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Abstract: Preciously assessing the creep mechanical response of sand–geomembrane interfaces is
vital for the design of relevant engineering applications, which is inevitable to be influenced by
temperature and stress statuses. In this paper, based on the self-developed temperature-controlled
large interface shear apparatus, a series of long-term creep shear tests on textured geomembrane–
silica sand interfaces in different temperatures, normal pressure, and creep shear pressure were
conducted, and a database compiled from the physical creep shear test results is constructed. By
adopting the database, three disparate machine learning algorithms of the Back Propagation Artificial
Neural Network (BPANN), the Support Vector Machine (SVM) and the Extreme Learning Machine
(ELM) were adopted to assess the long-term creep mechanical properties of sand–geomembrane
interfaces while also considering the influence of temperature. Then, the forecasting results of the
different algorithms was compared and analyzed. Furthermore, by using the optimal machine
learning model, sensitivity analysis was carried out. The research indicated that the BPANN model
has the best forecasting performance according to the statistics criteria of the Root-Mean-Square
Error, the Correlation Coefficient, Wilmot’s Index of Agreement, and the Mean Absolute Percentage
Error among the developed models. Temperature is the most important influence factor on the creep
interface mechanical properties, followed with time. The research findings can support the operating
safety of the related engineering facilities installed with the geomembrane.

Keywords: sand; creep shear mechanical response; SVM; BPANN

1. Introduction

As an excellent water-proofing material, geomembrane is extensively used as con-
struction material in various engineering applications [1–5]. With the development of a
geomembrane manufacturing technology, different types of this material are available.
Among them, textured geomembrane is the most popular in practical engineering applica-
tions because textured geomembrane can form a strong interface mechanical performance
when in contact with other construction material, such as soil, due to the existence of
texture on the geomembrane surfaces [6,7]. Although compared to other types of ge-
omembrane, the interfaces between textured geomembrane and soil have better stability,
but the textured geomembrane–soil interface is still the weakest component in engineer-
ing facilities [8–13]. Thus, the correct estimation of the interface mechanical properties
between textured geomembrane and soil is critical for the operating safety of relative
engineering facilities.
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In general, the service life of geomembrane in engineering infrastructure is
over decades [14,15]. During the operation of engineering applications, the textured
geomembrane–soil interface is often subjected to constant creep shear stress resulting
from the overlaying construction material [16,17]. The long-term creep interface defor-
mation has an obvious difference with the short-term deformation caused by the rapid
loading of shear stress. The occurrence of creep shear deformation is more hidden and the
deformation can rise rapidly in a short period, which has a more significant hazard on the
safety of engineering facilities [18,19]. It highlights the necessity of preciously predicting
the long-term creep mechanical response of textured geomembrane–soil interfaces.

In reality, the engineering environment is complex, and the buildings installed with
geomembrane are often subjected to temperature loadings [20–25]. For example, due to
the exothermal reaction of buried waste biodegradation, the inside temperature of landfills
can reach 60~80 ◦C [26,27]. As a common water-proofing material, it is inevitable that
geomembrane installed in landfills will experience a high temperature environment. Since
the main raw material of producing geomembrane is thermal-softening plastic materials
such as nylon, polyethylene, etc., in elevated temperatures, the softening of geomembrane
may occur [28]. This has an obvious influence on the interface mechanical properties
between geomembrane and soil [16]. Especially for textured geomembrane, the softening
of texture can remarkably change the interaction between geomembrane and soil to result
in a considerable impact on the interface’s mechanical response [29,30]. However, due
to the limitation of the temperature-controlled interface shear apparatus, at present, the
research involving the assessment of the temperature-dependent mechanical properties
for geomembrane–soil interfaces is rare, let alone the investigation about the long-term
creep mechanical behavior of textured temperature–soil interfaces by considering the
temperature effects.

