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Abstract: The Ga-doped Mg0.2Zn0.8O (GMZO) transparent semiconductor thin films were prepared
using the sol-gel and spin-coating deposition technique. Changes in the microstructural features,
optical parameters, and electrical characteristics of sol-gel-synthesized Mg0.2Zn0.8O (MZO) thin films
affected by the amount of Ga dopants (0–5 at%) were studied. The results of grazing incidence X-ray
diffraction (GIXRD) examination showed that all as-prepared MZO-based thin films had a wurtzite-
type structure and hexagonal phase, and the incorporation of Ga ions into the MZO nanocrystals
refined the microstructure and reduced the average crystallite size and flatness of surface roughness.
Each glass/oxide thin film sample exhibited a higher average transmittance than 91.5% and a lower
average reflectance than 9.1% in the visible range spectrum. Experimental results revealed that
the optical bandgap energy of the GMZO thin films was slightly higher than that of the MZO thin
film; the Urbach energy became wider with increasing Ga doping level. It was found that the 2 at%
and 3 at% Ga-doped MZO thin films had better electrical properties than the undoped and 5 at%
Ga-doped MZO thin films.

Keywords: wide-bandgap oxide semiconductor; MgZnO thin film; sol-gel spin coating;
photoluminescence emission; electrical properties

1. Introduction

Wide-bandgap elemental semiconductor diamond (Eg = 5.5 eV) and compound semi-
conductors, β-Ga2O3 (Eg = 4.9 eV), GaN (Eg = 3.4 eV), and ZnO (Eg = 3.35 eV), combine
visible light transparency and high carrier mobility as well as high-temperature operational
stability and a strong power-handling capability, and are usually applied in ultraviolet
(UV) photodetectors, high-power electron devices, and transparent electronics [1–4]. The
wurtzite structure MgxZn1−xO (x ≤ 0.25) is a wide-bandgap ternary oxide semiconductor
system with unique characteristics, such as intrinsic blindness to the visible light and
radiation toughness, as well as low-temperature synthesis and wet-etch availability [5,6]. It
is an optimal candidate for use in optoelectronic devices, including ultraviolet thin-film
phototransistors and photodetectors [7,8]. Several studies have shown that Mg0.2Zn0.8O
thin films exhibit device-quality physical properties and have been used as active layers
in photoelectric devices. Our previous study revealed that the Mg0.2Zn0.8O thin film had
the best transparency of 92% and the lowest surface root mean square (RMS) of 1.63 nm
among the sol-gel-deposited MgxZn1−xO (x = 0–0.36) thin films. It was successfully utilized
as the active channel layer of bottom-gate structured thin-film transistors (TFTs), which
exhibited n-channel behavior and operated in the enhancement mode, and had an on-to-
off current ratio greater than 107 [9]. Yu et al. reported that the measured photoelectric
characteristics showed that sol-gel-synthesized MgZnO nanoparticles (molar ratio of Mg
to Zn was adjusted to 1:4 for MgZnO sols) were suitable for use as the absorption layer
of metal–semiconductor–metal (MSM)-structured ultraviolet (UV) photodetectors [10].
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Mg0.2Zn0.8O nanocrystalline thin films were synthesized using the sol-gel method, and
these oxide thin films exhibited wide UV properties, covering the solar blind to the near-UV
range, as reported by H. Liu et al. [11]. K.W. Liu and colleagues prepared Mg0.2Zn0.8O
thin films by radio frequency (RF) magnetron sputtering the fabricated Mg0.2Zn0.8O MSM
UV photodetectors with a low dark current (7 nA at 5 V bias) and fast photoresponse time
(10 ns) [12].

