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Abstract: As complex and heterogeneous materials, the mechanical properties of rocks are still
in need of further investigation regarding the mechanisms of the effects of water. In engineering
projects such as goaf foundation treatment and ecological restoration, it is particularly important
to describe the fracturing process of non-uniform water-containing sandstone media. The study
utilized the theory of continuum mechanics to adopt an elastoplastic strain-softening constitutive
relationship and develop a numerical model for analyzing the uniaxial compressive strength and
failure characteristics of non-uniform water-containing sandstone. The results indicate that, compared
with the reference rock sample, the shorter the capillary path of water entering the rock sample’s
internal pores or the larger the contact area with water, the shorter the time required for the rock
sample to be saturated. Increasing the water content causes a rapid decline in the rock sample’s elastic
modulus and intensifies its brittleness. Group D2 and D3 samples exhibited a decrease in average
peak strength to 70.4% and 62.1%, respectively, along with a corresponding decrease in the elastic
modulus to 90.78% and 76.55%, indicating significant strain softening. While the failure mode of the
rock sample remains consistent across different water contents, the homogeneity of failure shows
significant variation. Increasing volumetric water content raises the likelihood of interconnecting
cracks between rock samples, resulting in a progressive decline in macroscopic mechanical properties
such as peak strength, critical strain, and elastic modulus. This research is significant in advancing
the theory and construction technology for ecological restoration in goaf areas.

Keywords: non-uniform sandstone; Weibull distribution; uniaxial compression; water-containing
state; mechanical properties

1. Introduction

The occurrence of sudden rock failure during mining production poses a significant
threat to the safety of the mine operation. Rocks, being a typical heterogeneous material,
display notable variations in properties like density, porosity, elastic modulus, and strength,
which are closely associated with their water content. In practical engineering, rocks
commonly exist in a water-containing state, and their mechanical properties are significantly
influenced by environmental conditions, including a size effect [1].

Presently, numerical simulation methods are widely employed by both domestic
and international scholars to investigate damage issues in non-uniform media. Many
researchers have focused on studying the mechanical characteristics of non-uniform rock
samples by analyzing the geometric parameters of mineral particles. Discrete element
and hybrid element methods, such as PFC2/3D [2], UDEC [3], and ELFEN [4], typically
model the formation of mineral crystal boundaries and cracks within rocks by defining
inter-particle contact. Lan et al. [5] employed UDEC (a 2-D numerical program based
on the distinct element method (DEM) for discontinuum modeling) to investigate how
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the distribution of mineral grain sizes affects stress distribution and crack propagation
in the model. Tang et al. [6] introduced spatial correlation scale factors to describe the
spatial distribution characteristics of minerals and discovered their significant influence
on rock failure morphology and mechanical behavior. Luo et al. [7] proposed a novel
parameter assignment method based on the type and content of minerals in non-uniform
rock materials. They analyzed the impact of microscale mechanical parameters on the
macroscopic mechanical parameters of rocks. Gao et al. [8,9] developed a crystal breakable
model using UDEC to simulate the macroscopic and microscopic fracture characteristics
of non-uniform brittle sandstone. Pan et al. [10] developed a hybrid cohesive model to
investigate the influence of mineral particle size, distribution, and preferred orientation on
the mechanical behavior and failure mode of brittle rocks. In cases where the rock material
exhibits high homogeneity, shear dilation or brittle failure is more likely to occur. The spatial
distribution of rock material particles in contact directly impacts the mechanical response
characteristics of the material. Weaker areas tend to experience yielding phenomena,
resulting in progressive failure or a softening effect. Although the aforementioned studies
have produced valuable insights regarding the non-uniformity of minerals, they have not
extensively investigated and described the distribution characteristics of rock heterogeneity,
as well as the overall mechanical properties and fracture characteristics of rock samples
under the influence of water.

Several scholars have employed micromechanics in studying rock fracture problems.
They utilize statistical distribution functions to describe the physical and mechanical prop-
erties of rock materials at the microscopic scale. Additionally, they adopt the elastic damage
or elastoplastic theory from continuum mechanics to describe the mechanical response
of microstructural units. Weibull et al. [11,12] discovered that mechanical parameters of
rocks, such as tensile strength, compressive strength, and shear strength, follow a spe-
cific statistical distribution law. Gao et al. [13] provided theoretical proof that the shape
parameter of the Weibull distribution serves as a measure of the irregularity degree of
defect distribution within the material structure. Tang et al. [14–16] were the first to intro-
duce the Weibull distribution as a hypothesis into numerical models and investigate the
brittle fracture characteristics of two-dimensional rock models. Chen et al. [17,18] noted
that simulation methods based on micromechanical continuum mechanics align with the
cross-scale fracture characteristics observed in real rocks. Zhang et al. [19] demonstrated
the appropriateness of employing the Weibull distribution to construct a micromechanical
probability element in elastic damage analysis. Wang et al. [20,21] utilized the Weibull
distribution to characterize the non-uniformity of rocks. They investigated the influence
of heterogeneity on the mechanical properties and failure characteristics of rocks. Their
findings revealed a statistical distribution model capable of describing rock heterogeneity.
The research hypotheses put forth by these researchers suggest that material uniformity
directly impacts the peak strength and elastic modulus of numerical materials. However,
the verification of the Weibull distribution model’s applicability has not been conducted.

