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Abstract: Lead-free Ba1−xSrxTiO3 (BST) (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.45) ceramics were successfully
prepared via the solid-state reaction route. A pure perovskite crystalline structure was identified for all
compositions by X-ray diffraction analysis. The basic phase transition temperatures in these ceramics
were studied over a wide temperature range. A change in symmetry from a tetragonal to cubic
phase was detected, which was further proven by phonon anomalies in composition/temperature-
dependent Raman spectra. The incorporation of Sr2+ into BaTiO3 (BT) lead to a shift in the phase
transitions to lower temperatures, suppressing the ferroelectric properties and inducing relaxor-like
behavior. Therefore, it was reasonable to suppose that the materials progressively lack long-range
ordering. The initial second-harmonic generation (SHG) measurements demonstrated that the cubic
phase of BST ceramics is not purely centrosymmetric over a wide temperature interval. We discussed
the possible origin of the observed effects, and showed that electric field poling seems to reconstruct
the structural ordering destroyed by the introduction of Sr2+ to BT. In the first approximation,
substitution of Sr for larger Ba simply reduced the space for the off-central shift in Ti in the lattice
and hence the domain polarization. A-site cation ordering in BST and its influence on the density of
electronic states were also explored. The effect of doping with strontium ions in the BST compound
on the density of electronic states was investigated using ab initio methods. As the calculations
showed, doping BT with Sr2+ atoms led to an increase in the bandgap. The proposed calculations
will also be used in the subsequent search for materials optimal for applications in photovoltaics.

Keywords: barium-strontium titanate BST; ab initio calculations; electronic band structure; structural
properties; dielectric properties; optical properties; ferroelectric properties

1. Introduction

Titanate-based perovskites like BaTiO3, SrTiO3, (Ba,Sr)TiO3 are an important family
of materials widely used as ceramic capacitors, microwave phase shifters and thermo-
electric materials [1–10]. La-doped SrTiO3 was developed as a solid oxide fuel cell anode
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material [11]. Highly conductive Nb-doped SrTiO3 wafers are widely used as thin film
substrates.

Barium titanate BaTiO3 (BT) undergoes three successive first-order phase transitions:
from cubic (Pm3m) to tetragonal (P4mm) phase at ~120 ◦C, then to an orthorhombic
(Amm2) phase at ~5 ◦C, and finally to a rhombohedral (R3m) phase at ~−90 ◦C. The cubic
phase is paraelectric, whereas the other phases are ferroelectric. BT is commonly regarded
as a displacive-type ferroelectric material, although some theoretical and experimental
results point to an order–disorder component during phase transition [12–16]. It has been
postulated that the fluctuating order parameter originates from the presence of electric
dipoles, induced by hopping of the Ti ion around its equilibrium position at temperatures
far above Tc, similar to relaxor materials [17]. However, the role and nature of displacive
and order–disorder components during phase transformation is still not fully understood.

SrTiO3 (ST) is a typical perovskite compound possessing cubic symmetry at room
temperature. Below −168 ◦C, a transition to tetragonal symmetry was reported [18,19].
The relatively high electric permittivity combined with the low dielectric loss of ST can
be interesting for various microwave applications. It was reported that this material is an
incipient ferroelectric whose ferroelectricity is suppressed by quantum fluctuations [20,21].

As pure BT and ST demonstrate different properties, the behavior of Ba1−xSrxTiO3
(BST) solid solution is expected to evolve with composition. BST ceramics have been
investigated since the middle of the last century; however, this interesting system has not
been thoroughly investigated in recent years. Much of the research was concerned with
the composition-related influence on Tc and the dielectric properties of BST [22–24]. More
attention was paid to understanding the defect chemistry of both pure and acceptor/donor-
doped Ba1−xSrxTiO3 [2–6,25–29]. There are a number of published reports on the vibra-
tional and ferroelectric properties of Ba1−xSrxTiO3. Raman and Fourier transform infrared
spectroscopy (FTIR) studies were presented in the literature [29–33]. Most of the reports
did not deliberate on the effect of electric poling. The use of ab initio methods to calculate
the properties of BST structures allows for the theoretical values of physical properties to
be determined in order to both compare them with experimental data for these compounds,
and to predict their values in its absence. In addition, there are few theoretical works on
the studied structure (tetragonal/ferroelectric). However, the electronic structure (valence
states of ions) plays an essential role in electric (ferroelectric) ordering.

Wet chemical methods, including hydrothermal synthesis, co-precipitation and sol–gel,
allows for the production of homogeneous, ultrafine, and high-purity powders. Never-
theless, these methods are time-consuming and require commercially costly chemicals.
Solid-state reaction is the most accurate at analyzing materials for commercial purposes.
The grain size and surface area of powders can be controlled by the milling process, leading
to the production of fine powders.

Based on these considerations, we undertook the synthesis of Ba1−xSrxTiO3 ceramics
for x = 0, 0.1, 0.2, 0.3, 0.4 and 0.45 (BT, BST1, BST2, BST3, BST4 and BST4.5) to produce and
thoroughly investigate their structural, vibrational, dielectric, and ferroelectric properties
in order to obtain a better insight into various aspects of their behavior. The studies were
complemented with the investigation of the second harmonic generation (SHG) signal and
FTIR spectroscopy. Although many properties of BST have been presented in the literature,
they have not provided such a comprehensive picture of the system. It should be noted
that complementary studies performed on specimens prepared with the same procedure
make it possible to present a more general view of this interesting system.

2. Materials and Methods

The conventional solid-state sintering process was used to prepare the Ba1−xSrxTiO3
ceramics (x = 0 (BT), 0.1 (BST1), 0.2 (BST2), 0.3 (BST3), 0.4 (BST4) and 0.45 (BST4.5)).
Reagent-grade powders of BaCO3 (99.5%, Sigma Aldrich, St. Louis, MO, USA), TiO2
(99.9%, POCH) and SrCO3 (99.5%, Sigma-Aldrich) were used as raw materials, which were
weighed according to the corresponding formula and then ball-milled in ethanol for 24 h
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with 600 rpm·min−1 For this purpose, a pure zirconium ball mill was used together with
zirconia balls. Firstly, the calcination was performed at 1300 ◦C for 2 h with heating and
cooling rates of 2 ◦C min−1. Secondly, these calcined powders were compacted into green
disks at a pressure of 100 MPa. Sintering was carried out at 1430 (for BT)-1450 ◦C (for
BST4.5) for 1.5 h in air. The heating and cooling rates were kept at 2 ◦C min−1. The relative
density of the samples immersed in a water as measured by Archimedes’ method was 97%.

