content of free silica, which is unusual in clay ceramic manufacturing. The alumina content
of 7.98% may also be related to the high content of free silica, which proportionally reduces
the content of other oxides and may be an indication of the presence of clay minerals. Clays
with a SiO2 percentage > 80% have previously been studied by Zaccaron et al. [15]. Clays
A1 and A3 had SiO2 contents of 57.57% and 69.08%, respectively, and Al2O3 contents of
22.51% and 18.20%, respectively; therefore, they were within the range of clays used in the
production of ceramic materials [7,24–27].

Table 2. Chemical composition (by XRF) of clay samples.

Oxides (%)
Raw Material (Mass%)

A1 A2 A3

SiO2 57.57 85.33 69.08
Al2O3 22.51 7.98 18.20
CaO <0.05 <0.05 0.13

Fe2O3 8.95 1.84 2.95
K2O 0.31 0.34 0.55
MgO 0.15 ND 0.26
MnO 0.05 <0.05 <0.05
Na2O <0.05 <0.05 0.07
P2O5 0.10 <0.05 <0.05
TiO2 1.12 0.72 1.50
LoI 9.09 3.67 7.20

ND: not detected. LoI: loss on ignition.
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The mass percent of alkaline and alkaline-earth oxides (CaO, MgO, K2O, and
Na2O)—compounds that facilitate the sintering of ceramic materials by acting as flux-
ing agents [2]—in all clays was less than 1%.

Chromophore oxides (Fe2O3 and TiO2), which give the clay pieces reddish (F) and
blue (Ti) colors after firing and are commonly used in the production of bricks and roof
tiles [28–31], were also found in the clay samples. The mass percent of Fe2O3 in the A1
sample was 8.95%, representing ~10% of the chromophore oxides. In contrast, the mass
percent of Fe2O3 in A2 and A3 was 2.56% and 4.45%, respectively.

The loss on ignition (LoI) is associated with the amount of chemically combined water
in inorganic materials and sometimes with the presence of organic matter [32,33]. The LoI
in the A2 sample (3.67%) was lower than that of the other samples, possibly owing to its
high content of free silica. For clays A1 and A3, the LoI content was 9.09% and 7.20%,
respectively; these values may be associated with the dehydroxylation of clay minerals and
the reduction in organic matter [34,35].

The mineralogical compositions of the clays were determined using X-ray diffraction
(XRD), as shown in Figure 3. The major crystalline phases found in the clays [36,37] were
quartz (SiO2, JCPDS 00-046-1045) and the clay minerals, kaolinite (Al2(Si2O5)(OH)4, JCPDS
01-089-6538) and montmorillonite ((Na,Ca)0,3(Al,Mg)2Si4O10(OH)2.nH2O, JCPDS 00-012-
0204). Minor minerals, such as hematite (α-Fe2O3-JCPDS 01-087-1164) and anatase (TiO2,
JCPDS 01-089-4921), were also observed.
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Figure 3. X-ray diffractogram of the studied clays.

Quartz plays an important role in the ceramic process by acting as a deplasticizer
in the extrusion process, assisting in the dimensional control of the piece, and ensuring
the formation of capillaries in the shaped ceramic body, thereby facilitating drying [38,39].
Therefore, the controlled introduction of A2 into the paste can incorporate significant
multifunctionalities in the manufacturing of ceramic blocks.

The characterization of kaolinitic clays with a high content of hematite (3.43% Fe2O3)
is intrinsically correlated with the manifestation of a distinctive red color in the natural
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clay and after the firing process commonly used in the manufacturing of ceramics [40,41].
The presence of Fe3+ can contribute to the formation of low-melting eutectics and reduce
refractoriness; additionally, anatase, which is usually associated with the TiO2 content,
may also contribute to variations in color tone [41]. This oxide (TiO2) is known as a glass
modifier and can act at high temperatures to form a glass phase, which has the potential
to increase the strength of the samples [42]. The weight percentages of minerals based on
quantitative analysis using Rietveld refinement are listed in Table 3; the quartz content of
A2 (84.32%) was higher than that of the other clays, not being a content commonly used in
the manufacture of clay ceramics.

Table 3. The content of the phases obtained from the evaluation of XRD patterns.