The modification of the chemical composition of oxide semiconductor thin films, such
as adjusting the cation ratio or incorporating foreign ions, is a simple, effective, and widely
used method for improving visible-light transmission, tailoring the optical bandgap, and
enhancing the electrical properties. The trivalent element gallium (Ga) is one of the most
promising candidates as an n-type dopant, mainly because of the use of Ga substitution
for Zn (GaZn, donor defect) to enhance the electrical conductivity of ZnO-based films for
the application of high-performance optoelectronic devices [13,14]. Kim et al. proposed
that the incorporation of Ga into the hexagonal wurtzite lattice of ZnO crystals could
attenuate interfacial charge transfer between Ga-doped ZnO nanocrystals because the
Fermi level of ZnO nanocrystals is increased by increasing Ga dopants [15]. Xie et al.
demonstrated that Ga doping improves n-type conductivity by two orders of magnitude
through electrical, optical, and structural studies in cubic MgZnO films grown on sapphire
substrates via metal-organic chemical vapor deposition (MOCVD) [16]. In addition, Ga-
doped MgZnO thin films have been utilized as transparent conducting oxide layers in
thin-film photovoltaics [17–19].

Various deposition techniques have been utilized to prepare the transparent MgZnO
thin films, such as metal-organic chemical vapor deposition (MOCVD), molecular beam
epitaxy (MBE), radio-frequency (RF) magnetron sputtering, pulsed laser deposition (PLD),
the spray pyrolysis technique, the sol-gel method, and so on [10,20]. The sol-gel method
is an easy-to-implement approach for large-scale, functional oxide thin-film deposition
because it does not require costly equipment and components for a high-vacuum system.
In addition, it provides the efficient incorporation of dopants’ impurity to flexibly adjust
the chemical composition of oxide thin films to modulate physical properties [21,22]. In
this study, we investigated the effects of Ga doping on the microstructural features, optical
characteristics and electrical properties, and photoluminescence emission characteristics of
Mg0.2Zn0.8O semiconductor thin films prepared using sol-gel and spin-coating techniques.

2. Materials and Methods

Undoped and Ga-doped Mg0.2Zn0.8O (MZO and GMZO) films were grown on alkali-free
glasses (Nippon Electric Glass Co., Ltd., NEG OA-10G) using a sol-gel spin coating process.
Analytical reagent-grade metal salts, including zinc acetate dihydrate [Zn(CH3COO)2·2H2O, J.T.
Baker, Center Valley, PA, USA, 99.98%], magnesium nitrate hexahydrate [(Mg(NO3)2·6H2O,
Fluka, Everett, WA, USA, 99.0%], and gallium nitrate hydrate [(Ga(NO3)3·xH2O, Aderich,
St. Louis, MO, USA, 99.98%], were chosen as the starting materials for Zn, Mg, and
Ga ions, respectively. The precursor solutions for the sol-gel oxide film coating were
synthesized by dissolving metal salts in 2-methoxyethanol (2-ME, TEDIA, Fairfield, OH,
USA, 99.9%) solvent and then adding a diethanolamine (DEA, Alfa Aesar, Haverhill, MA,
USA, 99.0%) as a stabilizer of the mixed solution according to the stoichiometric ratio of
the Ga-doped Mg0.2Zn0.8O sol. The molar ratio of metal ions to DEA was fixed at 1.0, and
the concentration of the metal ions in each resulting solution was 0.5 M. The Ga doping
concentration ([Ga]/[Mg] + [Zn]) in the resultant solution was varied from 0 to 5 at%.
Transparent and clear sols were obtained by heating and stirring at 60 ◦C for 120 min using
a magnetic stirrer on a ceramic hotplate. These as-synthesized solutions were then stored
and aged at room temperature for 5 d prior to use as precursors for the spin-coating process.
MZO-based sol films were deposited on glass substrates, which had been pre-cleaned, at
500 rpm for 10 s and then at 1500 rpm for 30 s. After deposition, each as-coated sol-gel
film was first dried at 300 ◦C for 10 min to evaporate the solvents, decompose most of the
organic polymers to form a sol film, and then annealed at 500 ◦C in a tube furnace under
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an air atmosphere for another 60 min to burn out residual organics, improve densification,
and form a crystalline oxide film.