The crystalline structure measurements were performed by the X-ray diffraction (XRD)
method (using a Panalytical Empyrean Diffractometer with CuKα). The XRD patterns were
collected in the 2θ range of 65–85 degrees with step size of 0.05 (2θ). Rietveld analysis of the
XRD data was supported by GSAS/EXPGUI software II. The high temperature HT-XRD
measurement were conducted from −230 to 300 ◦C at selected temperatures.

The microstructure analysis was undertaken by an electron scanning microscope (SEM,
Model Hitachi S−4700) with field emission and the Noran Vantage system. SEM images
were obtained by applying accelerating voltage of 10 kV. Measurements of linear grain size
and distribution were performed by means of the ImageJ 1.6 software, using a series of
binarized SEM images. The surfaces of the samples were chemically treated with 5 vol%
HCl + 0.5 vol% HF + 94.5 vol% H2O solution. Samples were kept in this solution for 7 s
and then washed with distilled water.

Dielectric measurements were carried out on the plate-shaped samples with silver
electrodes using a GW 821 LCR meter in a temperature/frequency ranging from −130 ◦C
to 300 ◦C and from 100 Hz to 2 MHz, respectively. The electrodes were connected to the
sinters using silver paste. The data were collected regularly with a step of 0.1 ◦C on heating
and cooling, at a rate of 1.5 ◦C min−1, using an automatic temperature controller.

Raman measurements were carried out using a Horiba LabRam HR Raman Spectrom-
eter equipped with 532 nm diode laser. The spectra were collected with a resolution of
1 cm−1. The experimental curves were performed using PeakFit (Systat) v.4.12 software
package.

Differential scanning calorimetry (DSC) was performed by 200 F3 Maia Netzsch at
temperatures ranging from −100 ◦C to 540 ◦C. Experiments were performed at a heating
rate of 10 K-min−1 in an argon atmosphere at a flow rate of 50 mL min−1. The tested
samples at weights of approximately 60 mg, were placed in a standard aluminum container.

The hysteresis loops were measured with the use of a Sawyer–Tower circuit at a
frequency of 50 Hz. AN SDS 200A PC based Digital Storage Oscilloscope (Soft DSP) was
used to record the hysteresis loops.

The pyroelectric current measurements of previously polarized samples were per-
formed using a quasistatic method with heating at a rate of 10 ◦C min−1 using a Keithley
electrometer (Model 6517A). The polarizing procedure proceeded from 150 ◦C down to
room temperature under a DC electric field of 15 kVcm−1 using the High Voltage Power
Supply (Spellman, Bertan, Series 230, Hauppauge, NY, USA). Remnant polarization was cal-
culated by the integration pyroelectric current normalized by the sample area perpendicular
to the current, and then plotted versus the corresponding temperature.

To obtain the poled state of the samples, the polarizing procedure was the same as
that for the pyroelectric measurements.

A Q-switched laser, emitting radiation at λ = 1064 nm with a repetition rate of 1 kHz
and a pulse width of 500 ps was used for the SHG measurements. The fundamental beam
energy was controlled by rotating a half-wave plate and the residual fundamental light was
removed by a 10 nm bandpass interference filter centered at 532 nm. The SHG intensity
was detected by a photomultiplier and the SHG signal was controlled to eliminate any
residual fluorescence. SHG measurements were performed on samples in unpoled and
poled states with the same conditions as that for the pyroelectric current measurements.

FTIR studies were performed using a Bruker Vertex 70v vacuum spectrometer. A
Harrick Scientific External Reflection attachment (Seagull) was employed. A total of
256 scans were recorded with a resolution of 4 cm−1.
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Calculations were performed without the spin-polarized density functional theory,
using the Vienna Ab Initio Simulating Package (VASP) [34,35]. Electron–ion interactions
were represented by pseudopotentials as part of the projector-augmented wave (PAW)
scheme. The valence electron configurations of the dataset were as follows: Ba: 5s25p66s2,
Sr: 4s24p65s2, Ti: 3d24s2, O: 2s22p4. The exchange–correlation potentials were handled
by applying the Perdew–Burke–Ernzerhof (PBE) [36] form of generalized gradient ap-
proximation (GGA). Such functionals are sufficiently accurate for the description of the
electronic properties of perovskite systems [37,38]. For the Ba0.875Sr0.125TiO3 (Figure 1a) and
Ba0.75Sr0.25TiO3 (Figure 1b) solid solutions, an ordered supercell of 2 × 2 × 2 with 40 atoms
in the tetragonal cell was constructed. Computations were performed for one of the many
possible Ba1−xSrxTiO3 ion placements by substituting one and two Ba ions with one and
two Sr ones. The sampling of Brillouin zones of 2 × 2 × 2 (40 atoms) Ba1−xSrxTiO3 unit
cells was performed using 8× 8× 7 Monkhorst–Pack k-point meshes. The tested structures
were completely relaxed with a mesh of 8 × 8 × 7. While calculating the projected density
of states, the k-space mesh was likewise 8 × 8 × 7. In the computations, a plane-wave basis
with a cutoff energy ENCUT of 520 eV was used. The convergence criteria for the systems’
remaining forces and total energy were set to 10−5 eVÅ−1 and 10−6 eV.
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Figure 1. Crystalline structures of ferroelectric Ba1−xSrxTiO3 perovskites at x = 0.125: (a) 0.25; and
(b) with a tetragonal lattice.

3. Results and Discussion

SEM (scanning electron microscope) micrographs of the polished and chemically
etched surfaces of the investigated ceramics are shown in Figure 2a. In pure BT, the grain
size reaches 9–19 µm. Grain growth is first hastened, and the grain distribution appears
to be narrow. Second, it is inhibited and then again hastened upon the incorporation
of strontium (see Supplementary Materials Figure S1). The grain size obtained from the
BT, BST1 and BST4.5 sinters were composed of micro-size particles with a narrow size
distribution ranging from 1 to 20 µm. The remaining samples were characterized by larger
grain sizes with a diameter of up to several dozen µm. It should be highlighted that micro-
size grains with sizes under 10 µm constituted the largest fraction in the BT sinter.