The interaction between textured geomembrane and soil is complicated, which leads
to the multiple influence factors on the mechanical performance of textured geomembrane–
soil interfaces [31–33]. Especially for the temperature-dependent creep shear mechanical
response, it requires to consider the factors of time and temperature, which further in-
creases the complexity of the interface action mechanism. The complex interaction and
multiple impact factors cause the difficulty of predictive modelling for the long-term creep
mechanical behavior of textured geomembrane–soil interfaces by considering the temper-
ature effects and adopting the traditional estimation methods, such as the mathematical
statistical approach, etc. [15,34]. Due to the development in computer technology, in recent
years, the machine learning techniques are extensively adopted to replicate the complex
action mechanism by considering multiple influence factors [30,35–41]. In the field of civil
engineering, machine learning modeling techniques have found widespread use, including
but not limited to the following:

(1) estimating rock permeability [42,43];
(2) predicting interface shear strength [44–46];
(3) assessing cement mortar permeability [47,48].

The existing research manifesting the machine learning methods can describe the com-
plex relationships between plentiful factors with high precision and efficiency. However,
in the published research, the investigation involving the modelling of the temperature-
dependent long-term creep mechanical response of the textured geomembrane–soil inter-
face by adopting machine learning techniques is not reported.

In this paper, the effectiveness of the three disparate machine learning algorithms
in assessing the temperature–dependent long-term creep interface mechanical response
between textured geomembrane and silica sand are compared and analyzed, including
the Backpropagation Artificial Neural Network (BPANN), the Support Vector Machine
(SVM), and the Extreme Learning Machine (ELM). Moreover, by using the optimal machine
learning predictive model, the sensitivity analysis of different influence factors on the creep
shear mechanical response of textured geomembrane–silica sand interfaces is conducted to
determine the relative importance. The research outcomes can provide an effective tool for
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estimating the temperature-dependent long-term creep mechanical properties of textured
geomembrane–sand interfaces, which can provide a reference for the construction of related
engineering services.

2. Physical Experiment

To obtain the data for machine learning modeling, a self-developed large interface
direct shear apparatus was utilized, and the tested geomembrane is shown in Figure 1. The
temperature–controlled creep shear tests on silica sand–textured geomembrane interfaces
were conducted at 25 kPa, 50 kPa, and 100 kPa under normal stress, and the creep shear
stress level was 50%, 70%, and 90% of the monotonic peak shear strength for the interface
under the corresponding normal stress. For each test condition, three different temperatures
of 30 ◦C, 60 ◦C, and 200 ◦C were adopted. The specific test procedure is as follows:

(1) Extured geomembrane and silica sand sample was installed;
(2) The interface temperature was adjusted to the predetermined value and kept stable

during the whole test;
(3) The interface was consolidated under the corresponding normal stress for 12 h;
(4) A certain shear stress was imposed on the interfaces and kept stable during the whole test;
(5) The test was terminated until the interface failed or the test duration (6 days) ran out.

The properties of the test material are listed in Table 1, and the test scheme is shown
in Table 2.
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Figure 1. The tested textured geomembrane.

Table 1. The properties of the test sample.

Textured geomembrane
(Flat die extruded)

Thickness (mm) 2.0
Textured height (mm) 0.26

Fracturing strength (N/mm) 16.2
Yield strength (N/mm) 22.3

Yield elongation rate (%) 12.2
Fracturing elongation rate (%) 120

Puncture strength (N) 195

Silica sand

Particle size range (mm) 0.075~2
Density (g/cm3) 1.50

Optimum water content (%) 10
Uniformity coefficient 3.327
Curvature coefficient 0.3

Median particle size (mm) 0.785
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Table 2. Test scheme.

Test Sample Normal
Pressure (kPa) Temperature (◦C) Creep Shear Stress

Silica sand–textured
geomembrane

interface
25, 50, 100 30, 60, 200

50%, 70%, and 90% of
the monotonic

interface peak shear
strength

3. Machine Learning Algorithm

By adopting the afore physical test results, three different kinds of machine learning
algorithms, BPANN, SVM and ELM, were selected to establish the predictive models on the
temperature-dependent creep shear mechanical response of textured geomembrane–sand
interfaces by adopting the program software Matlab_R2022b_Windows. The introduction
of the adopted machine learning algorithms is presented below.