The crystal structure and phase identification of the obtained Mg0.2Zn0.8O-based
thin films were determined using a Bruker D8 Discover Multipurpose X-ray diffraction
diffractometer (Billerica, MA, USA) with Cu-Kα radiation (λ = 0.1541 nm) using the glancing
incidence technique at an incident angle of 0.8◦. The microstructural features of the thin film
samples were observed using a Hitachi S-4800 field-emission scanning electron microscope
(FE-SEM; Hitachi High-Technology, Tokyo, Japan) and evaluated using cross-sectional
micrographs. The free surface morphology and film surface roughness were characterized
using a Digital Instruments NS4/D3100CL/MultiMode scanning probe microscope (SPM,
Mannheim, Germany) in the tapping mode. The transmission spectra and reflectance
spectra of the glass/MZO-based thin film samples were characterized and recorded using a
Hitachi U-2900 ultraviolet-visible (UV-Vis) double-beam spectrophotometer (Hitachi High-
Technology, Tokyo, Japan) in the wavelength range of 190–810 nm. Photoluminescence
(PL) emission spectra were measured using a Horiba Jobin Yvon LabRAM HR Micro-PL
spectrometer (Paris, France) equipped with a He-Cd laser at a wavelength of 325 nm and a
power of 40 mW. The electrical properties, including the major carrier concentration density,
carrier Hall mobility, and electrical resistivity, were measured with a Hall measurement
system (Ecopia HMS-3000, Gyeonggi-do, Republic of Korea) using the van der Pauw
method with a 4-point probe under an applied magnetic field of 0.55 Tesla (T). All physical
property measurements of the oxide thin films were performed at room temperature. The
detailed abbreviations used in the paper are listed in Table 1.

Table 1. List of abbreviations used in this paper (in alphabetical order).

Acronym Stands Acronym Stands

2-ME 2-methoxyethanol 3D three-dimensional

DEA Diethanolamine FE-SEM field-emission scanning electron
microscope

FWHM full width at half maximum GIXRD grazing incidence X-ray diffraction

GMZO Ga-doped Mg0.2Zn0.8O MBE molecular beam epitaxy

MOCVD metal-organic chemical
vapor deposition MSM metal–semiconductor–metal

MZO Mg0.2Zn0.8O NBE near-band-edge emission

PL Photoluminescence PLD pulsed laser deposition

RF radio frequency RMS surface root mean square

SPM scanning probe microscope TFTs thin-film transistors

UV ultraviolet UV-Vis ultraviolet-visible

3. Results and Discussion

The crystallinity and phase identification of the sol-gel-synthesized Mg0.2Zn0.8O
(MZO) and Ga-doped Mg0.2Zn0.8O (GMZO) thin films were analyzed using X-ray diffrac-
tion using the glancing incidence technique in the scanning range of 2θ = 25◦ to 60◦. Figure 1
shows the grazing incidence X-ray diffraction (GIXRD) patterns of MZO-based thin films
with different Ga doping contents annealed at 500 ◦C in air. There are three major charac-
teristic diffraction peaks in the low angle side corresponding to the (100), (002), and (101)
planes and three weak diffraction peaks in the high angle side corresponding to the (102),
(110), and (103) planes, of JCPDS card No. 36-1451 of zincite [23]. The intensities of the
four different diffraction peaks for the MZO-based thin films exhibited the following order:
I(101) > I(100) > I(002) > I(110). No preferential orientation was observed in these oxide films,
which was attributed to the choice of the amorphous glass substrate and the nature of the
solution-process deposition technique. In addition, there were no X-ray diffraction peaks
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or signals that corresponded to any other oxide or compound due to phase separation.
These results indicate that all the as-synthesized MZO-based thin films are polycrystalline
in nature and have a single-phase hexagonal wurtzite structure.
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(MZO) thin films with different Ga doping concentrations.