As can be seen, rather non-uniform grain shapes occur (except for pure BT). Some
pores are also visible. Figure 2b shows SEM micrographs of the samples’ fractures. The
microstructure images reveal a network of connected pores formed between the sintered
grains. The grains are characterized by a smooth surface, but the addition of strontium
weakens this effect. Notably, irregularities can be observed on the surface of BST4 grains,
which likely stem from the grain growth. As can be seen, the surfaces of the fractures run
on both the grain and the inter-grain boundaries. The SEM images show the formation of
homogeneous and regular-shaped ceramic grains with clear visible boundaries.
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Figure 2. SEM micrographs of polished and chemically etched surface of BT, BST1, BST2, BST3, BST4,
BST4.5 (a); and of the samples’ fractures of BST2, BST3 and BST4 (b) ceramics. Inset (a) the grain size
distribution.

A selected range of representative XRD diffractograms recorded for the ceramics is
shown in Figure 3. The expected occurrence of the structural transformations comprising
(from the lowest temperatures) rhombohedral↔ orthorhombic↔ tetragonal↔ and cubic
phases can be easily seen (see also Table 1). In particular, starting from the high-temperature
cubic (paraelectric) phase, a transition to the tetragonal (ferroelectric) can be observed with
splitting of the cubic peaks. This transition for the BST1 material starts to become visible
in the data measured at about 110 ◦C; however, for BST4.5, the stability range of the cubic
phase extends down to 15 ◦C, with the emergence of the tetragonal phase slightly visible at
10 ◦C. As can be seen from Figure 3, this particular phase transformation is indeed strongly
affected by the doping level in the whole study series, in which increasing amounts of ST
result in an extension of the cubic phase stability range. Simultaneously, temperatures of
the remaining transformations are not as strongly affected by the chemical composition.
The coexistence of particular phases (beginning of the transition) is indicated in black in
the XRD spectra. For compounds with x ≥ 0.4, some broadening of the reflections of the
cubic phase was observed. This may be the result of the temperature evolution of polar
nanoregions existing in the cubic matrix (see below). Moreover, a decrease in lattice volume
and tetragonal distortion was observed with an increasing amount of ST (Table 2). The
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appearance of the cubic phase for such materials can also be understood as a result of
an increase in the structural disorder and the presence of a statistical mixture of different
chemical bonds. The Ba–O bond is more ionic, but the Sr–O bond is mainly covalent.
Therefore, the addition of Sr should increase the A-site disorder in the BT–ST system. This
hampers the displacements of ferroelectric ions along the preferred direction (001)c, and
the tetragonal distortions are suppressed [39]. The main effect of E-poling is sharper and
more symmetric in the XRD peaks than in the unpoled ones, showing that the degree of
order is enhanced under the electric field applied (not shown here).
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Table 2. XRD results of Ba1−xSrxTiO3 ceramics, V is the unit cell volume, c/a is the tetragonal distor-
tion. 

Sample Phase Composition V (Å3) c/a 
BaTiO3 P4mm 64.43 (2) 1.0060 (1) 

Ba0.9Sr0.1TiO3 P4mm 63.84 (1) 1.0035 (2) 
Ba0.8Sr0.2TiO3 P4mm 63.24 (3) 1.0030 (2) 
Ba0.7Sr0.3TiO3 P4mm 62.65 (1) 1.0024 (1) 
Ba0.6Sr0.4TiO3 Pm3m 62.07 (2) - 
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Table 1. Phase transition temperatures (rhombohedral-orthorhombic (TR-O), orthorhombic–tetragonal
(TO-T), and tetragonal-cubic (TT-C) in ◦C) of Ba1−x SrxTiO3 ceramics through X-ray, DSC, dielectric,
Raman, and SHG measurements. The accuracy of the measurements depends on the resolution of a
measuring instrument.

x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.45

TR-O TO-T TT-C TR-O TO-T TT-C TR-O TO-T TT-C TR-O TO-T TT-C TR-O TO-T TT-C TR-O TO-T TT-C

X-ray −80 20 130 −90 −5 110 −90 −25 80 −95 −50 35 −115 −60 20 −110 −65 15
DSC −80 12 125 −80 −5 105 −90 −26 70 −105 −51 35 −109 −65 0 −110 −73 −20

Dielectric −83 20 125 −106 −8 105 −105 −25 74 −105 −48 35 - −75 2 - −90 −20
Raman - - 120 - - 95 - - 65 - - 30 - - - - - -

SHG - - 125 - - 100 - - 75 - - 35 - - - - - -

Table 2. XRD results of Ba1−xSrxTiO3 ceramics, V is the unit cell volume, c/a is the tetragonal
distortion.

Sample Phase Composition V (Å3) c/a

BaTiO3 P4mm 64.43 (2) 1.0060 (1)
Ba0.9Sr0.1TiO3 P4mm 63.84 (1) 1.0035 (2)
Ba0.8Sr0.2TiO3 P4mm 63.24 (3) 1.0030 (2)
Ba0.7Sr0.3TiO3 P4mm 62.65 (1) 1.0024 (1)
Ba0.6Sr0.4TiO3 Pm3m 62.07 (2) -

Ba0.55Sr0.45TiO3 Pm3m 61.66 (1) -

Figure 4 shows the temperature/frequency dependence of the electric permittivity
of Ba1−xSrxTiO3 ceramics. The dielectric studies confirmed the presence of three phase
transitions in the pure BT: rhombohedral-orthorhombic (TO-T) at −90 ◦C, orthorhombic-
tetragonal (TR-O) at ~5 ◦C and tetragonal-cubic (TO-T) at ~120 ◦C, connected with a maxi-
mum of ε. These maxima shift towards a lower temperature with increasing amounts of
ST. The ε(T) peaks are slightly broadened, dielectric dispersion increases with increasing
amounts of ST, and the temperature corresponding to the permittivity maximum shifts
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slightly toward higher temperatures as the frequency increases (revealing relaxor-like
behavior, insert on the left side of Figure 4 for BST3). The phase transition temperatures are
summarized in Table 1. Similar to ε behavior, the maxima connected with the maximum
of tan δ shift towards lower temperatures with increasing amounts of Sr (inserts on the
right side of Figure 4). Both electric permittivity and dielectric losses decrease as a result of
electric field action. This can occur as a result of improvement to the electric ordering by
the electric field, previously disturbed by the substitution of Sr2+ ions into BT.
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Figure 4. Temperature/frequency evolution of electric permittivity of BT, BST1, BST2, BST3, BST4
and BST4.5 ceramics. The insert on the left side of Figure 4 for BST3 shows the expanded part of
the figure showing relaxor-like behavior. Inserts on the right side of Figure 4 show the temperature
evolution on the dielectric losses tan δ at a frequency of 100 kHz.