Tang et al. [22] introduced spatial correlation scale factors and considered the spatial
correlation characteristics of rocks to improve the Weibull distribution model. Zhou et al. [23]
utilized the elastic–brittle constitutive relationship to describe the mechanical behavior
of microscopic particles and employed the Weibull distribution to characterize the non-
uniformity of rocks, simulating the failure of anisotropic elastic–brittle rocks. With in-
creasing heterogeneity, the change in peak strength becomes more pronounced, and the
stress–strain curve displays enhanced nonlinear characteristics. Upon crack formation and
propagation, shear persists until failure, resulting in a sequential progression of tensile,
shear, and plastic flow failures in the rock sample. Generally, the statistical distribution
characteristics of certain fundamental physical and mechanical properties of rocks need to
be determined based on a large number of laboratory experiments using statistical analysis
and hypothesis testing methods. Considering the intricacy of the natural diagenesis process,
the utilization of the Weibull distribution to characterize the non-uniformity of rock materi-
als proves to be highly applicable [24,25]. However, the computational models proposed



Materials 2023, 16, 6396 3 of 21

in these studies solely involve elastic deformation, lacking plastic strain throughout the
entire process of deformation and failure of microscopic units. Despite allowing for plastic
deformation of microscopic units, the EPCA3D model fails to capture their subsequent
yielding behavior. Liu et al. [26,27] also employed the Weibull distribution to describe the
heterogeneity of rock media, but they utilized an elastic–plastic strain-softening constitu-
tive model to describe the subsequent mechanical response of mesoscopic units. Among
these models, the Weibull distribution is better suited for describing the true distribution
characteristics of mechanical parameters in rock materials.

The mechanical properties of rocks are also greatly affected by water [28,29], and
numerous studies have investigated their behavior under simple loading conditions [30,31].
Rajabzadeh et al. [32] discovered a significant positive correlation between porosity, rock
type, and the uniaxial compressive strength of saturated and dry sedimentary limestone
and marble. Li et al. [33] proposed a comprehensive dynamic stress–strain constitutive
relationship that describes both the pre-peak hardening stage and post-peak softening stage.
Zhu et al. [34,35] investigated the impact of various pre-peak unloading damages on the
dynamic and static mechanical properties of rocks. Fathi et al. [36] elucidated the influence
of cyclic loading on shear mechanisms and shear strength parameters. Zuo et al. [37,38]
developed a series of models to investigate the axial crack evolution, crack propagation,
and stress–strain relationship of rock masses prior to reaching the peak value. While
these studies did analyze the failure characteristics of rock samples during the pre-peak
hardening stage and post-peak softening stage, they did not specifically account for the
influence of rock heterogeneity. Through laboratory experiments and discrete element
simulations, Xiao et al. [39] observed that as the σ1 level increases, the failure mode of
the specimen transitions from mixed tensile-shear failure to shear failure. Additionally,
they found a strong correlation between the formation of large cracks in rock samples
and the material heterogeneity and true triaxial stress state. Cao et al. [40] employed the
Brazilian splitting method to ascertain the mechanical properties of rocks with pre-existing
cracks under tension conditions. They discovered that rocks with pre-existing cracks exhibit
distinct anisotropic characteristics, with the lowest tensile strength observed when the crack
inclination is 45◦. These studies observed a correlation between the failure characteristics of
rock samples and material heterogeneity under various stress states. However, they did not
take into account the influence of water and changes in the effective stress of the material
unit. Kewalramani et al. [41] investigated the porosity of concrete containing supplementary
cementitious materials by analyzing the volume of permeable voids and conducting water
immersion tests. They also examined the water absorption and rapid chloride permeability
levels of three different concrete mixtures. Sun et al. [42] developed a numerical model
to assess the long-term durability of offshore concrete structures, specifically considering
the simultaneous transport of chloride ions and sulfate ions. Golewski investigated the
relationship between important physical properties of concrete containing fly ash (CFA)
and varying proportions: 0% (CFA-00), 20% (CFA-20%), and 30% (CFA-30%), through
water absorption tests. The results indicated that the strength of the material was directly
proportional to its water absorption level when CFA was added to the concrete [43]. What
are the differences in dynamic failure characteristics and phenomena of rocks under water-
containing conditions compared to conventional conditions? The presence of pore water
pressure leads to alterations in the effective stress of material units. Currently, these
issues still need to be resolved urgently. Revealing the differences in the mechanical
responses and failure modes of rocks under different water contents and water locations
holds significant importance in preventing and controlling engineering rock disasters in
water-containing conditions.

While the Discrete Element Method (DEM) is capable of generating plastic deformation
in microscopic structural elements, it fails to capture their subsequent yield behavior.
This paper aims to employ the Finite Difference Method (FDM) as the computational
framework and utilize the elastic–plastic strain-softening constitutive model based on the
Mohr–Coulomb criterion to depict the mechanical response characteristics of microscopic



Materials 2023, 16, 6396 4 of 21

structural elements. This model can describe not only the initial yield process of microscopic
structural elements but also their subsequent yielding process. Describing the fracturing
process of non-uniform water-containing sandstone media is of particular importance in
engineering projects, such as goaf foundation treatment and ecological restoration. This
study has important research significance for advancing the theory and improving the
construction technology related to ecological restoration in goaf.

