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Abstract: With the increasing awareness of environmental protection, it is necessary to develop
natural product extracts as antifouling (AF) agents for alternatives to toxic biocides or metal-based
AF paints to control biofouling. This paper briefly summarizes the latest developments in the natural
product extracts and their derivatives or analogues from marine microorganisms to terrestrial plants
as AF agents in the last five years. Moreover, this paper discusses the structures–activity relationship
of these AF compounds and expands their AF mechanisms. Inspired by the molecular structure
of natural products, some derivatives or analogues of natural product extracts and some novel
strategies for improving the AF activity of protective coatings have been proposed as guidance for
the development of a new generation of environmentally friendly AF agents.

Keywords: natural products; biofouling; marine antifouling

1. Introduction

Marine biofouling is an undesirable phenomenon that often involves the adhesion
and colonization of microfouling and macrofouling on man-made substrates [1,2]. Fouling
organisms are mainly including microorganisms (such as bacteria, fungi, diatoms, etc.) and
macroorganisms (such as mussels, sponges, hydroid, seaweeds, etc.). The accumulation
of organisms can significantly increase the fuel consumption and the maintenance costs,
pose a safety hazard and induce the invasion of alien species [3–5]. At present, among
various AF methods, coatings AF layer on the substrate surface is undoubtedly the most
effective and easy way. Over the past decade, various AF agents have been developed,
such as copper and copper compounds, zinc, Irgarol 1051 and Sea-Nine 211, since the
use of triphenyltin (TBT) system AF coatings have been banned in the worldwide due
to their environmental toxicity [6–8]. However, the release of metals from copper- and
zinc-based AF coatings are also deleterious to marine organisms which are widely used in
the industry [9–12]. Therefore, based on the adverse effects of excessive release of metal
ions in the widely used AF coatings on the development of marine ecosystems, it is of great
significance to develop environmentally friendly coatings with nontoxic AF agents.

Natural product extracts are potential alternatives to replace toxic AF agents. Marine
organisms, such as corals, sharks and marine plants, can prevent their body surfaces from
AF substances without causing serious environmental problems [13,14]. On this basis,
scientific and technological workers have conducted a series of related studies on marine
microorganisms [15], marine invertebrates [16] and aquatic plants [17] as well as terrestrial
plants such as pepper [18,19], Stellera chamaejasme [20] and coffee [21]. Various natural
agents with good AF properties have been extracted from these organisms. Meanwhile, the
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natural product extracts from different organisms have different chemical compositions
and molecular structures, exhibiting different AF properties for different application sce-
narios. This paper will provide an overview of the latest developments in AF compounds
isolated from marine organisms and terrestrial plants in the last five years and expand
their AF mechanisms. The aim of this work is to briefly summarize the structures–activity
relationship of these AF compounds and their derivatives or analogues, further providing
guidance for the development of a new generation of environmentally friendly AF agents.

2. Compounds from Marine Organisms
2.1. Compounds from Algae

At present, relevant studies on the natural product extracts from algae mainly focus
on algae, such as Asparagine armata, Sargassum, Posidonia oceanica and Laurencia venusta.
Some novel compounds including terpenoids, diterpenoids, phenolic compounds and their
derivatives as well as some green biosynthesis methods have been continuously reported
as substitutes or strategies for the next generation of AF agents. Some compounds extracted
from algae are shown in Table 1.

Table 1. Name, resources and targets of some compounds from algae.

No. Compounds’ Name Resources Targets Ref.

1 (+)-Catechin

Posidonia oceanica

Phaeodactylum tricornutum
Aliivibrio fischeri

Navicula salinicola
Ficopomatus enigmaticus

[17]
2 Ferulic acid
3 Epicatechin
4 Chlorogenic acid
5 Gallic acid
6 Aplysin-20 aldehyde