For a better analysis of the character of the phase transition as a function of ST
concentration, the (δε/δT) − T function was plotted in Figure 5. As can be seen, the
sudden inflection in the function near Tm becomes more gradual as the ST concentration
increases up to x = 0.3. As the sudden inflection is a signature of first-order behaviour, one
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can conclude that the behaviour tends to change to second-order. However, for x > 0.3, the
sudden inflection seems to increase again, indicating a return to first-order behaviour.
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The ε(T) curves for poled samples are similar to those for unpoled ones. However,
electric permittivity and dielectric dispersion decrease in comparison to the unpoled sam-
ples; the maximum of electric permittivity connected with the phase transitions slightly
shifts toward higher temperatures, and the sudden inflection in the (δε/δT)-T function for
poled samples decreases. These indicate that E-poling tends to increase the degree of order
previously disturbed by the incorporation of ST.

It is well known that above Tc, electric permittivity in ferroelectrics follows the Curie–
Weiss law:

ε = C·(T − Tcw)−1 (1)

where C is the Curie–Weiss constant and Tcw is the Curie–Weiss temperature. Figure 6
presents the (ε−1)-T function. As can be seen, the linear relationship between ε−1 and T is
valid for undoped BT. However, this relationship is not valid for the remaining samples
(strictly speaking, the relationship is not valid over some temperature intervals above
∆Tm = TB − Tm, where TB is the Burns temperature; below which ε−1 does not linearly
follow the temperature). ∆Tm is a measure of the extent of the deviation from the Curie–
Weiss law. As is shown in Figure 6, ∆Tm increases with increases in ST content, indicating
the increased diffuseness of the phase transition. In addition, the difference between the
Curie–Weiss temperature Tcw and Tm decreases with increasing ST concentrations, which
also suggests a trend towards second-order behavior.

For ferroelectrics with diffuse phase transition, a modified Curie–Weiss law has been
proposed [40]:

ε−1 − ε−1
m = (T− Tm)γ·C*−1 (2)

where εm is the value of electric permittivity in maximum (at Tm) and the exponent γ is
a measure of the diffuseness of the phase transition and lies between 1 and 2 (γ = 1 for
normal ferroelectrics, while γ = 2 for ideal relaxors). γ, obtained from the slope of the fitted
straight line in Figure 7, increases with increases in ST content, suggesting that the material
gradually shows relaxor-like behavior (Table 3), while C* is constant. Note that a linear
fit is not satisfactory over some temperature ranges near Tm, however, it is satisfactory
over all temperature ranges after E-poling. In addition, γ decreases after E-poling. These
observations suggest that prior electric field poling decreases the disorder introduced by
the introduction of Sr.

Table 3. Exponent γ of the investigated samples.

Samples
γ

Unpoled Poled

BT 1.091 (1) 1.052 (1)
BST1 1.112 (1) 1.071 (1)
BST2 1.111 (2) 1.101 (1)
BST3 1.122 (1) 1.092 (1)
BST4 1.183 (3) 1.133 (2)

BST4.5 1.272 (2) 1.241 (2)

Room-temperature Raman spectra of BT, ST and Ba1−xSrxTiO3 are shown in Figure 8.
In general, these spectra are assigned as belonging to the P4mm phase (except BST4 and
BST4.5). The spectra can be de-convolved into fourteen peaks using Lorentzian functions
(insert of Figure 8). The Raman spectrum of undoped BT shows a sharp peak centered
around 55 cm−1 (A1(TO1)); a wide band centered around 270 cm−1 (A1(TO2)); a sharp peak
at 308 cm−1 (A1 + E(TO + LO)); a broad peak at ~520 cm−1 (A1(TO3)); and a broad peak at
~720 cm−1 (A1(LO3)) in accordance with the results presented earlier [41,42]. In addition, a
dip exists near 180 cm−1 (A1(TO1)). Both the dip near 180 cm−1 and a sharp peak at about
308 cm−1 are signatures of a ferroelectric state. Conversely, both a broad peak at about
270 cm−1 and a broad peak at about 720 cm−1 are characteristic of tetragonal symmetry.
Pure ST displays two broad bands at about 300 and 650 cm−1, along with weak bands at
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about 156 and 185 cm−1. The bands can be assigned to second-order Raman scattering.
Some changes in Raman spectra after ST introduction to BT are visible, although their
features remain the same for x = 0.1–0.3. A few distinguished bands for Ba1−xSrxTiO3 can
be observed, the first one centered at 180 cm−1 (a dip indicating the ferroelectric phase),
which is attributed to Ba–O vibrations, as in the mother BT phase. With the incorporation of
Sr2+ ions, this mode seems to be diminished, with a corresponding change in the intensity.
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(f) BST4.5 ceramics. The main bands for BT are indicated by arrows together with their assign-
ment [43]. The inset shows, as an example, the spectral deconvolution of the room-temperature
Raman spectrum of BST3.
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The second wide band, centered around 270 cm−1, was attributed to the TiO6 octahe-
dral vibration and to the existence of tetragonal symmetry in BT. This peak shifts toward
lower wavenumbers, and their intensity decreases as the Sr2+ content increases, which can
be attributed to the displacement of Ti and/or to the distortion of the oxygen octahedral
(evolution of tetragonal symmetry). The sharp peak at about 308 cm−1 is broadened, and
for x > 0.4, it nearly disappears. As this peak is commonly regarded as a sign of the long-
range ferroelectric (tetragonal) ordering in pure BT, its disappearance indicates gradual loss
of the ferroelectric state and a transition from tetragonal symmetry to cubic. The intensity
of the band centered at about 520 cm−1 was observed to decrease. However, the intensity
of the mode centered around 720 cm−1 (characteristic of the tetragonal phase) decreased
gradually with increasing Sr2+ concentrations, which suggests a decrease in tetragonality
in accordance with the X-ray diffraction results. Another important point to note is the
extra small band at about 180 cm−1 (indicated by arrows for x = 0.2 and 0.4), which was
previously observed for the BaTiO3-BiYbO3 system when the crystal symmetry changed
from tetragonal to cubic [44]. Moreover, a new band appears (indicated by arrows) at about
830 cm−1 for x≥ 0.4, the intensity of which seems to increase with higher dopant concentra-
tions. This mode can also be associated with the average crystal symmetry changing from
tetragonal to cubic. However, both modes are omitted in further descriptions due to their
weak intensity and the poor reliability of their fitting results. Although symmetry is cubic
for the compositions with x = 0.4 and 0.45, sharp peaks of the first-order Raman scattering
exist in the background of the second-order Raman scattering. This seems to exclude
the possibility of describing the symmetry by the Pm3m space group. Hence, the only
possibility is that this high-temperature Raman activity originates from polar regions with a
symmetry different than Pm3m. This is in accordance with the results of the measurements
of the X-ray diffraction and ferroelectric properties (see below). It is reasonable to assume
that the symmetries of the polar regions are the same as the ones which appear below the
phase transition, i.e., P4mm. In general, the obtained Raman spectra of the BST ceramics
are similar to those presented earlier for single-crystal BST [30]. If our prediction that the
origin of the high-temperature Raman scattering is connected with the presence of polar
regions is correct, it would indicate that these regions appear at higher temperatures than
those in which departures from the Curie–Weiss law are observed.