2. Materials and Methods
2.1. Rock Sample Preparation and Testing Methods

The test was conducted in accordance with the “Standard Test Method for Engineering
Rock Masses” (GB/T50266-2013) [44]. The rock sample was obtained from a construction
site in Xiuwu County, Jiaozuo. The rock samples had a diameter of 50 mm, and their
heights were divided into four groups: 35 mm, 50 mm, 75 mm, and 100 mm. Two rock
samples were made for each group and labeled as A1, A2, B1, B2, C1, C2, D1, and D2.
Initially, the rock samples were weighed, then dried in a drying oven at 10 ◦C for 24 h. The
four sets of samples were placed in four water tanks, each with a water level height that
covered the height of the two rock samples in each group. The rock samples were removed
from the water tanks at hourly intervals, and their weights were recorded to determine the
water content at different time points. Based on the rock sample from group D with the
highest water absorption capacity (D × H = 50 mm × 100 mm), rock samples in three states
(dry, natural, and saturated) represented by D1, D2, and D3, respectively, were chosen
for uniaxial compression tests. The tests aimed to investigate the effect of different water
contents (0%, 0.145%, and 1.6%) on the mechanical properties of sandstone rock samples.
To reduce variability, three sets of tests were performed for each state, and the average
values were calculated. The RMT-150C rock mechanics test system was utilized for loading,
and the deformation rate was set to 0.005 mm/s. The process is shown in Figure 1.
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2.2. Strain-Softening Constitutive Model

The strain-softening model based on the Mohr–Coulomb model has non-associated
shear and associated tensile flow rules. It exhibits pre-peak characteristics similar to the
Mohr–Coulomb model. However, it demonstrates sudden brittle failure or staged softening
and failure after reaching the peak. This behavior is believed to better represent the actual
characteristics of rocks, as illustrated in Figure 2.

As the Mohr–Coulomb criterion overestimates the tensile strength of rocks, the yield
function is considered with tension truncation [45]. The yield function fs, ft is given using

Nϕ = 1+sin ϕ
1−sin ϕ

fs = σ1 − σ3Nϕ + 2c
√

Nϕ

ft = σt − σ3

(1)

where σ1 and σ3 are the maximum and minimum principal stresses, ϕ is the internal friction
angle, c is the cohesive force, and σt is the tensile strength.



Materials 2023, 16, 6396 5 of 21

Materials 2023, 16, x FOR PEER REVIEW 5 of 23 
 

 

2.2. Strain-Softening Constitutive Model 
The strain-softening model based on the Mohr–Coulomb model has non-associated 

shear and associated tensile flow rules. It exhibits pre-peak characteristics similar to the 
Mohr–Coulomb model. However, it demonstrates sudden brittle failure or staged 
softening and failure after reaching the peak. This behavior is believed to better represent 
the actual characteristics of rocks, as illustrated in Figure 2. 

 
Figure 2. Stress–strain curve of strain-softening material. 

As the Mohr–Coulomb criterion overestimates the tensile strength of rocks, the yield 
function is considered with tension truncation [45]. The yield function fs, ft is given using 

1 3

3

1 sin
1 sin

2s

t t

N

f N c N

f

ϕ

ϕ ϕ

ϕ
ϕ

σ σ
σ σ

+ = −
 = − +
 = −

 
(1) 

where σ1 and σ3 are the maximum and minimum principal stresses, φ is the internal 
friction angle, c is the cohesive force, and σt is the tensile strength. 

The mechanical response of the microscopic element is described via elasto-plasticity, 
which takes into account the post-peak softening characteristics. During the entire process 
of deformation and failure of the microscopic element, both elastic and plastic 
deformation occur. The cumulative equivalent plastic shear strain κs and cumulative 
plastic tensile strain κt are used as the post-peak strength-softening parameters (internal 
variables). The incremental form of their definition is given using the equation [45]: 

( ) ( ) ( )2 2 2

1 3
1
2

s ps ps ps ps ps
m m mκ ε ε ε ε εΔ = Δ − Δ + Δ + Δ − Δ  

( )1 3
1
3

ps ps ps
mε ε εΔ = Δ + Δ  

3
t ptκ εΔ = Δ  

1 3 3, ,ps s ps s pt tNψε λ ε λ ε λΔ = Δ = − Δ =  

(2)

Figure 2. Stress–strain curve of strain-softening material.

The mechanical response of the microscopic element is described via elasto-plasticity,
which takes into account the post-peak softening characteristics. During the entire process
of deformation and failure of the microscopic element, both elastic and plastic deformation
occur. The cumulative equivalent plastic shear strain κs and cumulative plastic tensile
strain κt are used as the post-peak strength-softening parameters (internal variables). The
incremental form of their definition is given using the equation [45]:

∆κs = 1√
2

√
(∆ε1

ps − ∆εm ps)2 + (∆εm ps)2 + (∆ε3
ps − ∆εm ps)2

∆εm
ps = 1

3 (∆ε1
ps + ∆ε3

ps)

∆κt =
∣∣∆ε3

pt
∣∣

∆ε1
ps = λs, ∆ε3

ps = −λsNψ, ∆ε3
pt = λt

(2)

In the equation, ∆ε1
ps and ∆ε3

ps are the plastic strain increments caused by shear yield;
∆ε3

pt is the plastic strain increment caused by tensile yield; and λs and λt are the plastic
scalar factors.