Laurencia venusta Mytilus galloprovincialis [22]7 13-dehydroxyisoaplysin-20

Takashi Kamada’s group reported two novel brominated diterpenoids, aplysin-20
aldehyde, 13-dehydroxyisoaplysin-20 and its congeners collected from the marine red algal
genus Laurencia venusta (Figure 1). The Aplysin-20 aldehyde, 13-dehydroxyisoaplysin-20
and aplysin-20 exerted a strong inhibitory effect on the mussel Mytilus galloprovincialis [22].
Asparagopsis armata and Sargassum muticum are two invasive species which occur at several
coastlines all over the world [23]. Some crude extracts of these two seaweeds were collected,
and all these compounds inhibited growth of bacteria and microalgae, also reducing the
formation of bacterial biofilms [24]. Studying the AF active substances of these invasive
species can not only use invasive species as a source of AF agents but also reduce the
negative effects of biological invasion. Posidonia oceanica is one of the most representative
organisms of the Mediterranean Sea and contains hundreds of bioactive compounds. Its
leaf extract exhibited the highest AF activity against growth of Phaeodactylum tricornutum
with an EC50 (the half maximal effective concentration) values of 51.62 mg/L and inhibited
the Aliivibrio fischeri bioluminescence at a concentration of 2.813 mg/L [17]. The antibio-
fouling activities of the hydroalcoholic extract of Posidonia oceanica were attributed to the
synergistic action of its phenolic compounds, making it viable as an additive to fouling
release formulations. The extract contained phenolic hydroxyl groups, which can bind
proteins, and then denature or precipitate proteins or inactivate enzyme systems, thereby
exhibiting antifouling activity [25]. Hence, Posidonia oceanica extract provided suitable
levels of AF activity against bacteria (Aliivibrio fscheri), diatoms (Phaeodactylum tricornutum)
and serpulid polychaetes (Ficopomatus enigmaticus), and significantly reduced adhesion of
Navicula salinicola cells and facilitated their release in low-intensity water flows.
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Figure 1. Structures of Aplysin-20 aldehyde (1), 13-dehydroxyisoaplysin-20 (2) and its congeners (3–
8) collected from the marine red algal genus Laurencia venusta. Reprinted with permission from [22]. 

Axel Rosenhahn et al. prepared polysaccharide-based hybrid material coatings (hy-
brid polymers from polysaccharides (PSs) and silanes) by combining diethylenetri-
amine(DETA)-modified heparin and alginates, as well as unmodified polysaccharides 
(Figure 2) [25]. The hybrid material coatings contained a large amount of amino groups 
which can absorb nitrogen oxide (NO) at elevated pressures and showed NO release rates 
of 17–30 pmol·cm−2·s−1 in aqueous environment (Figure 3). DETA is polyamine precursor 
molecule which can form N-nitrosamines and N-diazeniumdiolates (NONOates) with 
NO. NO can be released from hybrid material coatings due to the protonation of NONO-
ates into water. Hybrid materials with NO release exhibited better AF properties against 
the marine bacterium Cobetia marina and the diatom Navicula perminuta than hybrid mate-
rials coatings without NO release. NO-releasing coatings exhibited AF activity by NO-
induced dispersal of biofilms. Due to their low toxicity and good biocompatibility, NO-
releasing coatings may be interesting alternatives to conventional, biocidal technologies. 

 
Figure 2. Molecular structures of the main building blocks of (A) heparin and (B) alginic acid. (C) 
The carboxylic acid functions of the PSs were modified with DETA using an EDC/NHS (N-(3-dime-
thylaminopropyl)-N′-ethylcarbodiimide, N-hydroxysuccinimide) coupling at pH 6.5 in PBS buffer. 
Reprinted with permission from [26]. 

Figure 1. Structures of Aplysin-20 aldehyde (1), 13-dehydroxyisoaplysin-20 (2) and its congeners (3–8)
collected from the marine red algal genus Laurencia venusta. Reprinted with permission from [22].

Axel Rosenhahn et al. prepared polysaccharide-based hybrid material coatings (hybrid
polymers from polysaccharides (PSs) and silanes) by combining diethylenetriamine(DETA)-
modified heparin and alginates, as well as unmodified polysaccharides (Figure 2) [25]. The
hybrid material coatings contained a large amount of amino groups which can absorb nitro-
gen oxide (NO) at elevated pressures and showed NO release rates of 17–30 pmol·cm−2·s−1

in aqueous environment (Figure 3). DETA is polyamine precursor molecule which can form
N-nitrosamines and N-diazeniumdiolates (NONOates) with NO. NO can be released from
hybrid material coatings due to the protonation of NONOates into water. Hybrid materials
with NO release exhibited better AF properties against the marine bacterium Cobetia marina
and the diatom Navicula perminuta than hybrid materials coatings without NO release.
NO-releasing coatings exhibited AF activity by NO-induced dispersal of biofilms. Due
to their low toxicity and good biocompatibility, NO-releasing coatings may be interesting
alternatives to conventional, biocidal technologies.
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Figure 2. Molecular structures of the main building blocks of (A) heparin and (B) alginic acid.
(C) The carboxylic acid functions of the PSs were modified with DETA using an EDC/NHS (N-(3-
dimethylaminopropyl)-N′-ethylcarbodiimide, N-hydroxysuccinimide) coupling at pH 6.5 in PBS
buffer. Reprinted with permission from [26].
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Figure 3. AF mechanism schematic illustration of the hybrid material coatings contained amino
groups. Reprinted with permission from [26].