The spectra are similar for both unpoled and poled states, suggesting that E-poling
does not significantly disturb the crystal structure. However, careful observation reveals
some differences in the spectra. For undoped BT, E-poling leads to a decrease in the intensity
of the bands and slightly shifts both, a dip at about 180 cm−1 and a band at about 720 cm−1,
to higher wavenumbers, indicating an evolving tetragonal symmetry and/or ferroelectric
state. However, the poled samples modified with Sr exhibit sharper, more symmetric
and higher-intensity bands compared to the unpoled ones, suggesting that the degree of
ordering becomes higher after E-poling. It is expected that the application of an electric field
causes changes in ion distances and in the ion displacements, leading to some modification
of the crystal structure. Changes in inter-ionic distances led to changes in force constants
and, finally, to changes in vibrational mode frequencies. To further elucidate the local
structural state of BST, the compositional dependence of mode wavenumbers, full widths
at half maximum (FWHM) and integrated intensity-peak position are illustrated in Figure 9.
In this investigation, statistical analysis methods were adopted to analyse the measurement
errors of different parameters: peak positions, FWHM, and integrated intensity. The
standard deviations were calculated as the square root of variance by determining each
data point’s deviation relative to the mean. The analyzed Raman parameters were obtained
with an accuracy of 2–6%.
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Here, we focus on the selected modes, which are sensitive to the change in tetragonal-
cubic symmetry, i.e., 180 (deep), 270, 308, and 720 cm−1 (see also Figure 8). As mentioned
above, the first two modes are signatures of the ferroelectric phase, while the 308 and
720 cm −1 are specific to tetragonal symmetry.

The wavenumbers of a, b, and c were shifted to a higher frequency up to x = 0.2 (optical
phonons experience local hardening at x = 0.2); however, the wavenumber d was slightly
shifted to a lower frequency up to x = 0.2, showing local softening. In contrast, damping
(FWHM) of all modes slightly increased, showing some anomalies at x = 0.2. Integrated
intensity of the modes changed irregularly without any clear tendency. These observations
are a clear indication of Sr-induced phase transformation and seem to agree well with X-ray
diffraction measurement data. It is probable that the observed characteristic anomaly of
the wavenumber and FWHM at x = 0.2 can indicate the change in local symmetry from
tetragonal P4mm to cubic Pm3m. Note that both crystal cell volume and tetragonality
significantly evolved with increases in Sr content (see Table 2). E-poling leads to a levelling
of the compositional dependence of wavenumbers, damping, and integrated intensity,
retaining the tendencies characteristic of the unpoled state. In addition, the anomaly of the
wavenumber, FWHM and integrated intensity at x = 0.2 is better visualized.

To investigate the thermal evolution of the local structure, temperature-dependent
Raman spectra were collected for undoped BT and for Ba1−xSrxTiO3 (Figure 10). It can be
seen that the Raman modes for undoped BT become broader with increases in temperature,
their intensity gradually decreases, and some modes disappear at the temperature of the
tetragonal-cubic phase transition. The sharp peak at about 308 cm−1, the broad peak at
about 720 cm−1 and the dip near 180 cm−1 gradually decreases and nearly disappears. In
addition, the intensity of the 520 cm−1 band significantly decreases.

According to our X-ray diffraction and dielectric measurement results, the tetragonal
to cubic transformation occurs at about 125 ◦C. However, two broad bands at 200–400 cm−1

and a weak, broad peak at 720 cm−1 persist even at 190 ◦C (see insert of Figure 10a),
which may occur as a result of the polar nanoregions existing in the cubic matrix, in
accordance with the XRD results (see also below). The split in this band and the existence
of a 720 cm−1 peak are usually found in tetragonal perovskite materials [45]. The splits in
the 200–400 cm−1 band, and the 720 cm−1 feature are more distinguished and exist over a
higher temperature range after the action electric field in comparison with the unpoled state
(see insert in Figure 10b). The temperature-dependent Raman spectra of Ba1−xSrxTiO3 for
x = 0.1–0.3 show similar changes with increases in temperature, as in the case of undoped
BT. The bands at 305, 520, 720 and the dip at ~180 cm−1 gradually lose intensity with
increases in temperature. According to our X-ray diffraction and dielectric measurement
results, the tetragonal to cubic transformation occurs at about 130, 110, 80, 35, 20 and 15 ◦C
for BT, BST1, BST2, BST3, BST4 and BST4.5, respectively (Table 1). However, the band at
about 720 cm−1 persists even at 300 ◦C (though as a very broad one) for all BST samples.
Additionally, the splits of the band 200–400 cm−1 could be distinguished at temperatures
far above 200 ◦C for all BST samples, which hints the local tetragonal symmetry in this
temperature range. The main effect of E-poling is a shift in the previously mentioned
changes in the ~180, ~200–400, ~308 and ~720 cm−1 bands to higher temperatures, which
indicates that the electric field supported a tetragonal (ferroelectric) phase. BST4 and
BST4.5 show the small temperature evolution of the Raman spectra in both unpoled and
poled states. Note that, according to the X-ray diffraction results, both samples have
cubic symmetry over the investigated temperature range. The existence of two very broad
peaks at 200–400 cm−1 and 500–650 cm−1, which are evidence of the cubic phase of both
samples, confirms these results. Despite this, both samples show first-order Raman spectra,
which implies that this phase does not have perfect cubic symmetry (some content of the
tetragonal phase in the cubic matrix exists), in accordance with the XRD results.
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For a closer inspection, the temperature variations of the peak position, line width,
and intensity of the modes for compositions BT, BST3 and BST4 (BST1, BST2 and BST4.5,
see Supplementary Materials Figure S2) are presented in Figure 11 (the same symbols are
used for particular modes, as for Figure 9). The tetragonal-cubic transition temperature in
undoped BT is also marked. It is expected that discontinuous changes in the Raman peaks
can reveal signs of local transition. As can be seen, the modes alter non-monotonically, with
a sudden change around the tetragonal-cubic phase transition. This includes a significant
increase in the intensity of the peaks and an abrupt jump in their location and width; this
can be related to the different ionic arrangements associated with the change in crystal
symmetry. The lines show a similar evolution in the temperature dependence of integrated
intensity, namely, the intensities achieve the maxima or minima near the phase transition
temperature. These features can be related to changes in the crystal structure and domain
structure, which influence the optical properties. In general, the line widths (FWHM) show
an almost classical temperature evolution, i.e., they increase with increases in temperature
and show an anomaly near the phase transition temperature. The temperature evolution of
the line width is attributed to anharmonic effects [46,47]. In the case of BST, the temperature
evolution of this parameter is mainly determined by chemical disorder in the A-site and
static and/or dynamic local inhomogeneities related to the off-centred ion displacements
correlated on different scales. The changes in the Raman line parameters are more visible
for poled samples, which suggests a transition from the electric-field-induced ferroelectric
state previously destroyed by the introduction of ST.