The initial yielding surface continuously shrinks as the softening parameter develops,
eventually forming subsequent yielding surfaces until the final residual failure surface.
The plastic parameter is a non-negative scalar that characterizes the history of plastic
deformation in rocks and can serve as an indicator to measure the extent of internal
damage development. In the strain-softening model, the plastic parameter describes the
dependence of rock strength on plastic deformation. The non-homogeneity of rocks, as
discovered by Weibull [11] and Hudson et al. [12], is the main cause of the nonlinear
mechanical behavior under external forces. They discovered that the tensile strength,
compressive strength, and shear strength of rocks exhibit statistical distribution patterns,
validating the heterogeneity of rock media experimentally. The elastic modulus and uniaxial
compressive strength values can be determined through uniaxial compression tests on
standard laboratory rock samples and employed as non-homogeneous parameters in
numerical models. This parameter has been experimentally confirmed to exhibit statistical
distribution characteristics by numerous scholars worldwide. Hence, to simplify analysis
by reducing non-homogeneous parameters, it is reasonable to set the Poisson’s ratio as
constants (as in the studies by Zhou et al. [23] and Feng et al. [25]) and assume that the shear
dilation angle, cumulative equivalent plastic shear strain threshold, and cumulative plastic
tensile strain threshold of the microscopic unit are proportional to its compressive strength.

The distribution characteristics of the elastic modulus and uniaxial compressive
strength of microscopic units are described using Weibull distribution [6,16,17,23–28],
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where the unit cohesion is determined by the uniaxial compressive strength and internal
friction angle, while the tensile strength is determined by the compressive strength and the
rock tensile/compressive ratio, as shown in the equation [45]:

c = σc(1−sin ϕ)
2 cos ϕ

σt = λσc
(3)

In the equation, σc is the uniaxial compressive strength, λ. The tensile/compression
ratio is generally 1/4 to 1/25.

Our method is to consider that the primary factor causing material damage is the
reduction in the effective load-bearing area inside the material, which is called geometrical
damage, and the damage variable is defined based on the effective load-bearing area of the
material structure. The damage variable can be defined from a microscopic perspective
using parameters such as the number of defects, defect volume, or fractal dimension.
Assuming that the strength probability distribution of micro-elements statistically follows
the Weibull distribution, this method offers a lower computational burden and wider
applicability. The expression for this method is as follows [11]:

p( f ) =
m
f0
·
(

f
f0

)m−1
· e−(

f
f0
)

m

(4)

In the equation, p(f ) is the probability density, f is the mechanical parameter of the rock
micro-element, and m and f 0 are the parameters of the Weibull distribution. The probability
density function curve of the Weibull distribution for various shape parameters is shown in
Figure 3, where m is the shape parameter and m > 1 and f 0 is equal to 16. It can be observed
that the larger the shape parameter, m, the more the material tends to be isotropic internally,
while the smaller the m, the greater the differences between points inside the material.
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The macroscopic failure of rocks is essentially the result of the continuous accumu-
lation of microscopic body damage. The damage variable is defined as the ratio of the
number of damaged microscopic elements (n) to the total number of microscopic elements
(N) inside the specimen, and its expression is as follows:

D =

∫ f
0 Np(x)dx

N
(5)
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According to the Lemaitre strain hypothesis, the damage constitutive equation of the
microelement under uniaxial load can be obtained as follows:

σ = E(1− D) ε = Eεe−(
f
f0
)

m

(6)

When the internal stress of the element satisfies the strength criterion, the strength
parameter starts to degrade. In the post-peak stage, the cohesion and shear dilation angle
of the microscopic unit gradually soften linearly with the accumulation of the equivalent
plastic shear strain, while the tensile strength gradually softens linearly with the accumu-
lation of the plastic tensile strain. The cohesion and shear dilation angle finally soften to
the residual value (the product of the initial value and the residual strength coefficient),
and the tensile strength eventually decreases to 0. The hardening and softening behavior
of the cohesive force, friction force, and dilation force based on the shear parameter ∆κs

in Formula (2) are presented in a tabular form. This process is implemented through the
Fish function. Once the new stress is determined in the calculation step, the hardening
parameter of this region is updated according to the above process and embedded in the
stress and strain calculation.

2.3. Numerical Model Establishment

According to the standards of the International Society for Rock Mechanics for rock
uniaxial compression test specimens and research findings from both domestic and foreign
scholars, this study employed two numerical models. The first model, referred to as
“specimen 1”, was a rectangular prism with dimensions of 100 mm × 50 mm × 1 mm. It
consisted of 5000 elements and 5050 nodes, as depicted in Figure 4a. The second model,
designated as “specimen 2”, was a cylindrical specimen with a diameter (D) of 50 mm and
a height (H) of 100 mm. It comprised 125,000 elements and 127,551 nodes, as shown in
Figure 4b.
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The mechanical parameters of the numerical models were determined in line with
Table 1. Elastic modulus and uniaxial compressive strength were represented as propor-
tional parameters following the Weibull distribution. The values for elastic modulus,
uniaxial tensile and compressive strength, cohesion, and Poisson’s ratio were obtained
through laboratory test results. The residual strength coefficient (Rs), plastic shear strain
threshold (κsL/10−4), and plastic tensile strain threshold (κtL/10−4) were derived from the
software operation manual [45].
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Table 1. Numerical model mechanical parameter values.