The ionic radius of Ga3+ (0.62 Å) is smaller than those of Zn2+ (0.74 Å) and Mg2+

(0.72 Å), which suggests that it is easily incorporated into the crystal lattices of the MgZnO
hexagonal wurtzite structure. In addition, the covalent band length of Ga-O (1.92 Å) is
slightly shorter than those of Zn-O (1.97 Å) and Mg-O (2.06 Å) [15,17]. This was expected
without significant lattice strain and small inter-planar spacing changes. It was found that
three major GIXRD peaks were slightly broadened with increasing Ga doping concentration,
and the bottom of the diffraction peaks of the (002) and (101) planes overlapped for Ga
doping levels higher than 3 at% (spectra (iii) and (iv) of Figure 1). The GIXRD peak
broadening results from the nanoscale effect and suggests that the crystallite sizes of the
GMZO thin films were smaller than those of the MZO thin films. The overlap of the peaks
can be attributed to the degradation of the crystallinity of the MZO thin films after their
incorporation into impurity dopants.

According to the results of Gaussian fitting for the three major diffraction peaks, the
values of (FWHM) of the corresponding diffraction peaks increased with the increasing Ga
dopant content. The crystallite sizes of the polycrystalline oxide thin films were estimated
from the full width at half maximum (FWHM) and Bragg angle of the specific XRD diffrac-
tion peaks (including the (100), (002), and (101) peaks) and the X-ray wavelength using
Scherrer’s formula [21]. The results of the estimates are summarized in Table 2. It can be
seen that the average crystallite size decreased from 13.8 nm to 10.3 nm as the Ga dopant
content increased from 0 to 5 at%. It can be inferred that increasing the Ga dopant content
in the MZO nanocrystals led to a decrease in the average crystalline size owing to the lattice
distortion effect and the decrease in the grain growth rate caused by impurity incorporation.
The B-doped AZO sol-gel films also showed a similar tendency, as determined by the X-ray
diffraction analysis [22]. After doping with Ga, the peaks of the (100) and (002) planes
showed a slight shift feature, confirming their incorporation. The a-axis and c-axis lattice
parameters were calculated using a = λ/

√
3 in θ and c = λ/sinθ, respectively. The calculated

results showed that Ga doping in the MgZnO nanocrystals could increase the a-axis length
from 3.254 to 3.267 Å and the c-axis length from 5.193 to 5.233 Å. This can be attributed to
the Ga incorporation causing lattice strain. We found that the determined a-axis and c-axis
lattice parameters for the MgZnO thin film were close to those of the polycrystalline ZnO,
which were obtained from the standard JCPDS data (a = 3.249 Å and c = 5.206 Å).
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Table 2. Comparison of structural characteristics and optical properties of sol-gel-grown Ga-doped
Mg0.2Zn0.8O (GMZO) thin films.

Ga Doping Level (at%) 0 1 3 5

Average crystallite size (nm) 13.8 12.3 10.6 10.3
a-axis lattice parameter
(Å) 3.254 3.255 3.255 3.267

c-axis lattice parameter
(Å) 5.192 5.201 5.197 5.233

Root mean square roughness (nm) 3.9 2.3 1.2 1.0
Average optical transmittance
(%) a 91.57 92.59 92.54 91.67

Average optical reflectance
(%) b 8.98 8.26 8.34 9.06

Optical bandgap
(eV) 3.58 3.60 3.59 3.59

Urbach energy
(meV) 149 162 184 204

The average transmittance a and average reflectance b were calculated from the recorded transmittance and
reflectance data of wavelengths from 400 to 800 nm.