According to Petzelt et al. [48], the Raman strength (integrated intensity) of polar
modes is proportional to the average polarisation or total volume of the polar regions.
Generally, the integrated intensity of Raman modes slightly increases with increases in
temperature, as can be seen from Figure 11. This evolution of the integrated intensity of
Raman modes is correlated with the temperature of the tetragonal-cubic phase transition of
the samples, c. 125 ◦C for undoped BT. This parameter decreases when the cubic phase
dominates in the higher temperature region (>200 ◦C). Similar features are observed for
BST1, BST2 and BST3 samples. However, the evolution of this parameter is observed in
the low-temperature range due to a decrease in the temperature of the tetragonal-cubic
phase transition linked to increasing Sr content. For the BST4 and BST4.5 samples, irregular
changes in this parameter are observed. According to Table 1, we expected the phase
transition to be below room temperature for both samples. The irregular changes in
integrated intensity can be explained by the appearance of polar regions, which decrease
gradually with increases in temperature owing to the decrease in the correlation length in
ion displacement, and the change from a stable to an unstable state.

The FWHM of the Raman peaks are used as indicators of crystal quality [49]. The
FWHM of the majority of the modes slightly increased or stabilised, which suggests that
the samples become more symmetric at local scales with increases in temperature.

The Raman scattering confirms the fact that the crystal structure of BST, as determined
from the XRD studies, is only an average.

Although it is difficult to precisely interpret the obtained Raman scattering data,
changes on a local scale are clearly visible, as well as their influence on macroscopic
properties. Due to this, only an approximate estimation of the tetragonal to cubic phase
transition is possible from the Raman scattering data. This estimation was made based
mainly on the clear anomaly of the temperature dependence of the wavenumber, line
width, and integrated intensity. The estimation gives the following temperatures for the
tetragonal-cubic phase transition: ~120, ~95, ~65 and ~30 ◦C for x = 0, 0.1, 0.2 and 0.3,
respectively (Table 1).

Figure 12 presents the results of DSC (differential scanning calorimetry) analysis of
the Ba1−xSrxTiO3 ceramics. We can see that the peaks related to three phase transitions
in undoped BT become smaller (decreased area under the peaks) and shift to a lower
temperature with a rise in ST content. As those areas represent a free-energy difference
between the two phases, this indicates that the addition of ST decreases the stability of
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both phases. In addition, these peaks become broader (the temperature width of phase
transitions estimated from the onsets and ends of DSC peaks increases). Particularly, the
peaks related to the rhombohedral-orthorhombic phase transitions for x = 0.4 and 0.45 are
very broad. The temperatures of the DSC and electric permittivity anomalies coincided well,
as is shown in Figures 4 and 12, respectively (see also Table 1). In general, the temperatures
of DSC anomalies shift towards higher temperatures after E-poling. In addition, the DSC
peaks are sharper for poled samples in comparison to unpoled ones. These suggest that the
electric field seems to reconstruct the structural disorder caused by the introduction of Sr
to BT.
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To investigate the effect of the ST addition on the ferroelectric properties of (1-x)BT-
xST system, hysteresis loops and pyroelectric measurements were performed (Figure 13).
For x = 0, the loops displayed saturated ferroelectric behavior with Pr = 10 µCcm−2 and
Ec = 5 kVcm−1 (Figure 13a). A small amount of ST (x = 0.1) leads to a small decrease in
Pr to 8.6 µCcm−2 and Ec to 4.1 kVcm−1. Pr decreases to 6.5 µCcm−2 and Ec decreases to
2.4 kVcm−1 for x = 0.3. With further increases in ST content, both Pr and Ec decrease. Thus,
Pr and Ec were depressed with increases in ST, leading to slim loops, which is characteristic
of a relaxor-like state. As can be seen from Figure 13b, Pr obtained from pyroelectric
measurements decreases with increases in ST content, in accordance with the hysteresis
loops measurement. The remnant polarization is retained above the Curie temperature
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and an additional small anomaly exists in the pyroelectric current i(T) curve above the
Curie temperature (Figure 13c), indicating the existence of residual domains/polarization
in this temperature range, even for undoped BT, in accordance with the present X-ray
diffraction and Raman results. As mentioned, the existence of stable polar nanoregions in
the cubic phase of even undoped BT was suggested by both the theoretical and experimental
results [12–16]. Slim loops and remnant polarization exist even for x = 0.4. This is due to
the coexistence of cubic and tetragonal phases near room temperature, which favors the
inducing of a ferroelectric-like state by the electric field used in the experiments.
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BT, BST1, BST2, BST3, BST4, and BST4.5 ceramics.
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Figure 13. Hysteresis loops of BT, BST1, BST2, BST3, BST4 ceramics at room temperature (a); temper-
ature evolution of remnant polarization Pr (b); and pyroelectric current (c) of BT, BST1, BST2, BST3,
BST4 ceramics.
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The temperature evolution of SHG intensity for the unpoled and poled samples is
presented in Figure 14. As can be seen, the SHG(T) curve shows high intensity for undoped
BT, and this intensity decreases with increases in Sr content. A weak SHG intensity still
exists over a temperature range far above the tetragonal-cubic phase transition, even
for undoped BT, which suggests that the cubic phase is non-centrosymmetric in this
temperature range. This is in accordance with earlier results [12–16]. A similar effect is
observed for the BT–ST system. The BST4.5 ceramic has a weak, nonzero value of SHG
intensity over a wide temperature range, which implies that the cubic phase has some
disorder (i.e., is not purely centrosymmetric for this material). The non-centrosymmetry
detected within the cubic phase of the investigated system may be attributed to polar
micro- and nano-regions dispersed in a centrosymmetric matrix, which is consistent with
the results of the X-ray diffraction, Raman, and ferroelectric behaviour measurements. E-
poling leads to a slight increase in SHG intensity for undoped BT and a higher increase for
BT–ST. This is because the ferroelectric order is strong for undoped BT and weaker for the
BT–ST system, and the electric field enhances the ferroelectric order destroyed by Sr-doping
BT. Additionally, E-poling expanded the low-temperature temperature-independent SHG
intensity range to higher temperatures, implying that the long-range ferroelectric phase
is sustained by the electric field. The temperature of the tetragonal-cubic phase transition
of BST was estimated as the temperature at which the SHG signal starts to decrease. This
estimation gives the following phase transition temperatures: ~125, ~100, ~75 and ~35, for
x = 0, 0.1, 0.2 and 0.3, respectively.
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BST4.5 ceramics.

