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Abstract: Decreasing hydride-induced embrittlement of zirconium-based cladding is a significant
challenge for the successful dry storage of spent nuclear fuel. Herein, to radically minimize hydride-
induced embrittlement, we used nanoparticles as sacrificial agents with a greater affinity than
zirconium for hydrogen. Corrosion experiments in the presence of gold (Au) and palladium (Pd)
nanoparticles under simulated pressurized water reactor (PWR) conditions revealed that the hydro-
gen content of the zirconium samples was remarkably reduced, with a maximum decrease efficiency
of 53.9% using 65 nm Au and 53.8% using 50 nm Pd nanoparticles. This approach provides an
effective strategy for preventing hydride-induced embrittlement of zirconium-based cladding.

Keywords: zirconium; hydride; nanoparticle; dry storage; simulated pressurized water reactor
conditions

1. Introduction

Zirconium-based alloys consisting of 95% or more zirconium are typically used as nu-
clear fuel cladding materials in pressurized water reactors (PWRs) owing to their superior
mechanical properties, corrosion resistance, chemical stability, heat transfer, and thermal
absorption neutron cross-section compared to other alloys [1–8]. During reactor operation,
the cladding is constantly in contact with the primary circuit water to transfer the thermal
energy produced by the nuclear fuel to the water for the generation of electrical energy [9].
The corrosion reaction with the primary water produces hydrogen [10–15], which accumu-
lates in the cladding owing to the high hydrogen affinity of zirconium [16]. Consequently,
hydrogen ingress into the cladding is inevitable during reactor service [17–19]. When the
hydrogen concentration exceeds the terminal solid solubility (TSS) limit for precipitation,
the hydrogen absorbed in the cladding agglomerates as hydrides in the zirconium ma-
trix [5,12,20,21]. These hydrides preferentially orient along the circumferential direction
rather than the radial direction in cylindrical cladding during normal operation [5,11].
Although hydrides embedded along the circumferential orientation reduce the cladding
ductility, the cladding can endure deformation by the circumferential hydrides [5,22].
However, when the spent nuclear fuel is withdrawn from the spent fuel pool for dry
storage after a certain period, the hydrides reorient from the circumferential direction to
the radial direction because the applied tensile hoop stress on the cladding exceeds the
threshold stress under dry storage conditions [11,23–26]. Radial hydrides severely embrittle
cladding, not only deteriorating the mechanical properties such as ductility and fracture
toughness [5,10,11,22,27–29], but also increasing the ductile–brittle transition temperature
(DBTT) [22,29]. Therefore, preventing the reorientation of hydrides into the radial direction
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in the cladding is crucial for maintaining cladding integrity during the dry storage of spent
nuclear fuel [12,19,26,30,31].

One way to reduce radial hydride formation in zirconium-based cladding under
PWR conditions is to utilize sacrificial materials capable of capturing hydrogen near the
cladding. Several studies have examined the efficacy of metal nanoparticles, including
Au, Pd, and Pd-containing alloy nanoparticles, for hydrogen capture or dissociation in
non-nuclear-related applications [32–35]. Although Au nanoparticles do not directly absorb
hydrogen molecules, the strong catalytic activity on the nanoparticle surface contributes
to the dissociation of the adsorbed hydrogen molecules into atomic hydrogen, which
exhibits a strong affinity for the Au surface [35–37]. In contrast, Pd and Pd-containing
alloy nanoparticles are known for their ability to absorb and convert hydrogen into a
Pd-hydride form [33,34,38]. Single crystal α-phase Pd nanoparticles can absorb hydrogen
under moderate temperature and pressure conditions. As the amount of hydrogen absorbed
by the Pd nanoparticles increases, the lattice distance between the Pd atoms expands,
resulting in the formation of β-phase Pd nanoparticles known as Pd-hydrides [33,34,39].
Therefore, both Au and Pd nanoparticles are promising materials for capturing hydrogen,
albeit via different mechanisms.