Mechanical Parameters Value

Elastic modulus E0/GPa 16
fs/MPa 103
ft/MPa 15

Poisson’s ratio ν 0.34
Internal friction angle ϕ 45

Dilation angle ψ 10
Residual strength coefficient Rs 0.05

Plastic shear strain threshold κsL/10−4 5
Plastic tensile strain threshold κtL/10−4 2

The values of various mechanical parameters in the strain-softening model will be
reduced after the element fails, and these values will differ across different stages of failure.
The values of each parameter in each stage are shown in Table 2 [45].

Table 2. Values of mechanical parameters at different failure stages.

Mechanical Parameters Elastic Stage Unstable Stage Post-Rupture Stage

Cohesion/MPa 21.3 5 5
Friction/(◦) 45 42 40
Dilation/(◦) 10 3 0

Both models were subjected to a strain-softening constitutive relationship. For model 1,
the boundary conditions involved fixing the displacement in the Z direction before and
after the rock sample. On the other hand, model 2 had no constraints on either side,
and the loading rate at the top and bottom of the sample in the Y direction was set at
2.5 × 10−6 m/s, with a strain rate of 2.5 × 10−5 m/s.

To define the element strength parameters, the Weibull distribution was utilized.
Different values of the parameter ‘m’ represented the random generation of heterogeneous
materials with varying degrees of homogeneity within the sample. This study selected
six non-homogeneity parameters: m = 2.0, 3.0, 5.0, 7.0, 9.0, and 15.0. The objective was
to investigate the influence of heterogeneity and the spatial distribution of microscopic
elements on the macroscopic characteristics of the numerical samples. Figure 4c illustrates
the distribution characteristics of the material’s elastic modulus for different values of ‘m’.

3. Results and Discussion
3.1. Analysis of the Factors Influencing the Macroscopic Characteristics of the Rock Sample
3.1.1. Analysis of Size Effect of Sandstone’s Natural Water Absorption Rate

According to the rock sample preparation and testing methods described in Section 2.1,
the variation of the water content in the rock samples over time was obtained, as shown in
Figure 5.

In Figure 5, a clear correlation can be observed between the water content of the
four sets of rock samples at different times. Additionally, different placement methods of
the same group of samples have little impact on the water absorption effect of the rock
samples. However, it should be noted that the presence of primary cracks within the rock
directly affects its mechanical properties. Consequently, the structural porosity and strength
characteristics of the rock undergo significant changes when soaked in water [29,30].

The data from eight sets of samples were divided into two groups for comparison.
Assuming a constant internal pore capillary suction force, the aspect ratio (H/D) was
defined, and the relationship between the water content of different-sized rock samples and
time during natural water absorption was analyzed. The mass water content of the rock
samples at different times was calculated, and the relationship between the mass water
absorption rate of different-sized rock samples and time was plotted, as shown in Figure 6.
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Figure 6. The relationship between the mass moisture content of rock samples with different sizes
and time.

From Figure 6, it is evident that the water absorption rates of the three groups of
rock samples, relative to the reference group B, are higher in the first two stages. This
indicates that the mass water content change in sandstone exhibits a size effect. Specifically,
during the initial stage, the water absorption rates of all four sizes of rock samples show
an approximately linear relationship. This suggests that in the rapid water absorption
phase, water molecules come into immediate contact with the surface pores of the rock
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samples and penetrate the interior of the samples due to water tension. After one hour,
the time taken for each rock sample to reach saturation was analyzed. The duration to
reach saturation depends on the length of the capillary pathway for water to enter the
internal pores of the rock sample and the contact area between the rock sample and water.
Consequently, rock samples with shorter capillary pathways or larger contact areas absorb
water more quickly and reach saturation in a shorter time. As a result, samples from group
A (35 mm × 50 mm) reached saturation first. However, when the height of the rock sample
exceeded 50 mm, the time required to reach saturation became approximately the same for
all rock samples.

Under the natural water absorption state, the water absorption process of the rock
sample is influenced by capillary suction. The capillary phenomenon occurs because when
the rock sample is immersed in a liquid, the liquid surface tension generates additional
pressure on the contact surface. The calculation formula for the Laplace capillary pressure
of a spherical liquid surface is as follows [46]:

Pc =
α·2πR cos θ

πR2

α = 75.796− 0.145t− 0.00024t2
(7)

In the formula, Pc is the additional pressure, R is the radius of the rock pore, α is the
surface tension coefficient of the liquid, θ is the contact angle, t is the Celsius temperature
(◦C), and the unit of surface tension is mN/m.

There are small pore channels in the rock sample that form capillaries when immersed
in water. The maximum distance of water infiltration along the pores, under the influence
of additional pressure, can be calculated according to Jurin’s law using the following
formula [46]:

hc =
Pc

ρg
(8)

In the formula, ρ is the density of the liquid, g is the acceleration due to gravity, and hc
is the pressure head under capillary pressure.