The room-temperature FTIR spectra of the Ba1−xSrxTiO3 ceramics in the wavelength
interval 170–900 cm−1 are shown in Figure 15. The three reflection bands at 150–400,
400–600 and 600–800 cm−1 are visible. The lowest bands characteristic of undoped BT
lie below our experimental conditions. A visual examination reveals some evolution of
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the spectra and a slight shift towards higher wavenumbers with increases in Sr content,
although their features remain the same. This shift can be explained mainly by the smaller
ionic radius of strontium relative to the barium occupying the A-site, resulting in decreased
unit cell volume. Peaks corresponding to undoped BT become less prominent with the
increase in ST content. A significant change is experienced by the modes grouped in the
vicinity of 100–200 cm−1 associated with the A-site ion-TiO6 vibrations. The 400–600 cm−1

band is assigned to Ti-O vibrations. The 600–800 cm−1 band is related to the stretching
vibration of the TiO6 octahedra. The decrease in unit cell volume enhances interactions
between both A-site ions and TiO6 octahedra, and between Ti and O ions, which leads to
shifts in the corresponding bands in the FTIR spectrum to a higher frequency. The mode
at about 320 cm−1 becomes gradually broader and disappears for x ≥ 0.4, and is related
to the evolution of, and finally, to the disappearance of, tetragonal symmetry. In general,
poled samples exhibit sharper and more symmetric bands than unpoled ones, which
again indicates that the electric field increases the structural order previously destroyed
by Sr-doping. Some redistribution of the intensity of the bands is also visible. In addition,
E-poling leads to a shift in the bands toward a higher wavenumber (5–8 cm−1). These
differences can be helpful for accurate studies of poling and depoling processes for these
materials (in other words, the differences can be used to evaluate the efficiency of the poling
and/or depoling process [50]).
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BST4.5 ceramics.

The transition temperatures obtained from our measurements are plotted against
the Sr content in Figure 16. Excellent agreement between the transition temperatures,
obtained using XRD diffraction, dielectric, and DSC measurements, is clearly evident. An
important point to note is the lower temperature of the tetragonal to cubic phase transition,
as obtained from Raman scattering, in comparison with those obtained by studying the
X-ray diffraction, DSC, and dielectric measurements. This difference can be partially caused
by stress effects. As shown in previous papers [51,52], the phonon frequencies can shift
remarkably due to the existence of stresses in the material. In fact, the ionic radius of
Sr (rSr2+ = 1.44 Å with coordinator number XII) is smaller than that of Ba (rBa2+ = 1.61 Å
with coordinator number XII) [53] and compressive stress is expected. This compressive
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stress can shift the temperature of the tetragonal-cubic phase transformation towards
lower temperatures [51,52]. As the shift is not significant, this suggests rather uniform
incorporation of Sr ions into BT without the introduction of distinct mechanical stress. As
can be seen from the figure, an almost linear decrease in the Curie point with an increase in
Sr content was observed (see also Table 1), in accordance with earlier results [54,55].
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in the energy gap is linked by the fact that pure SrTiO3 has a d0 configuration, which makes 
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(TR-O); orthorhombic-tetragonal (TO-T); and tetragonal-cubic (TT-C) of BT, BST1, BST2, BST3, BST4,
BST4.5 ceramics.

The partial (PDOS) and total (TDOS) densities of the states of Ba1−xSrxTiO3 systems
were computed for concentrations x = 0, 0.125 and 0.25. Figure 17 shows the calculated total
and partial densities of electronic states for BaTiO3, Ba0.875Sr0.125TiO3, and Ba0.75Sr0.25TiO3.
The conduction band (CB) in the range of 1.93–5.7 and 2.04–5.7 eV for compounds contain-
ing strontium consisted mainly of Ti (3d) orbitals and to a lesser extent of O (2p) states.
The conduction band in the case of BT is wider and is in the range of 1.77–6.8 eV. For
comparison, in article [56] this range started at 2.7 eV. The dominant contribution at the
top of the conduction band originated from Ti (3d) electrons. The highest hybridization
in the CB was observed in the middle region of the band formed by Ti (3d) and O (2p)
states. The valence band (VB) is wider than the conduction band (CB) for Ba0.875Sr0.125TiO3
and Ba0.75Sr0.25TiO3, and was calculated to be 4.5 eV. The valence band consisted mostly
of O (2p) states. Hybridization also occurred in the lower energy section of the VB and
originated from the O (2p), Ti (3d) and Ba (4p) orbitals. The calculations show that in the
Sr-doped compound, the valence band grew wider (Figure 17).
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The influence of the components forming the VB and CB bands was similar to that
observed for BT. As in the case of BT, the contribution from Ba orbitals was relatively
small. Moreover, the contributions from the valence states of Ba to the occupied bands
were small, since the barium atoms present in the crystal occurred in the Ba+ ionic state.
The contribution from Sr orbitals was negligible. The results shown in Figure 18 confirm
that the valence band was formed mainly by oxygen atoms, while the conduction band
was determined by the titanium atoms for both Ba0.875Sr0.125TiO3, Ba0.75Sr0.25TiO3 and
BaTiO3. The calculated bandgaps were 1.77, 1.94 and 2.05 eV for BaTiO3, Ba0.875Sr0.125TiO3,
Ba0.75Sr0.25TiO3, respectively. An increase in the bandgap may lead to an escalation in the
insulation capabilities, giving rise to a high breakdown strength.