This study is the first to utilize Au and Pd nanoparticles as sacrificial agents to preferen-
tially capture hydrogen and reduce the hydrogen absorption of zirconium-based cladding
under simulated PWR conditions, which consequently minimizes the hydride-induced
embrittlement of the cladding. The core concept of the proposed strategy is schematically
illustrated in Figure 1. In the absence of nanoparticles, the zirconium-based cladding is
highly vulnerable to corrosion owing to the high absorption of hydrogen on its surface and
throughout its bulk under PWR conditions. However, in the presence of nanoparticles, the
hydrogen produced by the reaction between the cladding and water is distributed between
the cladding and nanoparticles under PWR conditions, thereby decreasing hydride forma-
tion on the cladding. The hydrogen content of the zirconium after corrosion experiments
using Au or Pd nanoparticles under simulated PWR conditions was significantly reduced
compared to that without nanoparticles, indicating that the hydrogen produced on the
zirconium surface was efficiently captured by the Au and Pd nanoparticles dispersed in
the water. These findings suggest that hydrogen is preferentially absorbed on the Au and
Pd nanoparticles over the zirconium. Therefore, a significant reduction in radial-hydride-
driven embrittlement due to hydride reorientation in the cladding during the dry storage
of spent nuclear fuel can potentially be achieved by dispersing Au and Pd nanoparticles in
the coolant.
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2. Materials and Methods

Zirconium pellets with a diameter of 10 mm and a thickness of 1 mm were prepared
by mechanically pressing zirconium powder (99.5% purity, Se-Jong Materials Co., Ltd.,
Incheon, Republic of Korea) at 20.7 MPa. The fabricated zirconium pellet was heated at
850◦C for a week under an argon (99.999% purity) atmosphere in a quartz tube furnace
(LF-GT530, LK Lab Korea, Namyangju-si, Republic of Korea). After heating, the zirconium
pellets were polished with 3000 grit SiC paper, resulting in a mean density of 4519 kg/m3.
The hydrogen content of the as-prepared zirconium pellet was 13 µg/g, which was similar
to the values reported in the literature for zirconium-based cladding [2,18].

The Au and Pd nanoparticles were prepared via colloidal synthesis. Two different
synthesis methods were used to prepare the spherical Au nanoparticles. Small spherical
Au nanoparticles (13 and 25 nm) were synthesized using the Frens method by adjusting
the HAuCl4/citrate/AgNO3 ratio to an appropriate value [40]. Large Au nanoparticles
(65 and 109 nm) were prepared using the seed-growth method [41,42]. For the synthesis
of Pd nanoparticles, the nucleation and growth method was used to synthesize 12 nm Pd
nanoparticles [43], whereas the ethanol reduction method was used to synthesize 50 and
108 nm Pd nanoparticles [44]. The synthetic procedures for all the metal nanoparticles are
described in detail in the Supplementary Materials.

The corrosion tests of the zirconium pellets were conducted in 350 mL of deionized
water (New P.NIX Power water purification system, Daihan Scientific, Wonju, Republic
of Korea) with/without nanoparticles. The pressure and temperature were maintained
at 15.5 ± 0.5 MPa and 315◦C, respectively, for 24 h under continuous stirring at 200 rpm
in a 700 mL stirred autoclave system (Ilshin Autoclave, Daejeon, Republic of Korea). An
appropriate amount of nitrogen gas (99.999% purity) was injected into the system before
the temperature was increased to attain the target pressure at 315◦C. The scheme in Figure 2
shows a zirconium pellet mounted on a sample holder for the corrosion experiments. An
8 mm diameter area on both sides of the zirconium pellet was exposed to the deionized
water during the corrosion tests.
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Figure 2. Schematic of the front and diagonal views of a zirconium pellet mounted on the sample
holder for corrosion experiments; 8 mm diameter zones on both sides of the pellet were in contact
with water during the corrosion test.