3.1. BPANN

Artificial Neural Network is the most prevalent machine learning algorithm, which
can be divided as different kinds [49–51]. Among them, the BPANN is the most extensively
adopted in civil engineering areas [10,52]. The BPANN model is composed of the input,
hidden, and output layers. In this research, the input parameters are normal pressure,
creep shear stress, temperature, and time, which corresponds to four joints in the input
layer. The output parameter is the creep shear displacement, which corresponds to one
joint in the output layer. The joint number of the hidden layer is ascertained by adopting
the exhaustive approach, which is 5 in this research. The schematic diagram of the adopted
BPANN model structure is shown in Figure 2. The activation function and network training
algorithm in the BPANN model adopts the Hyperbolic Tangent Sigmoid Transfer Function
and the Levenberg-Marquardt Backpropagation Algorithm, respectively.
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3.2. SVM

SVM is another widely adopted machine learning algorithm, which can describe the
complex relationship between multiple variables based on the limited number of sample
data [53,54]. Also, SVM can project low-dimensional data to high-dimensional data by
adopting the kernel function so that the non-linear modelling can be transformed into
linear modelling [55,56]. Additionally, SVM can adopt the k-fold cross-validation method
(k-CV) in conducting modelling. The theory of k-CV is to divide the original data as equal
groups. Among the groups, k-1 groups are adopted as the training data, and the left group
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is adopted for validation. By selecting different data groups as the testing dataset, the train
and validation procedure is repetitive with k times, and the average predictive outcomes of
the k times are used as the final value. In this research, the value of k is taken as 10.

3.3. ELM

ELM originates from the ANN model, with the structure being similar with the
feedforward ANN [57]. However, in some cases, compared to the ANN model, ELM can
achieve complex modelling in a short period, with low computation cost. Like ANN, the
joint number of the ELM hidden layer also impacts the forecasting behavior significantly.
Therefore, the same exhaustive method is adopted to determine the hidden layer joint
number in ELM as 5. For the input and output layer joint number, they are 4 and 1,
corresponding to the four input parameters and one output parameter, respectively. The
activation function adopts the Logarithmic Sigmoid Function.

4. Machine Learning Modelling
4.1. Establishment of the Database

Based on the aforementioned test results, the database was established. The database
includes 27,000 datasets. Each dataset consists of four input parameters of normal pressure,
creep shear pressure, time, and temperature, and one output parameter of creep shear
displacement. The range of normal pressure is from 25 kPa to 100 kPa, and the time is from
0 min to 8640 min, with the temperature ranging from 30 ◦C to 200 ◦C. The parameters were
chosen because they have large influence on the creep mechanical response of textured
geomembrane–soil interfaces, as indicated by the existing research [1,58]. The statistics for
the input and output parameters is listed in Table 3. The data distribution for the database
is shown in Figure 3, with the x-axis and the y-axis representing the value of the input
parameters and the corresponding data group number, respectively.
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Table 3. The statistics.

Parameters Minimum Value Maximum
Value Mean Value Standard

Deviation

Input

Normal pressure
(kPa) 25 100 59 30.6

Creep shear
pressure

50% of the peak
shear strength

90% of the
peak shear

strength

70% of the
peak shear

strength
20.39

Time
(minute) 0 8640 4320 650

Temperature (◦C) 30 200 95 20.72

Output Creep shear
displacement (mm) 0 47.20 24.50 6.40

4.2. Data Processing

Before machine learning modelling, it was required to divide the database into the
training data, to train the models, and the testing data, to validate the predictive perfor-
mance of the models. In this paper, the division ratio is set as 80% (21,600 groups) for the
training data and 20% (5400 groups) for the testing data. Also, to improve the predictive
precision and efficiency, the input data were normalized by adopting Equation (1).

xNormalised =
2(x− xmin)

xmax − xmin
− 1 (1)

where xNormalised and x indicates the normalized and original values, respectively, and xmin
and xmax indicates the minimum and maximum values, respectively.

4.3. Precision Assessment Indexes

To quantitatively analyze the forecasting accuracy of the constructed machine learning
models, the following four assessment indexes were adopted: Root-Mean-Square Error
(RMSE), Coefficient of Determination (R2), Mean Absolute Percentage Error (MAPE), and
Wilmot’s Index of Agreement (WI), as presented in Equations (2)–(5).