As paints additives with different weight on different substrates, nanoparticle com-
pounds were prepared using chitosan, Ulva fasciata, and Avicennia marina leaves extracts by
a green biosynthesis method [27]. These biosynthesized nanoparticles (Avicennia marina)
showed the highest AF activity at different periods, and still maintained good AF perfor-
mance after being immersed in seawater for 7 months. The superior AF performance of
Avicennia marina leaves extract can be owning to its constituents of polyphenols, ammonium
compounds and high concentrations of alcohols, besides the presence of both aromatic and
aliphatic amide and amide derivatives.

2.2. Compounds from Marine Invertebrates

Marine invertebrate account for the majority of marine animals, and they have a wide
range of species, including nearly 20 animal phyla. Here we mainly introduce the recent
research progress in natural extracts from sponges, corals and other coelenterates. Table 2
shows some compounds extracted from marine invertebrates.

Table 2. Name, resources and targets of some compounds from marine invertebrates.

No. Compounds’ Name Resources Targets Ref.

1 9,11-dihydrogracilin A
Dendrilla antarctica Botrylloides sp. [28]2 9,11-dihydrogracillinone A

3 Peracetylated cholic acid Siphonochalina fortis Mytilus edulis platensis [29]
4 2,5-diketopiperazine Geodia barretti - [30]
5 dihydrofurospongin II (2) Mediterranean

sponges
Balanus (Amphibalanus)

amphitrite [31]6 euryfuran
7 Phidianidine A Phidiana militaris - [32]
8 Sarcoglaucin B

Sarcophyton glaucum Balanus amphitrite [33]
9 sarcoglaucin E
10 trochelioid

11 7α-hydroxy-∆8(19)-
deepoxysarcophine

12 (−)-sartrochine

13 H12-Vibrio alginolyticus Pocillopora damicornis Pseudomonas
aeruginosa [34]

14 ent-sinuflexibilin D

Sinularia flexibilis Bugula neritina [35]
15 sinulaflexiolide O
16 sinulaflexiolide L
17 diepoxycembrene A
18 orphirin and sinensin
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Two main compounds isolated from the sponge Dendrilla antarctica were 9,11-
dihydrogracillinone A and 9,11-dihydrogracilin A, and these two AF agents can effec-
tively inhibit the settlement of a variety of colonizing organisms [28]. The main compound
isolated from the Patagonian sponge Siphonochalina fortis was peracetylated cholic acid,
which exerted AF activity against the mussel Mytilus edulis platensis and had low toxic-
ity [29]. Barettin containing 2,5-diketopiperazine (DKP) ring was isolated from marine
sponge Geodia barretti and possessed the ability to bind to a range of receptors due to its
privileged structures [30]. Grant et al. incorporated the pharmacophore derived from
amphiphilic micropeptides into DKP and synthesized a library of amphiphilic 2,5-DKPs,
which exhibited broad-spectrum activity [36]. Subsequently, the group developed a syn-
thetic method to prepare tetrasubsituted 2,5-DKP regioisomers and synthesized novel nine
compounds (Figure 4), which showed good AF activities against Ciona savignyi, Mytilus
galloprovincialis, Spirobranchus cariniferus and Undaria pinnatifida except DKPs 4 [37]. DKP 5,
with two hydrophobicity regions and one positive charge region, displayed the best AF per-
formance. Hydrophobicity region and positive charge region were attributed to biphenyl
groups and arginine sidechain, respectively. The calculated value of cLogD8.1 (liposol-
ubility) of DKP 5 was positive, which indicated that DKP 5 can effectively act on the
cell membrane of fouling organisms. DKP 4 possessed two positive charge regions and
one hydrophobicity region, and the calculated value of cLogD8.1 was negative. It indi-
cated that DKP 4 was more hydrophilic than DKP5, and therefore, it was inactive against
macrofouling organisms. It was demonstrated that the broad-spectrum AF of this class of
versatile compounds was dictated by the balance between hydrophobicity and cationic
charge. Takamura, H et al. synthesized nine monoterpene–furan hybrid molecules by
inspiring the structure of geraniol (a naturally occurring monoterpene) and furan isolated
from Mediterranean sponges (Figure 5) [31]. These monoterpene–furan hybrids inhibited the
settlement of the cypris larvae of the barnacle Balanus (Amphibalanus) amphitrite with EC50
values of 1.65–4.70 µg·mL−1.

Phidianidine A extracted from the aeolid opisthobranch mollusk Phidiana militaris
was structurally and chemically significantly analogous to ianthelline, barettin and the
synoxazolidinones (Figure 6) [32]. These structural features often linked to a high AF
activity. Based on this point, Johan Svenson’s group synthesized a series of analogues and
investigated inhibitory activities against the settlement and metamorphosis of Amphibalanus
improvisus cyprids [38]. The experimental results showed that phidianidine A was nontoxic
and exhibited strong AF activity against barnacle cyprid metamorphosis. The bioactivity of
synthetic analogues is closely related to the size of the compound and its basicity. The study
also illustrated that active analogues can be prepared in the absence of the natural con-
strained 1,2,4-oxadiazole ring, and showed settlement inhibition of Amphibalanus improvisus
cyprids with IC50 (the half maximal inhibitory concentration) values of 0.7 µg/mL.