Clays
Phases (%)

Quartz Kaolinite Hematite Anatase

A1 32.63 62.26 3.43 1.68
A2 84.32 15.68 - -
A3 55.01 40.81 - 4.18

The thermal behavior of the raw materials (Figure 4) showed that the initial mass loss,
which occurred from room temperature (23 ◦C) to 200 ◦C, was attributed to the elimination
of adsorbed water from kaolinite [43]; and in natural humidity, this accounted for a 5.3%,
10.5% and 21.9% reduction in the mass of A1, A2 and A3, respectively. Between 200 and
350 ◦C, there was a mass loss of <1% for all samples accompanied by a marginal exothermic
inflection in the DSC curve, which was possibly related to the oxidation of organic matter.

Materials 2023, 16, 6466 9 of 19 
 

 

for a 5.3%, 10.5% and 21.9% reduction in the mass of A1, A2 and A3, respectively. Between 
200 and 350 °C, there was a mass loss of <1% for all samples accompanied by a marginal 
exothermic inflection in the DSC curve, which was possibly related to the oxidation of 
organic matter. 

 
Figure 4. Thermal characterization of raw materials using differential scanning calorimetry (DSC) 
and thermogravimetric analysis (TGA). (───) Mass; (----) DSC. 

The endothermic inflection observed in the DSC curves, Figure 4, at the temperature 
range of 350–650 °C was mainly due to the dehydroxylation (release of OH structural 
groups) of the clay minerals [44,45]. This corresponded to a mass loss of 5.94%, 1.6% and 
3.12% for A1, A2 and A3, respectively (TGA curves). At 550 °C, a small endothermic peak 
without an associated mass loss was observed in A2, possibly related to the allotropic 
transformation of quartz (α-quartz to β-quartz) [46,47]. In clay ceramic manufacturing, this 
inversion can lead to cracks if cooling occurs abruptly [30]. Finally, the exothermic peak 
at 920 °C in the DSC curve corresponds to the formation of mullite [48–51]. 

Particle size is a fundamental aspect in the study of clays because the shape and type 
of mineral composition can influence the physical characteristics of the raw material. In 
some cases, this can affect the mechanical strength, permeability and density of the 
material. Finer particles can improve packing, increasing the density of the piece and its 
mechanical strength; however, they can also hinder drying by impeding the transfer of 
moisture from the interior to the surface of the piece, where the evaporation process takes 
place. Therefore, particle size distribution is a crucial characteristic for the processing of 
plastic formation and for achieving the desired properties in clay ceramic products [52]. 

The samples exhibited a multimodal particle size distribution (Figure 5). This 
behavior may be associated with the different morphologies and densities of the 
constituent particles in the clays [53,54]. The granulometric distributions of the raw 
materials in the fractions accumulated at 10, 50 and 90%, as well as their mean particle 
sizes (Daverage), are listed in Table 4. 

Figure 4. Thermal characterization of raw materials using differential scanning calorimetry (DSC)
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The endothermic inflection observed in the DSC curves, Figure 4, at the temperature
range of 350–650 ◦C was mainly due to the dehydroxylation (release of OH structural
groups) of the clay minerals [44,45]. This corresponded to a mass loss of 5.94%, 1.6% and
3.12% for A1, A2 and A3, respectively (TGA curves). At 550 ◦C, a small endothermic peak
without an associated mass loss was observed in A2, possibly related to the allotropic
transformation of quartz (α-quartz to β-quartz) [46,47]. In clay ceramic manufacturing, this
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inversion can lead to cracks if cooling occurs abruptly [30]. Finally, the exothermic peak at
920 ◦C in the DSC curve corresponds to the formation of mullite [48–51].

Particle size is a fundamental aspect in the study of clays because the shape and type
of mineral composition can influence the physical characteristics of the raw material. In
some cases, this can affect the mechanical strength, permeability and density of the material.
Finer particles can improve packing, increasing the density of the piece and its mechanical
strength; however, they can also hinder drying by impeding the transfer of moisture from
the interior to the surface of the piece, where the evaporation process takes place. Therefore,
particle size distribution is a crucial characteristic for the processing of plastic formation
and for achieving the desired properties in clay ceramic products [52].