RMSE =

√√√√ n

∑
i=1

(yi − fi)
2

n
(2)

where n indicates the data number, yi indicates the measured data, and fi indicates the
assessing value. The less the RMSE value is, the more precise the model.

R2= 1− ∑n
i=1 (yi − fi)

2

∑n
i=1 (yi −

−
y)2

(3)

where
−
y indicates the average measured value.

MAPE =
100%

n

n

∑
i=1

|yi − fi|
yi

(4)

WI = 1−

n
∑

i=1
(yi − fi)

2

n
∑

i=1
(
∣∣∣ fi −

−
y
∣∣∣+ ∣∣∣yi −

−
y
∣∣∣)2

(5)
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5. Result and Analysis
5.1. Determining the Optimal Hidden Layer Joint Number

As aforementioned, the hidden layer joint number has a significant influence on the
assessing results of the BPANN and ELM models. To determine the optimum number of
hidden layer joints, the exhaustive approach was adopted with RMSE as the assessment
index. The results are shown in Figure 4.
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Based on Figure 4, the hidden layer joint number has a considerable impact on the
RMSE value of the BPANN and ELM models, ranging from 4.23 to 26.97 and from 236.24
to 4.51, respectively. By comparing the assessing results of the BPANN and ELM models
containing various hidden layer joint numbers, it is found that when the hidden layer joint
number is 5, both the BPANN and ELM models reach the high estimation precision of 4.23
and 4.51, respectively. Thus, in this research, both the BPANN and ELM models adopt five
hidden layer joints.

5.2. Assessment Results of Various Machine Learning Models

The forecasting precision of different machine learning models on the train and test
datasets, based on the indexes of RMSE, MAPE, WI, and R2, is shown in Figures 5–8.
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As shown in Figures 5–8, based on the assessment indexes of RMSE, MAPE, WI, and
R2, the assessing precision of the BPANN model is the highest among the models in the
aspect of assessing the training dataset. In the quantitative analysis, the BPANN model
achieved the lowest RMSE (3.64) and MAPE (11.24%) and the largest R2 (0.99) and WI (0.96).
It is followed by the SVM model, and its forecasting performance is better than the ELM
model. For example, the RMSE value and the MAPE value of the ELM model (5.96 and
17.46%, respectively) is higher than that of the SVM model (5.39 and 17.2%, respectively).
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In the aspect of the forecasting behavior on the testing datasets, as presented in
Figures 5–8, like the outcomes on the training datasets, the assessing precision of the
BPANN model is the best among the different algorithms. More specifically, among the
models, the RMSE and MAPE values of the BPANN model is the most low, with 4.29 and
15.64%, respectively, and the R2 and WI values of the BPANN model is the largest, with
0.96 and 0.95, respectively. For the SVM and ELM models, their forecasting performance is
different based on the different assessment indexes. For example, the RMSE value of the
ELM model (6.24) is higher than that of the SVM model (5.9), which indicates the superior
performance of the SVM model than the ELM model. In comparison, the MAPE value of
the ELM model (19.1%) is less than that of the SVM model (20.9%), which indicates the
better precision of the ELM model than that of the SVM model.

5.3. Sensitivity Analysis

To investigate the relative significance of different factors on influencing the creep
shear mechanical response of textured geomembrane–silica sand interfaces, the Garson’s
Algorithm was adopted to quantitatively assess the relative significance for the input
parameters on the long-term creep shear mechanical properties of the interfaces. The
formula for Garson’s Algorithm [59,60] is presented in Equation (6), and the calculated
relative significance for the input parameters is depicted in Figure 9.

Rik =

L
∑

j=1
(
∣∣∣WijWjk

∣∣∣/ N
∑

r=1

∣∣Wrj
∣∣)

N
∑

i=1

L
∑

j=1
(
∣∣∣WijWjk

∣∣∣/ N
∑

r=1

∣∣Wrj
∣∣) (6)

where Rik indicates the parameter relative importance; Wij,Wjk indicates the connection
weight between the input and hidden layers as well as the hidden and output layers; N
indicates the input parameter number; and M indicates the output parameter number.
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According to Figure 9, temperature has the highest influence on the long-term creep
shear mechanical properties of textured geomembrane–sand interfaces, with the relative
significance of 31.68%. It is followed by time, with the percentage of 29.23%. In com-
parison, normal pressure and creep shear pressure have a relatively small impact on the
creep shear mechanical response of the interfaces, with the proportions of 18.47% and
20.62%, respectively.