Corals are a significant source of natural products. Guoqiang Li’s group isolated
nine new cembrane diterpenes and three known analogues from the South China Sea soft
coral Sarcophyton glaucum [33]. It was demonstrated that Sarcoglaucin B, sarcoglaucin E,
trochelioid, 7α-hydroxy-∆8(19)-deepoxysarcophine and (−)-sartrochine showed an antilar-
val settlement activity against Balanus amphitrite with adhesive rates of 6.52%, 4.60%, 8.19%,
14.14% and 7.78% at 25 ppm, respectively. Song and coworkers isolated about 200 strains
from coral (Pocillopora damicornis) to investigate their ability to inhibit quorum sensing [34].
The result showed that 15% of the strains exhibited QSI activity (quorum sensing inhibitor).
H12-Vibrio alginolyticus was chose to investigate the mechanism of QSI activity further. It
was found that the extract of H12-Vibrio alginolyticus, rhodamine isothiocyanate and its
analogue could inhibit the biofilm formation of Pseudomonas aeruginosa PAO1 by disturbing
quorum sensing regulatory genes and virulence-related genes. Feng‘s group isolated a new
compound (1) from the soft coral Sinularia flexibilis, and tested the compound, another nine
cembranoids (2–10) from S. flexibilis and three eunicellin-type diterpenoids (11–13) from the
gorgonian Muricella sp. for AF activity against larval settlement of the bryozoan Bugula ner-
itina (Figure 7) [35]. Experimental results showed that ent-sinuflexibilin D, sinulaflexiolide
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O, sinulaflexiolide L diepoxycembrene A, orphirin and sinensin significantly inhibited
the settlement of Bugula neritina larvae, with EC50 values of 18.2, 99.7, 67.9, 35.6, 33.9 and
49.3 µM, respectively. By comparing the AF performance of the above compounds, it was
found that the difference in AF performance was caused by double bonds and hydroxyl
groups. Comparing ent-sinuflexibilin D and sinulaflexiolide L, the results showed that the
hydroxyl group at the C-13 position in sinulaflexiolide L reduced its AF activity against
Bugula neritina.
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Figure 4. The molecular structures of the synthesized cationic amphiphilic 2,5-DKP regioisomers.
Reprinted with permission from [37].



Materials 2023, 16, 6190 7 of 18Materials 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 5. The molecular structures of geraniol, dihydrofurospongin II, euryfuran and monoterpene-
furan hybrid molecules [31]. 

Phidianidine A extracted from the aeolid opisthobranch mollusk Phidiana militaris 
was structurally and chemically significantly analogous to ianthelline, barettin and the 
synoxazolidinones (Figure 6) [32]. These structural features often linked to a high AF ac-
tivity. Based on this point, Johan Svenson’s group synthesized a series of analogues and 
investigated inhibitory activities against the settlement and metamorphosis of Amphi-
balanus improvisus cyprids [38]. The experimental results showed that phidianidine A was 
nontoxic and exhibited strong AF activity against barnacle cyprid metamorphosis. The 
bioactivity of synthetic analogues is closely related to the size of the compound and its 
basicity. The study also illustrated that active analogues can be prepared in the absence of 
the natural constrained 1,2,4-oxadiazole ring, and showed settlement inhibition of Amphi-
balanus improvisus cyprids with IC50 (the half maximal inhibitory concentration) values of 
0.7 µg/mL. 

 
Figure 6. The molecular structures of phidianidine A and a selection of analogues with inhibitory 
concentration (IC50) included [38]. 

Corals are a significant source of natural products. Guoqiang Li’s group isolated nine 
new cembrane diterpenes and three known analogues from the South China Sea soft coral 
Sarcophyton glaucum [33]. It was demonstrated that Sarcoglaucin B, sarcoglaucin E, troche-
lioid, 7α-hydroxy-Δ8(19)-deepoxysarcophine and (−)-sartrochine showed an antilarval set-
tlement activity against Balanus amphitrite with adhesive rates of 6.52%, 4.60%, 8.19%, 

Figure 5. The molecular structures of geraniol, dihydrofurospongin II, euryfuran and monoterpene-
furan hybrid molecules [31].

Materials 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 5. The molecular structures of geraniol, dihydrofurospongin II, euryfuran and monoterpene-
furan hybrid molecules [31]. 