Based on the statistical results of this experiment: Firstly, there is no significant
difference in water content among rocks of different heights at the same time, during the
initial three hours of water immersion, the rock sample with a height of 35 mm exhibits a
slightly higher water content, suggesting that water enters any pore inside the rock from
multiple surfaces, resulting in a shorter path for water immersion into the sandstone pore,
leading to a faster initial water absorption rate and higher initial water content of the
rock sample. Secondly, as the size of the sandstone sample increases the time required
to reach saturation increases gradually and once the height exceeds 50 mm. A shorter
path of water immersion into the internal pores of the rock results in a shorter required
saturation time. Thirdly, the ratio of the final saturated water content for the four heights
of sandstone is approximately 35:50:75:100, which corresponds to 2.64:3.71:5.68:7.63. In
this condition, heterogeneity has minimal impact on the macroscopic characteristics of the
rock sample’s natural water absorption rate, but the size effect during the natural water
absorption process is pronounced.

3.1.2. Effect of Inhomogeneity on Macroscopic Properties

Model 1 employed cube elements with dimensions of 1 mm × 1 mm × 1 mm. A
model with the same material properties for all elements was set as the standard group.
The plastic zone range was monitored at intervals of 10 time steps, segments exhibiting a
substantial increase in the plastic zone range were identified as turning points, signifying
the turning points in the rock’s deformation process at various stages. Consequently, the
monitored full stress–strain curve was divided into three distinct stages. Figure 7 illustrates
the distribution of plastic zones at different stages.
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In the simulation of homogeneous rock samples, the stress–strain curve exhibits a
general trend, as depicted in Figure 7, and can be roughly classified into three stages.
(1) Stage I corresponds to linear elastic development, characterized by a relatively stable
process and an approximately linear curve. The sample is in the elastic stage, and shear
cracks start to appear. (2) Stage II represents unstable yielding, marked by a rapid increase in
the number of shear cracks during continuous compression. As the axial stress approaches
approximately 85% of the peak stress, the upward trend of the curve gradually decelerates.
At the peak point, tensile cracks start to develop. (3) Stage III occurs after the peak,
characterized by a decrease in axial stress while the strain continues to increase. The sample
gradually loses its bearing capacity until reaching residual strength. As the numerical model
does not account for the inherent internal defects of the rock, the simulation curve does
not exhibit the densification stage. Nevertheless, rock materials are complex composites,
exhibiting substantial variations in mineral particle composition and inter-particle bonding.
Even for rock samples with identical origin, lithology, or size, the stress–strain curve, peak
strength, and rupture characteristics demonstrate noticeable disparities [5,7,10]. Hence, it
is imperative to quantify the heterogeneity of rock samples and investigate its impact on
both macroscopic and microscopic fracture characteristics.

The stress–strain curve of the numerical model exhibits variations with changes in
homogeneity parameters under different conditions, as depicted in Figure 8. A larger value
of m indicates a higher level of material homogeneity, where the properties within the ma-
terial tend to be more uniform. Consequently, under the same random variable assignment,
the standard deviation of the elastic modulus between elements gradually decreases. This
phenomenon suggests that as homogeneity increases, the nonlinear characteristics of the
numerical model for the rock sample weaken gradually, while brittleness progressively
intensifies. Moreover, when the internal stress of the elements is equal, they are more likely
to reach the failure state simultaneously. Conversely, lower homogeneity results in greater
dispersion of mechanical parameters among elements, often leading to the strength of the
rock being determined by its weakest part and consequently yielding a relatively lower
overall strength. These findings support the conclusion that micro-heterogeneity stemming
from the non-uniform distribution of grains under uniaxial compression load significantly
influences micro-mechanical behavior and macroscopic response. This conclusion has been
verified in [10].
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Figure 8. Stress–strain curves of numerical models with different m values.

The variation of the elastic modulus of the material elements in the numerical model
under different homogeneity parameters is shown in Figure 9. The trend of the numerical
specimen’s elastic modulus is evident, transitioning from low homogeneity to high homo-
geneity (uE = 16 MPa). When m < 3.0, E/uE decreases from 0.90 (m = 1.5) to 0.88 (m = 2).
For 3.0 ≤ m < 7.0, E/uE increases from 0.89 (m = 3) to 0.92 (m = 5) and 0.94 (m = 7). Once
m ≥ 7.0, the change in E/uE becomes insignificant, stabilizing around 0.96. These phenom-
ena are closely related to the inherent characteristics of the Weibull distribution. Figure 8
presents the fitting curve (R2 = 0.9891) of the standardized elastic modulus (E/uE) and the
homogeneity parameter m. Tang et al. [6], under the RFPA2D framework, discovered that
the relationship between standardized uniaxial compressive strength, standardized elastic
modulus, and homogeneity parameter m can be expressed as y = a lnm + b (9). This formula
aligns with the observed behavior of the elastic modulus in Figure 9.