6. Case Study

To verify the reliability of the established machine learning models, a case study
is carried out to assess the creep shear displacement of a textured geomembrane–silica
sand interface in specific normal pressure, creep shear pressure, temperature, and time
by adopting the developed BPANN model. The predicting results were compared with
the creep shear displacement measured in the laboratory tests to verify the precision
of this model. The specific test conditions and the corresponding input parameters for
the BPANN model are listed in Table 4. The predicted creep shear displacement of the
interface by using the BPANN model and the measured value in the physical test is
presented in Figure 10.

Table 4. The test conditions and the corresponding input values.

Test Condition Value Input Value

Temperature 50 ◦C, 90 ◦C 50, 90
Time 2000 min, 4000 min 2000, 4000

Normal stress 60 kPa, 100 kPa 60, 100
Creep shear pressure 70% of the peak shear strength 70

According to Figure 10, the assessed creep shear displacements of the textured
geomembrane–silica sand interface in the specific normal pressure, creep shear pressure,
temperature, and time obtained from the BPANN model are similar to the measured creep
shear displacements in the physical test. It indicates the developed machine learning model
can estimate the temperature-dependent long–term creep shear mechanical response of the
textured geomembrane–silica sand interfaces preciously.
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7. Limitation

Despite the research presenting precious findings, there are limitations for this re-
search. (1) The adopted database for establishing the machine learning models consists of
27,000 datasets, which is not less. However, it still has the room to further enlarge, and
the forecasting performance for the machine learning models can be continually enhanced
if the bigger database is available; and (2) the influence factors on the creep shear me-
chanical properties of textured geomembrane–silica sand interfaces are many. Except for
the selected input parameters in this research, the properties of textured geomembrane
and sand also have impacts on the mechanical response. It should be considered in the
future investigation.

8. Conclusions

In this paper, by adopting the self-developed large temperature-controlled interface
shear apparatus, a series of long-term creep shear tests on textured geomembrane–silica
sand interfaces in different temperatures, normal pressure, and creep shear pressure were
conducted. Based on the physical test results, the machine learning models for assess-
ing the temperature-dependent long-term creep shear mechanical response of textured
geomembrane–silica sand interfaces were established by using three different machine
learning algorithms of BPANN, SVM, and ELM. Then, the forecasting outcomes of the
different machine learning models were compared and analyzed. After that, by using
the optimal machine learning model combined with Garson’s Algorithm, the sensitivity
analysis was carried out to determine the relative significance of the input parameters on
influencing the creep shear mechanical properties of the interfaces. In the end, the case
study was conducted to verify the reliability for the results forecasted from the constructed
machine learning model by comparing with the measured mechanical response of the
interfaces in the physical tests.

The main research outcomes are as follows: The hidden layer joint number has a
considerable impact on the assessing precision of the BPANN and ELM models. Compared
to SVM and ELM model, the BPANN model has a superior performance in forecast-
ing the temperature-dependent long-term creep shear mechanical response of textured
geomembrane–silica sand interfaces based on the assessment indexes of RMSE, R, WI,
and MAPE. The sensitivity analysis indicates the influence of temperature on the creep
shear mechanical properties of textured geomembrane–silica sand interfaces is the largest,
followed by time, and creep shear pressure and normal pressure have relative low influence.
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For future research directions, it is advisable to consider the incorporation of additional
factors into the modeling process, such as wet–dry cycling and the characterization of
geomembranes (whether they are smooth or textured). Furthermore, the application of 3D
printing technology can be explored to fabricate geomembranes with varying protrusion
heights. Subsequent experiments can be conducted to gather extensive data, thus facilitating
the expansion of the machine learning model’s database. These steps are essential in
the development of a machine learning model with improved accuracy and enhanced
generalization capabilities for the prediction of long-term creep mechanical properties at
geomembrane–soil interfaces.
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