Phidianidine A extracted from the aeolid opisthobranch mollusk Phidiana militaris 
was structurally and chemically significantly analogous to ianthelline, barettin and the 
synoxazolidinones (Figure 6) [32]. These structural features often linked to a high AF ac-
tivity. Based on this point, Johan Svenson’s group synthesized a series of analogues and 
investigated inhibitory activities against the settlement and metamorphosis of Amphi-
balanus improvisus cyprids [38]. The experimental results showed that phidianidine A was 
nontoxic and exhibited strong AF activity against barnacle cyprid metamorphosis. The 
bioactivity of synthetic analogues is closely related to the size of the compound and its 
basicity. The study also illustrated that active analogues can be prepared in the absence of 
the natural constrained 1,2,4-oxadiazole ring, and showed settlement inhibition of Amphi-
balanus improvisus cyprids with IC50 (the half maximal inhibitory concentration) values of 
0.7 µg/mL. 

 
Figure 6. The molecular structures of phidianidine A and a selection of analogues with inhibitory 
concentration (IC50) included [38]. 

Corals are a significant source of natural products. Guoqiang Li’s group isolated nine 
new cembrane diterpenes and three known analogues from the South China Sea soft coral 
Sarcophyton glaucum [33]. It was demonstrated that Sarcoglaucin B, sarcoglaucin E, troche-
lioid, 7α-hydroxy-Δ8(19)-deepoxysarcophine and (−)-sartrochine showed an antilarval set-
tlement activity against Balanus amphitrite with adhesive rates of 6.52%, 4.60%, 8.19%, 

Figure 6. The molecular structures of phidianidine A and a selection of analogues with inhibitory
concentration (IC50) included [38].

2.3. Bacterial and Fungal

Trichoderma atroviride isolated from Niphates sp. can inhibit the settlement of barnacle
cyprids, because it contains a pyrone-type compound degrading cell walls. Chih-Chuang
Liaw’s group isolated one pyrone-type compound (1) (6-pentyl-2H-pyrone-2-one) from
the marine-derived fungi Trichoderma atroviride and T. reesei and demonstrated that this
compound had significant inhibitory activities toward barnacle cyprid settlement. Based on
this point, they synthesized a series of pyrone analogues and examined the AF properties
against barnacle cyprids (Figure 8) [39]. Pyrone dericatives, 6-benzyl-4-phenyl-2H-pyran-
2-one and 6-heptyl-4-phenyl-2H-pyran-2-one, exhibited broad spectrum AF properties in
barnacle cyprid settlement assays, biofilm formation and antimicrobial assays of marine
bacteria by disturbing microbial cell-to-cell communication.
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Aspergillus versicolor is also one of the sources of natural product AF agents. Two
new pairs of DKP alkaloids ((±)-brevianamide Z[(±)-1] and (±)-brevianamide Z1[(±)-
2]), and nine known congeners [(±)-3, (±)-4, (±)-5, 6, 7, and 8] were obtained from the
fungus Aspergillus versicolor HBU-7 (Figure 9) [40]. In these compounds, (+)-brevianamide
V (compound 7) showed significant cytotoxic activity against the HGC-27 cell line, with an
IC50 value of 4.54 µM. Xiuqin Bai’s group prepared a physical–biological synergistic AF
coating by using dopamine as a coupling agent for grafting nisin onto the glass surface,
which showed good AF activity against the settlement of Phaeodactylum tricornutum and
Bacillus sp. [41]. H. A. Ibrahim’s group isolated chitosan from marine-derived Penicillum
spinulosum MH2 cell wall and detected its antimicrobial and AF properties [42]. The
extracted chitosan exhibited considerable AF activity against fouling bacteria and showed
good antimicrobial activity against S. aureus, B. subtilis, F. solani, R. solani, P. nutatum, and
C. albicans. An environmentally friendly AF coating was prepared with the polymer and
butenolide derived from the metabolites of marine bacteria [43]. The adhesion strength of
the polymer was about 2.0 MPa. The coating displayed good inhibition of the adhesion of
marine bacteria Pseudomonas sp.
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3. Compounds from Terrestrial Plants

The extracts from terrestrial plants with AF properties mainly include isothiocyanate
compounds, natural organic acids, tannic acid, polylactic acid, capsaicin and their deriva-
tives. The studies on these natural extracts and their derivatives are currently hot topics in
marine AF field. Table 3 shows some compounds extracted from terrestrial plants.

Table 3. Name, resources and targets of some compounds from terrestrial plants.

No. Compounds’ Name Resources Targets Ref.

1 Stellera chamaejasme extracts Stellera chamaejasme Porphyridium sp. [20]
2 N-methyltetrahydroellipticine Aspidosperma austral

Mytilus edulis platensis [44]3 furoquinoline alkaloids
kokusaginine Balfourodendron

riedelianum4 flindersiamine
5 CT-6(extracted from leaves) Zanthoxylum

bungeanum

Navicula sp.
Amphora sp.