The samples exhibited a multimodal particle size distribution (Figure 5). This behavior
may be associated with the different morphologies and densities of the constituent particles
in the clays [53,54]. The granulometric distributions of the raw materials in the fractions
accumulated at 10, 50 and 90%, as well as their mean particle sizes (Daverage), are listed in
Table 4.
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Table 4. Cumulative fractions (10, 50 and 90%) and average particle diameters of the clays determined
using the laser diffraction technique. The coarser particles of the clays that were retained by 45 µm
(325 mesh, ASTM) using a sieving technique are also shown.

Clays
Diameter (µm)

Daverage (µm) Coarse
Particle (%)10% 50% 90%

A1 0.87 4.45 24.03 8.81 18.0
A2 1.12 21.63 293.60 85.92 58.0
A3 0.84 5.29 20.23 8.13 5.0

The Daverage of the A1 and A3 clays (8 µm) exhibited distributions with finer charac-
teristics. However, the Daverage of the A2 clay was >85 µm, in which some particles were
>200 µm in size.

The coarse particle content retained in a particular mesh/sieve during manufacturing
may be associated with the product quality, dimensional variation, mechanical strength,
water absorption, extrusion rate, drying and firing properties [55].
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The coarse particle content (Table 4) showed that among the clays, clay A3 (F3 compo-
sition) had the lowest free silica percentage, while that of clay A2 (F2) was the highest; clay
A1 (F1) had an intermediate content (18%). Low percentages of coarse particles may be
associated with a higher number of fine particles, which tends to increase the packing factor
and densification of the shaped body after the drying process. In contrast, higher coarse
particle percentages create a structure that contributes to dimensional stability; however,
excessive amounts can adversely affect other properties, such as plasticity for the shaping
process and the mechanical strength after firing [56].

The Atterberg Plasticity Index (PI), which estimates the degree of clay plasticity, is
presented in Table 5. According to Burmister’s classification [57] (0 nonplastic; 1–5 slight; 5–
10 low; 10–20 medium; 20–40 high; >40 very high), A1 and A2 exhibited moderate plasticity
(12 and 15%), while A3 was identified as a clay with good plasticity (20%). Based on these
findings, a clay workability index was developed (Figure 6) using the method described by
Marsigli and Dondi [58]. Despite the low Daverage value of A1 (similar to that of A3), its
plasticity was also low; this may be owing to the presence of nonplastic fine minerals, such
as hematite [59], which is characteristic of a low workability index. Sample A2 was between
the acceptable and optimal extrusion zones, whereas A3 was almost within the acceptable
extrusion zone because of its Atterberg Plasticity Index, which was higher than that of
the other clays. Therefore, clay blends can adjust these indices to provide cohesion and
plasticity, which are necessary characteristics for the plastic formation of clay pieces [60].
The use of inert materials provides structural support that helps maintain the shape of the
clay piece during drying and firing [61]. Therefore, the clays from the abandoned areas (A1
and A2) can be included in the ceramic formulation as more inert components and cohesion
regulators, aiding in the manufacturing process of extruded clay ceramics, particularly in
the drying and firing stages.

Table 5. Atterberg limits of the studied clays.

Clays LL PL PI

A1 61 49 12
A2 31 16 15
A3 51 31 20

LL: liquid limit; PL: plastic limit; PI: plasticity index.
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3.2. Technological Characterization of the Clays Compositions

Visual analysis of the extruded ceramic blocks revealed the presence of manufacturing
defects, such as cracks, irregular surfaces and deformations, which were associated with
the use of clays A1 and A2. The F1, F4 and F8 compositions (Table 1), which contained
levels greater than 50% of A1, exhibited cracks that occurred during extrusion (Figure 7).
This was possibly owing to the lack of plasticity of clay A1. The roughness of sample
F2 was also observed (Figure 7), indicating that quartz was present in excess because it
increases the coarseness of the paste.
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Linear thermal shrinkage is an essential technical parameter in the production of
structural ceramics, as dimensional control is one of the requirements established by the
standards [62].