The cross-sectional FE-SEM images (Figure 2) of the as-grown MZO and various
GMZO polycrystalline thin films showed identical morphologies with granular microstruc-
tures consisting of nano-sized particles and uniform film thickness. It can be seen from
the micrographs that the size of the nanoparticles decreased with increasing external Ga
doping content (the same results as those of the GIXRD study), and that small numbers
of nanopores were presented in these sol-gel-synthesized MZO-based thin films. The
microstructural defects associated with the nanoscale pores were attributed to the thermal
decomposition of the coating precursors and residual organic matters in the sol-gel-derived
oxide thin films. The thicknesses of the MZO-based thin films were estimated through
the cross-sectional observation of the FE-SEM images. The mean thicknesses of the MZO
and GMZO thin films were 70 and 73 nm, respectively. This difference can be attributed to
changes in the viscosity of the coating solution after the addition of Ga metal salt.
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(GMZO) thin films deposited on NEG OA-10 glass substrates: (a) undoped, (b) 1 at%, (c) 3 at%, and
(d) 5 at% Ga-doped thin film samples.
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The film surface topography and root-mean-square (RMS) roughness were studied
from the three-dimensional (3D) SPM micrographs taken from the free surfaces of each
glass/thin film sample, as shown in Figure 3. They showed an observable granular con-
figuration without micro-cracks or significant porosity. The dense surface microstructures
consisted of tightly packed nano-sized particles that were regularly and uniformly dis-
tributed. Table 2 shows the measured surface RMS roughness values of the four MZO-based
thin film samples. The SPM image of surface topography shows a relatively larger particle
size, and a regular reduction in the particle size is observed with increasing Ga dopant con-
tent. The results of the Ga doping effect obtained from the cross-sectional view observation
(FE-SEM images) and free surface morphology examination (SPM images) are in agreement
with the crystalline value calculated from the GIXRD data using Scherrer’s formula.
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Figure 3. Scanning probe microscope (SPM) images of the free surface of GMZO thin film samples:
(a) undoped, (b) 1 at%, (c) 3 at%, and (d) 5 at% Ga-doped thin films.

Figure 4 shows the optical transmittance spectra and reflectance spectra of the glass/oxide
film samples measured at room temperature using a conventional ultraviolet-visible spec-
trometer to study the optical properties. Each oxide thin film sample exhibited a similar
transmittance spectrum, which showed that the average transmittance was greater than
91.5% and the average reflectance was less than 9.1% in the wavelength range between
400 and 800 nm, as shown in the fifth and sixth rows of Table 2. In addition, there was a
steep absorption edge at approximately 350 nm, and the transparency was close to zero at a
light wavelength of less than 250 nm. The recorded reflectance of the GMZO thin films was
lower than that of the MZO thin films in the UV wavelength band. This decrease is related
to the fact that the front had a relatively flat free surface because it had finer microstructures
and therefore exhibited less light scattering.
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To determine the important optical parameters of the optical bandgap energy and
Urbach energy, we calculated the absorption coefficient [α(λ)] of the four MZO-based thin
films using the recorded optical transmittance [T(λ)] and optical reflectance [R(λ)] data
according to the following equation [24]:

α (λ) = 1/t ln [(1 − R2)/T], (1)

where t is the measured thickness of the oxide film specimen. The optical bandgap energy
of semiconductors can be obtained using Tauc’s relation ((αhν) 1/n = C × (hν − Eg),
where hν is the photon energy of incident light, C is the proportionality constant, Eg is the
optical bandgap energy, and n =
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and 2 for direct and indirect bandgap semiconductors,
respectively) and the Tauc plot method [25]. The curves of the square of the absorption
energy (αhν)2 versus the photon energy (hν), also known as the Tauc plot, are shown
in Figure 5a. According to Tauc’s relation, if (αhν)2 = 0, Eg = hν. The optical bandgap
energy was obtained by extrapolating the linear region of the Tauc plot to the horizontal
(photon energy) axis [25]. The determined optical bandgap (Eg) of the MZO thin film was
3.58 eV, while the Eg of the GMZO thin films was slightly higher (0.1~0.2 eV) than that of
the MZO thin film (Table 2). The same optical bandgap energy (Eg = 3.58 eV) for sol-gel-
derived wurtzite Mg0.2Zn0.8O thin films was also reported by Ogawa and Fujihara [26].
In our previous study, the Eg of sol-gel-synthesized ZnO thin film was determined to
be 3.25 eV [8]. The developed MZO thin films have bandgap shifts up to 0.33 eV compared
to the pristine ZnO thin films.