Porphyridium sp.
[45]6 TJ-2(extracted from fruit)

Isothiocyanate compounds isolated from some vegetables have been considered as
promising low-toxic AF agents. Yoshikazu Kitano’s group synthesized fifteen β-citronellol-
derived isothiocyanate compounds and analyzed their structure–activity relationships [46].
All the synthesized isothiocyanate compounds exhibited effective AF activities, with high
therapeutic ratios (LC50/EC50 > 30). In particular, isothiocyanate compounds with amide
or isocyano group revealed a good level of activity against cypris larvae of Amphibalanus
Amphitrite, with EC50 values ranging from 0.1 to 0.32 µg·mL−1. Guillermo Blustein’s group
isolated five alkaloids from ‘Guatambú’ Trees of the Atlantic rainforest [44]. Among these
compounds, N-methyltetrahydroellipticine (isolated from Aspidosperma austral) displayed
potent AF activity against the settlement of Mytilus edulis platensis (M. edulis platensis),
with EC50 of 1.78 nmol/cm2. The EC50 of furoquinoline alkaloids kokusaginine and
flindersiamine (isolated from Balfourodendron riedelianum) were 3.86 and 5.56 nmol/cm2,
respectively. Silicon self-cleaning AF (PDMS-F-PIBO-x) coatings with different mass of
isophorone diisocyanate were synthesized by introducing isobornyl as AF group and
dodecfluroheptyl into the silicon side chains (Figure 10) [47]. The adhesion strength
between coatings and steel substrate was >1 MPa, which meets the needs of daily use. The
results showed that PDMA-F-PIBO-23 coating displayed the highest AF activities against
attachment of Pseudomonas sp. with the detachment efficiency of 95.6%, and inhibited the
formation of biofilm.
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Based on menthol and natural organic acids, Susana P. Gaudêncio and Ana Rita Cruz
Duarte’s group designed hydrophobic deep eutectic systems (HDES) and identified the
most appropriate molar ratio and intermolecular interactions for HDES formations by en-
compassing the physicochemical characterization of different formulations [48]. When the
molar ratio of menthol to oleic acid was 1:1, the system possessed the best AF performance
against Mytilus edulis mussels and Patella vulgata limpets. These results proved the potential
of the HDES to be sustainable and efficiently used in marine fouling control technologies.

Tannic acid (TA) as a natural organic compound widely present in plants has various
biological activities, such as antioxidant, anti-inflammatory and antibacterial effects, be-
cause it has abundant phenolic hydroxyl groups, which can interact with various small
molecules including alkaloids, polysaccharides, metallic ions and proteins [49–51]. It can
be extracted from the black wattle tree, chestnut wood, oak bark and pines [52,53]. TA
is phenolic compounds, and its AF mechanism is similar to the hydroalcoholic extract of
Posidonia oceanica mentioned above. Recently, En-Tang Kang’s group reported a bifunc-
tional TA-scaffolded polymer brush coating with a simple “one-step” immersion coating
process for AF and antimicrobial applications. Subsequently, this group integrated the
pH-responsive strategy, self-defensive mechanism and “one-step” anchoring process to
develop an environmental-friendly, stable, and sustainable “smart” coatings [54]. This coat-
ings consist of TA modified with pH-sensitive poly(2-diisopropylaminoethyl methacrylate)-
b-poly(2-methacryloyloxyethyl phosphorylcholine) (PDPA-b-PMPC) and cationic polyly-
sine (PLYS) chains (PLYS-TA-PDPA-b-PMPC) anchored on stainless steel surface. The
functional surface displayed broad-spectrum AF activities against bacterial, protein and
microalgal (Amphora coffeaeformis). Kai Zhang and Liqun Xu’s group synthesized natural
polyphenol tannic acid (TA)-capped silver nanoparticles (TA–Ag NPs) by an environmen-
tally friendly and sustainable one-step redox reaction under UV irradiation [55]. TA-Ag
NPs were deposited on polydimethylsiloxane (PDMA) and other substrate surfaces and
exhibited good bacterial-killing performance due to the Ag particles. In addition to modi-
fying plane surfaces, TA can also modify linear and granular materials. Li prepared the