Figure 8 shows the drying and firing shrinkage behavior of the developed formulations.
Sample F3, composed of a material with higher plasticity and smaller particle size, exhibited
the highest drying shrinkage among the clay formulations. This is typically associated with
higher densification and the high amount of water adsorbed by clay minerals. However,
sample F2 had a higher gross residue content and lower drying shrinkage than the other
clay formulations. This was observed because the presence of fine nonclay materials aids
in water elimination and the dimensional stability of the ceramic pieces [63,64].
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Figure 8. Drying and firing linear thermal shrinkage of the developed formulations processed by
extrusion.

The firing shrinkage behavior of the formulations showed that F2, with a high content
of free silica, exhibited higher dimensional stability (less shrinkage) than that of samples
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F1 and F3. On the other hand, the presence of fluxing oxides (higher in F1 and F3), which
enhance the formation of a liquid phase in the ceramic body and the densification of the
piece, may cause an increase in shrinkage [65].

According to Dondi [66], variation in drying shrinkage is “acceptable” or “optimal”
between 3 and 10 cm/m and 5 and 8 cm/m, respectively. In contrast, the “acceptable” or
“optimal” variations in firing shrinkage are 1.5 to 3 cm/m and <1.5 cm/m, respectively.

Clays with higher shrinkage values are more susceptible to cracks owing to the
stresses generated by the shrinkage differences between the thinner and thicker areas of the
piece [67]. Therefore, the characteristics of clays A1 and A2 can be used to control shrinkage
during the drying process.

The technological properties—total shrinkage (Sh), water absorption (WA) and me-
chanical strength—of the clay formulations are presented in Table 6.

Table 6. Results for total linear thermal shrinkage (Sh), water absorption (WA) and mechanical
resistance in compression (σ).

Formulations Sh (%) WA (%) σ (MPa)
F1 6.46 ± 0.84 40.66 ± 0.93 1.20 ± 0.43
F2 4.03 ± 0.38 15.59 ± 0.51 1.10 ± 0.45
F3 10.05 ± 0.61 15.46 ± 0.64 4.69 ± 1.87
F4 5.18 ± 1.09 23.81 ± 0.39 1.5 ± 0.74
F5 9.41 ± 0.55 23.73 ± 1.75 2.31 ± 0.84
F6 8.90 ± 0.54 15.46 ± 0.54 2.54 ± 0.74
F7 8.46 ± 0.55 21.30 ± 0.58 1.43 ± 0.36
F8 6.70 ± 0.39 27.53 ± 0.97 1.61 ± 0.65
F9 7.87 ± 0.54 18.44 ± 0.41 1.44 ± 0.59

F10 9.48 ± 0.69 18.20 ± 0.61 1.91 ± 0.50

ANOVA was performed on the technological properties to validate the results (Table 7);
response surfaces were plotted to aid in their interpretation. The confidence level was set
at 95%. The highest F-value and lowest p-value, which are indicative of higher significance
and reliability (p), respectively, were considered. The determination coefficient (R2) was
also used to select a model.

Table 7. Analysis of variance (ANOVA) for total linear thermal shrinkage (Sh), water absorption
(WA) and mechanical resistance in compression (σ).

(Sh)

Model F p R2

Linear 934.58 <0.001 0.73
Quadratic 71.69 <0.001 0.84

Special Cubic 3.48 0.0629 0.84
Cubic 77.44 <0.001 0.90

(WA)

Model F p R2

Linear 1068.30 <0.001 0.94
Quadratic 128.82 <0.001 0.98

Special Cubic 14.88 <0.001 0.98
Cubic 22.35 <0.001 0.99

(σ)