Figure 10 shows the variation characteristics of the initial yield element quantity
with axial strain at the material time step. When m < 5, the pre-peak stage of uniaxial
compression will also produce element yield conditions. However, with the increase in
material homogeneity, the time for the appearance of yield elements is delayed. At the
strength peak and post-peak stages, the material elements will undergo final yielding,
and the number distribution range becomes smaller and tends to be unified. This reflects
that as the homogeneity increases, the plasticity of the model gradually weakens, and the
brittleness gradually increases. When the micro-homogeneity parameter m < 7.0, there is
no stress concentration near the peak strength, and the stress–strain curve shows a sharp
shape, reflecting that the specimen suddenly loses its bearing capacity after reaching the
peak strength and that the strength decreases rapidly, showing typical brittle fracture
behavior; for the numerical specimens with m ≥ 7.0, whether it is in the pre-peak stage or
the post-peak stage, the stress–strain curve of the numerical specimen shows approximate
linear characteristics. The stress–strain curve in the pre-peak stage shows an obvious
yield feature, and the tangent modulus gradually decreases until it reaches 0 at the peak
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strength. In the post-peak stage, the strength decreases slowly and exhibits a certain degree
of ductility.
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As shown in Figure 11a, when m < 5.0, there is no obvious macroscopic shear zone
in the rock sample, exhibiting plastic flow characteristics. Combining its stress–strain
curve, a transition failure mode of monoclinic shear occurs after the peak stage. When
m = 5.0, 7.0, there is a distinct monoclinic macroscopic yielding unit shear zone in the rock
sample, with a failure mode of shear along the monoclinic plane. When m = 9.0, multiple
shear zones intersect and distribute within the rock sample with spacing, and the rock
sample begins to exhibit a failure mode transitioning from a monoclinic to X-shaped shear
section. When m > 9.0, the rock sample undergoes X-shaped double shear failure, with the
failure progression developing from the outside inward. Figure 11b shows the z-direction
displacement of numerical rock samples after failure under different homogeneities, that is,
as the homogeneity increases, the properties inside the material tend to be the same, the
nonlinear features of the numerical rock model gradually weaken, and the failure mode
changes from monoclinic shear failure to X-shaped double shear failure. Basu et al. [47]
conducted a classification of indoor uniaxial compressive failure tests on 76 standard rock
samples and identified six significant failure modes. The failure modes occurring along
the bedding planes are excluded from the scope of this discussion, taking into account the
failure pattern illustrated in Figure 11b.
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3.1.3. Probability Distribution Characteristics of Microstructure

The plane strain model utilized in this study allows for the analysis of the axial section
of the numerical rock sample. As a reference, Model 2 was employed, which maintains
consistent material properties across all elements and possesses element dimensions of
length × width × height = 1 mm × (0.03–1.57) mm × 2 mm. The boundary conditions are
described in Section 2.3, and the distribution of plastic zones at various stages is monitored
for every 10 time steps. The distribution of plastic zones at different stages is shown in
Figure 12.
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Figure 12. Axial stress–strain curve of the sample and plastic zone at each stage of Model 2.

The stress and strain data of all elements are exported from the post-failure model after
segmentation, specifically from the last calculated time step. The SPSS software (version 27)
is used for distribution fitting. Through the chi-square test, the best fitting distribution
form for the stress or strain data is determined. Figure 13 illustrates the distribution fitting
of the maximum and minimum principal stresses in all elements at the final time step
of the numerical calculation. On the X-axis, the actual stress conditions of all elements
are represented, while the Y-axis represents the probability density of internal stress in
different elements. The curve represents the fitted theoretical probability distribution
function. Figure 13a primarily depicts the overall compression situation of the specimen
after failure. The upper limit of the interval is positive. Around 84.39% of the elements
inside the specimen bear compressive stress, and approximately 59.75% of the elements
exhibit a maximum principal stress distribution ranging from 0 to 5 MPa. About 15.61% of
the elements experience tensile stress, with 5.46% of the elements surpassing the ultimate
tensile strength. This indicates that the main failure mode of the numerical rock sample is
compression-shear failure. Despite a significant reduction in compressive capacity, some
elements can still withstand a certain degree of compressive stress. Figure 13b mainly
portrays the overall tensile situation of the specimen after failure. The 90% confidence
interval of the minimum principal stress ranges from −5 to 5 MPa, which does not exceed
the ultimate tensile strength. This suggests that the specimen did not completely lose its
bearing capacity after failure. Overall, not all elements fail during the failure stage of the
specimen. The maximum and minimum principal stresses of all elements in the specimen
are separately fitted with probability distributions. After conducting the chi-square test,
it is determined that the optimal distribution fitting results for both the maximum and
minimum principal stresses follow the Weibull distribution. This confirmation supports
the assumption of the Weibull distribution’s rationality for microscopic elements in the
plane numerical model.
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3.2. The Influence Mechanism of Water Physical Properties of Rock Samples

The mechanical properties of red sandstone are closely related to the external environ-
ment, as well as its water content and degree of weathering. Two main reasons contribute
to this phenomenon. Firstly, in the mineral composition of red sandstone, minerals like
montmorillonite and kaolinite undergo physical and chemical reactions when exposed to
water. These reactions generate an expansion force that causes particles to detach from
the binding material. Secondly, the presence of initial cracks in the rock sample makes it
vulnerable to the effects of external water environmental conditions. Binding materials
such as mud, iron, and calcium within the particles are easily dissolved, resulting in a
loss of their binding ability [48]. Due to these two factors, new cracks emerge in the rock
sample, which become filled with water and serve as a medium for pressure transmission.
Over time, under the influence of the expansion force, these cracks gradually widen and
eventually stabilize. Figure 14 provides a visual representation of this process.
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The data obtained from uniaxial compression tests of rock samples under three condi-
tions (dry, natural, and saturated) were collected into a table, and three sets of tests were
selected for each condition for comparison. Organize the data in the table and plot them
into the figure as shown in Figure 15.
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uniaxial compression.