Figure 18 shows the calculated partial densities of electronic states for BaTiO3,
Ba0.875Sr0.125TiO3 and Ba0.75Sr0.25TiO3 for barium and strontium atoms. It can be observed
that both the conduction and valence band were determined by the p and d orbitals,
while the contribution from s orbitals was relatively small. It can also be observed that,
with increasing strontium doping, the bandgap increases (Figure 17). The upward shift
in the lower conduction band towards higher energies can be explained as a result of
the interaction of the lower of the conduction band with the Ti (3d) orbitals mixed with
co-doping of the Sr (4p/d) states. It was determined that the bandgap for Ba0.875Sr0.125TiO3
and Ba0.75Sr0.25TiO3 is larger than that for BaTiO3 by 0.17 and 0.28 eV, respectively. The
increase in the energy gap is linked by the fact that pure SrTiO3 has a d0 configuration,
which makes it an insulator due to its band structure. Both barium and strontium have
filled s subshells. This result can be explained by the fact that the experimental energy gap
in SrTiO3 is 3.25–3.75 eV [57], which is greater than in the case of BaTiO3. For BaTiO3, this
value is consistent with the experimental value of 3.2 eV [58]. It can therefore be concluded
that doping BT with Sr atoms leads to an increase in bandgap. It should be noted that the
calculations performed so far with various ab initio codes and methods indicate that the
optical gap ranges from 2.31 to 3.96 eV [59] for SrTiO3.
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The calculated band structures of BaTiO3, Ba0.875Sr0.125TiO3, Ba0.75Sr0.25TiO3 com-
pounds are compared in Figure 19. The band structures profiles of Ba1−xSrxTiO3 are similar
for various Sr concentrations x = 0.125 and 0.25. The difference in bandgap values between
the valence and conductivity bands was due to differences in the composition of the cation
atoms and the crystal structure of these three systems, which was a consequence of the
substitution of barium ions with strontium ions. In addition, as can be seen from Table 4, the
tetragonality (c/a) and volume of the unit cell (V) decreases with increasing amounts of Sr.
The dependence changes in c/a and V are linear. A similar relationship was observed in our
experimental data for lattice volume and tetragonal distortion when increasing the amount
of ST (see also Table 2). The observed differences between the calculated and experimental
values can be mainly interpreted as the result of internal stresses in the ceramics.
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Table 4. Ab initio simulation of Ba1−xSrxTiO3: a, b—cell parameters, V—volume of unit cell and ratio
c/a compared to experimental data.

Compound a [Å] c [Å] c/a Expr. c/a V [Å3] Expr. V [Å3]

BT 4.000955 4.220442 1.05486 1.0060 67.55932 64.43
Ba0.875Sr0.125TiO3 3.991119 4.193231 1.05064 1.0035 * 66.79411 63.84 *
Ba0.75Sr0.25TiO3 3.982019 4.168434 1.04681 1.0030 ** 66.09668 63.24 **

* Ba0.9Sr0.1TiO3; ** Ba0.8Sr0.2TiO3.

There are at least two possible reasons why the ferroelectric properties of BT weaken
as a result of partial substitution of the A-site Ba2+ ions by Sr2+. The first one is an increase
in the degree of disorder, which leads to a disturbance in the long-range ferroelectric
state. As mentioned, the Sr2+ ion has a smaller ionic radius (1.44 Å) than Ba2+ (1.61 Å),
which gives rise to compressive stress and, as a consequence, to a decrease in unit cell
volume and a decrease in tetragonal distortion (see Table 1). Local elastic fields are thus
expected. The decrease in polarization with the rise of ST (Figure 13) may be related to a
decrease in tetragonal distortion (see Table 1). In addition, some local chemical disordering,
characteristic of solid solutions, could also occur upon substitution, creating chemically
ordered regions which can have polar properties (polar nanoregions) responsible for the
increased frequency dispersion and the appearance of relaxor-like behavior. The second
reason is a change in grain morphology upon substitution. The substitution of Sr2+ to BT
leads to non-uniform grain sizes, which generate more internal stress, making movements
in the domain walls difficult. This could lead to a decrease in polarization.

On the other hand, the incorporation of Sr2+ in Ba2+ can induce a stronger covalence
due to the higher electronegativity of the former ion compared to the latter one (0.95 vs.
0.89). Thus, the nature of the Sr–O bond seems to be partially covalent, whereas the Ba–O
bond is purely ionic. This can lead to a gain in ferroelectric behavior. As this behavior
weakens, we can conclude that differences in the ionic radii of Sr2+ and Ba2+, chemical
disordering, and changes in the grain morphology, are predominant. Thus, the present
study shows that the properties can be tuned by both the incorporation of foreign ions and
by electric field action.

4. Conclusions

Microstructure/structure, Raman scattering, infrared spectroscopy, dielectric, second
harmonic generation (SHG) and ferroelectric studies of SrTiO3 (ST)-doped BaTiO3 (BT)
ceramics in unpoled and poled states were performed. The X-ray diffraction and DSC data
established that the tetragonal to cubic transition temperature decreases with increases in Sr
content. The Sr-induced structural transformations were further confirmed by the Raman
scattering results. Excellent agreement was revealed between the transition transformation
temperatures obtained by X-ray diffraction, dielectric, and DSC measurement studies. The
analysis of pyroelectric and hysteresis loops showed that the ferroelectric properties were
depressed upon doping. The dielectric behavior evolves with increasing ST content from
classical ferroelectric to relaxor-like, and this transformation is accompanied by a shift in
the permittivity maxima towards lower temperatures. The polar state was disrupted into a
disordered, almost relaxor-like state by ST-doping of BT. It is proposed that these effects
are due to ionic size differences and an increase in the covalent character of the A–O bond,
and that the former reason is dominant. SHG generation results indicate the presence of
polar micro/nano-regions above the tetragonal-cubic phase transition. It was shown that
electric field poling seems to reconstruct ordering disturbed by the introduction of ST into
BT. Ab initio calculations showed that doping BaTiO3 with Sr atoms leads to an increase
in the bandgap. Doping BT with strontium atoms leads to an upward shift in the lower
conduction band towards higher energies.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16186316/s1, Supplementary Figure S1: the average grain size
as a function of Sr content. Figure S2: temperature evolution of wavenumbers, FWHM and integrated
intensity of BST1, BST2, and BST4.5 ceramics. In each figure, the points are fitting parameters after
deconvolution.
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