Model F p R2

Linear 60.10 <0.001 0.47
Quadratic 7.76 <0.001 0.55

Special Cubic 7.21 0.0081 0.57
Cubic 7.51 <0.001 0.61

F = F-value (statistical significance); p = p-value (confidence level); R2 = determination coefficient (adjust).
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The response surface of the total linear thermal shrinkage (Figure 9a) showed that A3
exhibited the highest total shrinkage (>11%) among the clays, while the value of A2 was the
lowest (<5.25%). Regarding the water absorption (WA) test, the response surface (Figure 9b)
showed that A1 was a determining factor for increasing the WA in the system; additionally,
compositions with approximately 50% of this clay exceeded the 25% limit established by
the technical standards [62]. In contrast, the WA of clays A2 and A3 were low, even though
A2 had a high coarse particle content. This suggested that A2 may be suitable for blend
development and dimensional stability. Finally, the response surface for the compressive
mechanical strength test (Figure 9c) demonstrated that the inclusion of A1 and A2 clays
generally decreased the mechanical strength of the pieces. In contrast, the presence of
the A3 clay improved mechanical strength owing to the high densification of the ceramic
bodies. Additionally, it showed that approximately 15% of A3 was required to achieve
the minimum mechanical strength of 1.5 MPa, according to the technical standard [62].
Equations (7)–(9) show the fitting formulas for the selected models and the developed tests
for total linear thermal shrinkage (Sh), water absorption (WA) and mechanical resistance in
compression (σ), using clays one (A1), two (A2) and three (A3).

Sh = 6.60 × A1 + 5.20 × A2 + 11.16 × A3 (7)

WA = 37.08 × A1 + 14.58 × A2 + 14.39 × A3 (8)

σ = 1.06 × A1 + 1.02 × A2 + 3.84 × A3 (9)
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The working range of the studied raw materials was identified by removing the
areas that exceeded 25% water absorption and that were below the 1.5 MPa compressive
mechanical strength, which is in gray in Figure 9d. The incorporation of the A1 clay above
~45% significantly increased the water absorption, which exceeded the technological limits
(8–25%); additionally, when the sum of the A1 and A2 clays was >80%, the compressive
mechanical strength was <1.5 MPa. Therefore, the hatched area represents the applicability
range of different clays based on normative specifications.

In general, conventional clays that are widely used in the production of clay ceramics
are known for their favorable plasticity/workability, mechanical strength and, in porcelain
products, low water absorption after firing. These traditional clays have been extensively
exploited by the ceramics industry because of their availability and ease of use. The appli-
cation of less conventional raw materials, characterized by high quartz content and low
plasticity, represents an innovative and promising approach to the production of clay ce-
ramics. Despite the technical challenges associated with the incorporation of less commonly
used clays, such as the higher variability in their properties that require adjustments in
formulations, their potential for addressing the challenging future production conditions
and sustainability requirements of the sector is enormous.

The prospected exploration areas, according to the data provided by COOPEMI,
contain an estimated volume ranging from 180,000 m3 to 220,000 m3, corresponding to
approximately 6 ha of licensed but unexplored areas. Unique characteristics, such as
a distinct mineral content (for example, A2 with 84.32% quartz) and unique chemical
compositions (for example, A1 with 8.95% Fe2O3 and A2 with 93.31% SiO2 + Al2O3),
require more process control but can be beneficial for region-specific mineral circularity
actions. Production techniques, such as drying, where the A2 clay exhibits a high coarse
particle content (58%) and larger grains (average diameter = 85.92 µm), may result in
reduced shrinkage and dimensional stability of ceramic pieces.

The use of statistical tools has extended the lifespan of abandoned mines. The adopted
evaluation approach, based on these findings, can be applied as a guide for the study of
other abandoned areas. Thus, it provides dual benefits: contributing to environmental
preservation through the rehabilitation of neglected areas and establishing a sustainable
supply of raw materials for ceramic production within the LPA minerals, which is of great
relevance to the Brazilian construction industry.

4. Conclusions

Through the characterization of clays from an ambitious mining area, the character-
istics that explain why the mining industry does fully explore mineral resources were
identified. The results showed that clay A1 exhibited low workability and A2 was charac-
terized as a highly sandy clay owing to its high silica content (85.33%). However, using
statistical tools, the viability of introducing these raw materials into ceramic matrices was
determined by adjusting their formulations according to their characteristics. Clays A2 and
A3 were marginally within acceptable extrusion zones; however, the forming process could
be adjusted during formulation development.

In this study, the cumulative incorporation of clays A1 and A2 could be as high as 80%
by mass, combined with 20% of clay A3. Using A1 in proportions exceeding 45% resulted
in water absorption that exceeded the limit established by the standard (25%). The use of
clay A2 improved the control of the dimensional stability of the produced ceramic pieces;
however, in excess (~80%), A2 reduced the mechanical strength below the standard limit
(1.5 MPa).

Finally, it was demonstrated that the development of clay blends with raw materials
having different characteristics is essential for achieving a balance between ceramic product
processing and the performance of sustainable production systems.
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