From Figure 15, it can be observed that with the increase in the water content in the
rock samples, the uniaxial compressive strength of sandstone decreases rapidly under the
same loading rate. Comparing the samples in group D1 with those in groups D2 and D3, the
average peak strength of the latter decreased to 70.4% and 62.1%, respectively. Additionally,
the elastic modulus decreased to 90.78% and 76.55%, while the peak strain decreased to
83.2% and 78.1%, respectively. One possible reason for these findings is that the initial
micro-cracks present within the rock samples continue to develop in a water-containing
environment. The filling of water in the pores leads to partial dissolution of the mineral
components. As a result, the cementitious material between particles loses its binding
ability due to water saturation, resulting in a decrease in the frictional force between the
particles. The elastic modulus of the rock samples decreases as the water content increases
until macroscopic failure occurs. Another contributing factor may be the direct shear of
mineral particles under stress, leading to a significant difference in failure stress between
dry and water-saturated samples. However, this type of failure often accompanies violent
fragmentation of the rock. In the case of water-saturated red sandstone samples after
compression, the softening and decomposition effect of water makes cracks more likely
to penetrate each other, increasing the internal pore spacing. This affects the mechanical
properties of the sandstone structure, resulting in a strength-softening effect. Consequently,
there is no shearing of mineral particles, and the strength of the water-saturated samples
is much lower than that of the dry samples. These findings align well with the research
results of Zhou [49].

3.3. Failure Law of Sandstone under Uniaxial Compression under Different Water Content

Utilizing a plane strain numerical model, under the same conditions of microscopic
element properties, equivalent parameters for pore water pressure are assigned according
to the position of the water level of the rock sample.

Five control groups were established (for volumetric water contents of 20%, 40%, 60%,
80%, and 100%), and the equivalent pore water pressure within the element was assigned
according to a gradient below the water level and kept constant, as shown in Figure 16.
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The stress–strain relationship of rock samples under varying volumetric water contents
was determined through numerical calculations of the model, as shown in Figure 17.
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different volume moisture contents.

From Figure 17a, it is evident that the duration of rock compaction during the sat-
uration process is shorter compared to the drying process. As depicted in Figure 7, the
rock undergoes three stages: initial stage, elastic stage, and plasticity stage. During the
saturation process, the internal cracks of the red sandstone close in the initial stage, leading
to a gradual decrease in elasticity and an increase in plasticity compared to the drying
process under the same water content. The rock experiences minimal expansion of internal
cracks and generates a few new cracks. The damage variable undergoes slight changes,
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and the damage stress gradually decreases, indicating a reduced stress requirement for
crack generation and expansion. Ultimately, the macroscopic failure of the rock is primarily
driven by the continuous decline in peak stress, elastic modulus, and critical strain. Thus,
varying water content and load induce different levels of damage to the rock sample. The
numerical simulation results align with the laboratory test results before the rock sample
reaches critical strain. However, notable discrepancies emerge in the post-peak stage. This
discrepancy may arise from the fact that, prior to reaching the critical strain, the stress
within the rock sample primarily originates from external loads. When the rock sample
is dry, failure occurs through a single oblique crack in the middle. As the water content
increases, the softening and decomposing effects of water cause cracks to intersect and
intensify fragmentation upon sample damage. Consequently, the failure mode transitions
from a single oblique crack to a double oblique section shear failure mode, consistent with
the findings of Zhuang [50]. From Figure 17b, it is evident that the peak strength of the
rock sample gradually decreases as the water content increases. However, the fluctuation
range is minimal, and the relationship between peak strength and water content appears
approximately linear. This observation can be attributed to the relatively small size of the
rock sample (50 mm × 100 mm) and the limited variations in water content among the
different samples. The size effect is pronounced, but its overall impact on the rock sample
remains constrained.

4. Conclusions

The findings of this study can be concluded as follows:

(1) The water absorption process in sandstone demonstrates a size effect, although the
saturation time remains relatively constant when the height of the sandstone sample
exceeds 50 mm. As micro-homogeneity increases, the nonlinear behavior of the
numerical model gradually diminishes, while brittleness intensifies. The elastic
modulus has a linear relationship with ln(m), and the heterogeneity of the rock has a
significant effect on its internal stress distribution;

(2) As the water content increases, the compressive strength, elastic modulus, and failure
strain of the rock sample experience a rapid decrease. The static mechanical properties
of the rock sample demonstrate a gradual decline in peak strength, critical strain, and
elastic modulus. Additionally, the failure mode gradually transitions from a single
oblique surface to a double oblique shear failure form, accompanied by an increased
degree of sample fragmentation;

(3) The time required for rock compaction during saturation is shorter than that during
drying. The elasticity of red sandstone decreases, and the plasticity increases during
saturation. With the increase in volumetric water content, the cracks between rock
samples are more likely to penetrate each other, the internal pore spacing increases,
and the mechanical properties of sandstone structure are affected, resulting in a
strength-softening effect, which is particularly important in decision making for goaf
foundation treatment measures.
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