The Urbach energy (Eu) is used to study the effects of structural disorder and defect-
state concentration in the thin films of oxide semiconductors [27]. The relationship between
the absorption coefficient (α(λ)), photo energy (hν), and Urbach energy (Eu) can be deter-
mined using the following equation [28]:

α (λ) = α0 exp (hν/Eu), (2)

where α0 is a constant. A plot of the dependence of the natural logarithm of the absorption
coefficient (ln (α)) on the incident photon energy (hν) near the band edge is shown in
Figure 5b. The Urbach energy was obtained by calculating reciprocal of the slope of the
linear part of the absorption curve. The determined Urbach energy monotonically increased
from 149 to 204 meV with increasing Ga dopant content (Table 2). This is attributed to the
degenerating film crystallinity. The Eu of 1 at% Ga doped M0.2Z0.8O thin film is slightly
lower than that of the 2 at% Al-doped ZnO thin film (165.6 meV) [22].
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To gain further insight into the effect of Ga doping on the crystallinity and lattice
defect state of the MZO thin films, the room-temperature photoluminescence (PL) emission
spectrum of each MZO-based thin film was measured. Both sharp and weak and broad PL
emission signals were detected in the as-prepared oxide thin films, as shown in Figure 6.
The sharp emission peak in the UVA range (347.3 nm) corresponds to the near-band-edge
emission (NBE), which was ascribed to radiation excited recombination, whereas the broad
emission band in the green light range (540–580 nm) was related to the presence of deep
level defects due to impurity dopants and/or intrinsic point defects in these oxide thin
films [29,30]. We found that the peak wavelength of NBE emission was maintained at the
same position, while the emission intensity decreased with increasing Ga dopant content,
which can be attributed to the degraded crystal quality and increased defect density [31].
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The electrical properties, including the electron concentration (n), Hall mobility (µ),
and resistivity (ρ), of the four MZO-based thin films were measured using Hall effect
measurement and are shown in Figure 7. The measured results confirmed that all oxide
thin films exhibited n-type conductivity. The mean electron concentration (n) increased
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from 4.40 × 1013 cm−3 to 2.28 × 1014 cm−3 with increasing Ga doping content from 0 to
3 at% and then decreased to 5.46 × 1013 cm−3 when the Ga doping content reached to
5 at%. The electron concentration of the 3 at% Ga-doped MZO thin film is close to the
reported electron concentration of the pristine ZnO sol-gel film (3.49× 1014 cm−3) [22]. The
3 at% Ga-doped sample had the lowest resistivity of 1.28 × 103 Ω cm, and the magnitude
of resistivity for the 5 at% Ga doped sample is close to that of the undoped sample. This is
because the electrical resistivity of semiconductors is approximately inversely proportional
to the main carrier concentration density. Moreover, the 3 at% Ga-doped sample had the
highest Hall mobility of 24.7 cm2/Vs in the present study. It is established that the Hall
mobility is a combination of the mobility of impurity scattering and the mobility of grain
boundary scattering. Therefore, among all the MZO-based samples, the oxide sample
with the finest microstructure exhibited the lowest Hall mobility. According to the above
discussion of the physical characteristics of the oxide thin films, Ga doping levels between
1 and 3 at% for M0.2Z0.8O transparent semiconductor thin films are suitable for use as the
active channel layer of thin-film UV phototransistors.
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4. Conclusions

Device-quality Ga-doped Mg0.2Zn0.8O (GMZO) transparent semiconductor thin films
have been synthesized via the sol-gel spin-coating process on alkali-free glass substrates.
The developed polycrystalline MZO and GMZO thin films had a monophase hexagonal
wurtzite structure, and structural analyses revealed that the corresponding oxide thin
films were composed of nanocrystalline grains. The optical bandgaps estimated from the
recorded light transmittance and reflectance spectra for the GMZO thin films showed a
slight blue shift compared to that of the MZO thin film. It has been shown that light Ga
doping (< 5 at%) can improve the n-type conductivity of wurtzite MZO semiconductor
thin films. In the present study, MZO thin films doped with 1–3 at% Ga dopants could
achieve an electron concentration higher than 1.0 × 1014 cm−3, a Hall mobility faster than
21.0 cm2/Vs, and a resistivity lower than 1.0 × 103 Ω cm. They have great potential for use
in UV phototransistors with good performance.
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