Materials 2023, 16, 6190 11 of 18

copper tannic acid (CuTA) nanosheets and the CuTA/acrylic resin hybrid AF coating
(Figure 11) [56]. CuTA powder exhibited strong antibacterial activity against Bacillus subtilis
and Escherichia coli, with a killing rate close to 100% after 24 h (the concentration of CuTA
power were 0.5 mg/mL and 2 mg/mL). The CuTA/acrylic resin coating exhibited excellent
antimicrobial adhesion performance against tricornutum, Chlorella, and Navicula with 5 wt%
CuTA powder. TA-functionalized carbon nanotubes (CNT@TA) embedded with silver
nanoparticles can effectively inhibit the settlement of E. coli and bovine serum albumin [57].
Feng Zhou’s group prepared a Janus hydrogel wet adhesive through combining poly(vinyl
alcohol)/glycerol–tannic acid/Cu2+ (PVA/Gly-TA/Cu2+) hydrogel with the underwater
adhesive poly(dopamine methacrylamide-co-methoxyethyl acrylate) (P(DMA-co-MEA))
via the coordination effect between Cu2+ and catechol [58]. This Cu-rich Janus hydrogel
showed a significant inhibitory effect on the growth of algae. In addition, the presence of
Cu2+ improved the mechanical properties of the Janus hydrogel, reaching the adhesion
strength of 14 kPa in seawater.
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Polylactic acid (PLA), which can be extracted from corn, starch and sugarcane, is
one of the most widely used biobased and biodegradable polyesters [59]. In the marine
environment, PLA can be degraded to LA and then to carbon dioxide and water as final
products through the hydrolysis of the ester linkages and enzymatic reactions with mi-
croorganisms. Thus, the surface self-renewal ability of the PLA-based coatings and the
steady controlled release of AF agents are very crucial for extending the service life of AF
coatings. Qian’s group developed a nontoxic biodegradable AF coating (PLA-PU50) by
adding a nontoxic AF compound (butenolide) to a PLA-based polyurethane (Figure 12)
and investigated the release rate of butanolide, because the biodegradation of PLA was
helpful to release butanolide from the AF coating [60]. The result showed that the release
rate of butanolide was proportional to the concentration of butanolide in the coating, and
incorporating rosin into the coatings increase the self-renewal rate of the polymer further
facilitating the long-term release of butenolide from the coating (Figure 13). Pei-Yuan
Qian and Chunfeng Ma’s group synthesized biosourced PLA-based polyurethane with
hydrolyzable triisopropylsilyl acrylate (TSA) side groups through thiol–ene reaction and
polyaddition [59]. This polymer coating can effectively inhibit the adhesion of marine
bacteria Pseudomonas sp. and had excellent AF ability for more than 3 months as well as a
controlled degradation rate tuned by varying its soft segment and TSA content. The ethanol
extract of Stellera chamaejasme (SC) encapsulated in polydopamine (PDA) microcapsules
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realized the controlled release in weak alkaline environment [20]. The AF coatings with
SC@PDA microcapsules showed good AF activity against Porphyridium sp. and Navicula
sp., with adhesive rates of 15.85% and 20.5%, respectively.
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Because of nontoxicity, environmental friendliness and good AF performance, cap-
saicin and its derivatives have been used as potential alternatives of toxic AF agents.
Inspired by the structure of capsaicin, Liangmin Yu’s group designed eight low-toxicity
capsaicin derivatives, which possessed broad-spectrum AF activities against bacterial and
algae [19]. The potent AF performance of CAP derivatives was attributed to the main
active groups including phenolic hydroxyl group, benzene ring, amide group and chlorine
atom. Three new green and high-efficiency AF coatings containing phthalimide derivatives
inspired by capsaicin (PDIC-AC) were prepared using a collaborative strategy that incorpo-
rates self-polishing, fouling repelling and AF properties (Figure 14) [18]. Due to the changes
of roughness, surface free energy and mass loss, the zinc acrylate resin of the PDIC-AC
exerted excellent self-polishing properties. Zinc ions in the coatings reacted with sodium
ions to form hydrophilic groups in seawater. When the hydrophilic groups accumulated
to a certain extent, they were stripped from the main chain to achieve ‘self-polishing’ of
the coatings (Figure 15). Both PDIC and PDIC-AC showed excellent inhibitory effect of
E. coli and S. aureus, with the inhibition rates >83%. The test results in the sea areas for 9
months showed that there was no film bubble formation and shedding on the surface of
each coating, indicating that the coatings had good stability. Xinglin Guo’s group prepared
double-network (DN) hydrogels combining a derivative of capsaicin N-(4-hydroxy-3-
methoxybenzyl) acrylamide (HMBA) and polyvinyl alcohol (PVA) [61]. The DN hydrogel
can exhibit excellent mechanical strength, low swelling rate, strong oleophobic and excel-
lent AF effect by adjusting the content of HMBA. Shougang Chen’s group designed a series
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of capsaicin-based pH-triggered polyethylene glycol/capsaicin@chitosan (PEG/CAP@CS),
polyvinyl alcohol (PVA)/CAP@CS and alginate (ALG)/CAP@CS multilayer films [62]. All
these three types of films exhibit extraordinary pH responsive properties and realize the