X-ray diffraction (XRD) data were obtained in the range of 20–80◦ with a scanning step
of 0.02◦ for 0.6 s using a MiniFlex600 system (Rigaku, Japan) with Cu Kα radiation operated
at 15 mA and 40 kV. Raman spectra were acquired over the range of 130–800 cm−1 using
an NS240 Raman spectrometer (Nanoscope Systems, Daejeon, Republic of Korea) with a
continuous-wave diode-pumped laser at a wavelength of 532 nm and an exposure time
of 30 s. Transmission electron microscopy (TEM) images were acquired using an H-7600
system (Hitachi, Tokyo, Japan) at an accelerating voltage of 120 kV. The optical properties of
the metal nanoparticles were characterized using a UV-1800 spectrophotometer (Shimadzu,
Kyoto, Japan) in a scan range of 300–800 nm. The hydrogen content within the zirconium
pellet was determined using a hydrogen analyzer (RH-404, LECO Corporation, St. Joseph,
MI, USA) with a sensitivity of ±5 µg/g [26].
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3. Results

The XRD pattern of a zirconium pellet before the corrosion experiment is shown in
Figure S1. At room temperature and atmospheric pressure, zirconium exhibits a hexagonal
crystal structure [2,6], and the diffraction patterns associated with hexagonal Zr can be
clearly observed in Figure S1.

For the corrosion test of the zirconium pellets, the size of the Au and Pd nanopar-
ticles was varied. Au nanoparticles with four different diameters and Pd nanoparticles
with three different diameters were examined. Figure 3 shows the TEM images of the
various synthesized Au and Pd nanoparticles. The nanoparticle diameters were deter-
mined by randomly selecting nanoparticles from different regions of the TEM grid. The
mean diameters of the Au nanoparticles (Figure 3a–c and Figure S2) were 13 ± 1.9 nm,
25 ± 3.1 nm, 65 ± 8.7 nm, and 109 ± 11.8 nm, respectively, and those of the Pd nanoparticles
(Figure 3e–g) were 12 ± 2.2 nm, 50 ± 12.0 nm, and 108 ± 16.6 nm, respectively.
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Figure 4 shows the XRD and Raman data of the zirconium specimens after the cor-
rosion experiments with/without various sizes of synthesized Au and Pd nanoparticles.
Diffraction peaks corresponding to a monoclinic ZrO2 crystal structure were observed in
all pellets, regardless of the nanoparticles used (Figure 4a) [45,46]. This monoclinic ZrO2
crystal structure was also confirmed by the Raman profiles (Figure 4b) [45,47]. Zirconium
is known to absorb hydrogen while being oxidized to ZrO2 by the corrosion reaction with
the primary water during reactor operation [21,26,48]. Therefore, the ZrO2 observed in all
the pellets arose from the reaction of zirconium with water under PWR conditions.

The hydrogen content of the zirconium pellets was determined after the corrosion
tests with/without various sizes of synthesized Au and Pd nanoparticles (Figure 5). In the
absence of nanoparticles, the hydrogen content of the zirconium after the corrosion test
was 7201 µg/g, which was significantly higher than the 13 µg/g value observed before
the corrosion test. This indicated that a significant amount of the hydrogen produced
under the simulated PWR conditions had accumulated in the zirconium. In the presence of
nanoparticles, the hydrogen content of the zirconium samples was remarkably reduced by
an average of 4048 µg/g, an average decrease efficiency of 43.8%, regardless of the type and
size of the nanoparticles, owing to the excellent hydrogen absorption abilities of the Au and
Pd nanoparticles [32–38]. The hydrogen capture ability of nanoparticles typically increases
with decreasing nanoparticle size, regardless of the type of nanoparticle [35,49–51]. How-
ever, in this study, the midsized Au and Pd nanoparticles resulted in a greater decrease
in the hydrogen content of the zirconium specimens, with values of 3883 µg/g using the
65 nm Au and 3875 µg/g using the 50 nm Pd nanoparticles (a decrease efficiency of 53.9
and 53.8%, respectively), than that observed for the 13 nm Au, 25 nm Au, and 12 nm Pd
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nanoparticles. In addition, when larger 109 nm Au and 108 nm Pd nanoparticles were used,
the effect of the nanoparticles on the reduction in the hydrogen concentration within the
zirconium pellets declined. In general, metal nanoparticles primarily capture hydrogen
through surface sorption, and the nanoparticle’s surface plays a crucial role in this process.
Notably, all the nanoparticles used in our experiments were exposed to high temperature
and pressure. During corrosion tests conducted under PWR conditions, nanoparticles
can potentially destabilize, rendering them susceptible to destruction or agglomeration.
Consequently, the actual size of the metal nanoparticles during the reaction under PWR
conditions may differ from the original size determined from the TEM images. Smaller
nanoparticles in the range of 12–25 nm can succumb to the prolonged high-temperature and
-pressure conditions encountered in PWR systems. In contrast, the midsized nanoparticles
used in our experiments (65 nm for Au and 50 nm for Pd) maintained their particulate
structure under the PWR conditions for a longer period than the smaller particles, which en-
abled them to capture more hydrogen. In addition, particles larger than 100 nm exhibited a
slightly lower hydrogen capture capacity owing to the size effect. As a result, nanoparticles
larger than the threshold size exhibited the same trend as those reported in the literature,
namely the hydrogen capture ability increased as the particle size decreased [35,49–51].
Combining our experimental findings with those in the literature, we concluded that the
optimal hydrogen capture performance is achieved using 65 nm Au or 50 nm Pd nanoparti-
cles under the simulated PWR conditions. This observation aligns with trends previously
reported in the literature and can explain the volcano-like trend in the decrease efficiency
(Figure 5).
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In addition, we monitored the UV–vis absorption spectra of the nanoparticle-containing
water before and after the reaction to compare their optical properties (Figure S3). The ab-
sorption spectra of the recovered water after the reaction exhibited no noticeable peaks for
any of the nanoparticle sizes. Instead, small and broad absorption features were observed
across the entire wavelength range. When Au and Pd nanoparticles undergo significant
aggregation, their behavior resembles that of bulk materials. Consequently, the nanopar-
ticles lose their unique nanoscale optical properties, resulting in the disappearance of
absorption features in the visible-light region. The data in Figures 5 and S3 suggest that
the nanoparticles were unable to maintain an intact structural framework under the PWR
conditions and were prone to significant aggregation. Consequently, we postulated that the
process by which hydrogen was captured on the nanoparticles was highly active during
the initial phase of the reaction. However, as the reaction time increases, the hydrogen
capture ability of the nanoparticles may degrade owing to structural deformation.
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Figure 5. Hydrogen content within the zirconium pellets and the corresponding decrease efficiency
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4. Conclusions

We investigated the decrease in hydrogen content within zirconium using Au and Pd
nanoparticles as sacrificial agents under simulated PWR conditions. The composition of all
the zirconium pellets was changed from hexagonal Zr metal to monoclinic ZrO2 after the
corrosion experiments owing to their reaction with water in which the zirconium absorbed
hydrogen while being oxidized. After the corrosion experiments in the presence of Au or
Pd nanoparticles, the hydrogen content of the zirconium samples decreased significantly.
In particular, the 65 nm Au and 50 nm Pd nanoparticles resulted in the lowest hydrogen
contents among the zirconium samples, with contents of 3318 and 3326 µg/g and a corre-
sponding decrease efficiency of 53.9 and 53.8%, respectively. Our discovery of the successful
application of Au and Pd nanoparticles as sacrificial agents for preferential entrapment
of hydrogen over zirconium is unprecedented in the field of nuclear materials and can
be utilized as a strategy to significantly minimize the hydride-induced embrittlement of
zirconium-based cladding.
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Pd nanoparticles before and after the corrosion test.
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