controlled release of the CAP at a low level in alkaline solutions and at a fast level in acid
solutions. The ALG/CAP@CS film showed the best-controlled release performance and
long-term antibacterial properties in marine environment.
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Moreover, the use of natural products may have unknown effects on the marine
environment [11]. In addition to evaluating the AF properties of natural products, their
biological activities and biocompatibilities need to be assessed to evaluate whether they can
be used as potential AF candidates. Vanessa Agostini’s group studied the AF properties of
twelve aqueous plant extracts from the Brazilian semiarid biome with different concentra-
tions, and investigated whether extracts are safe to nontarget organisms [63]. The result
showed that these extracts of Harpochilus neesianus mix, Myracrodruon urundeuva leaves,
Byrsonima gardneriana leaves, Sideroxylon obtusifolium branches and Turnaera hermannioides
leaves reduced the biofilm bacterial density (≥80%) and biofilm biomass. In addition, it was
found that Harpochilus neesianus mix is nontoxic to plantonic bacterial, and Turnaera herman-
nioides is not toxic to the microalgae and crustacean species. These extracts are promising
alternatives to traditional AF paints in the future. Zhou’s group extracted and isolated a
series of active components from Zanthoxylum bungeanum (Z. bungeanum) and demonstrated
their antibiofouling characteristic and nontoxic to organisms through antibarnacle larvae
experiments and antialgae tests. Subsequently, this group fabricated the self-polishing resin
by free radical polymerization, in which the functionalized triclosan with antialgae effect
was copolymerized with general acrylic molecules. The essential antiadhesion tests and
quartz crystal microbalance (QCM-D) adsorption experiments proved that the CT-6 iso-
lated from Z. bungeanum leaves had nontoxic and broad-spectrum antiadhesion properties
(effectively inhibited the adhesion of Amphora sp. and Porphyridium sp.) (Figure 16) [45].
Sheshtawy’s group synthesized the polyurethane acrylate (PUA) polymer through the
addition reaction between an isophorone diisocyanate (IPDI) and 2-hydroxyethyl acrylate
(Figure 17) [64]. Subsequently, they prepared the polyurethane acrylate (PUA)/natural
filler-based composite (rhizome water extract of Costus speciosus) as an AF agent. The E. coli
and P. aeruginosa cell growth assays showed that well-dispersion of natural fillers in the PUA
polymer (2 wt%) potently reduced the number of microorganism strains, indicating that the
PUA/natural filler composite might be considered an ecofriendly and economical solution
to the biofouling problem. These works are helpful for the development of nontarget
biosafety AF coatings in the future.
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Based on these latest research results, it can be seen that the AF properties of the
compounds are affected by molecular structures. For example, isothiocyanates with differ-
ent enantiomers (such as isocyano groups, acetamide groups, amide groups and halogen)
exhibited different AF activities [46]. The number of hydrophobic biphenyl groups and
hydrophilic cationic arginine sidechains affected the lipophilicity of DKPs. The higher
the lipophilicity, the compounds tend to bind to the cell membrane of fouling organisms
to achieve an antifouling effect. The lower the lipophilicity, the more hydrophilic the
compound exhibits, and the weaker the interaction with fouling organisms [37]. The AF
performance of extracts isolated from the soft coral Sinularia flexibilis was influenced by
the hydroxyl and double bonds. Hydroxyl group decreased the AF activity for Bugula
neritina [35]. Targett compared the antialgae activity of picolinic acid, nicotinic acid and
pyridine, and found that carboxyl groups had a significant influence on the AF performance
rather than N-methylation of the pyridine nucleus [65]. It shows that the type and location
of functional groups have different effects on the AF properties of natural agents, and the
influence mechanism is more complex.

4. Conclusions

In summary, we have summarized the recent research progress of natural product
extracts from marine organisms and terrestrial plants as AF agents in the past five years.
Key structural units of the extracts from marine organisms mainly include terpenoids,
diterpenoids, phenolic compounds, monoterpene–furan hybrid molecules, pyrone-type
compounds, peracetylated cholic acid, alkaloids, diketopiperazine and their derivatives.
Key structural units of the extracts from terrestrial plants mainly include isothiocyanate
compounds, natural organic acids, tannic acid, polylactic acid, capsaicin and their deriva-
tives. These natural extracts as AF agents and some novel strategies for preparing protective
coatings with high AF activity and nontoxicity have been mentioned as guidance for de-
veloping a new generation of AF agents. With the rapid development of science and
technology, it is believed that we will have a clearer understanding of the mechanism of
natural AF agents in the near future and have a more optimized process for controlling
the release or leaching speed of AF agents. Natural products can be better applied to AF
coatings.
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