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Abstract: The present work reports the results of a systematic study on the evolution of the morpho-
logical properties of porous carbons derived from coffee waste using a one-pot potassium-hydroxide-
assisted process at temperatures in the range of 400–900 ◦C. Raw materials and obtained carbons were
studied by TG, DTG, SEM and nitrogen adsorption porosimetry. The decomposition temperature
ranges for hemicellulose, cellulose and lignin as the main component of the feedstock have been
established. It is shown that the proposed method for the thermochemical treatment of coffee waste
makes it possible to obtain activated carbon with a controllable pore size distribution and a high
specific surface area (up to 1050 m2/g). A comparative study of the evolution of the distribution of
pore size, pore area and pore volume has been carried out based on the BJH and NL-DFT (slit-like
pores approximation) methods. The fractal dimension of the obtained carbons has been calculated by
Frenkel–Halsey–Hill method for single-layer and multilayer adsorptions.

Keywords: disordered carbon; micropore; mesopore; nitrogen porosimetry; fractal dimension; coffee

1. Introduction

Today, the uninterrupted availability of a sufficient number of energy sources at an
affordable price is a standard of living and safety for the population of the world. At the
same time, the structure of the modern energy system must provide the ability to withstand
all kinds of shocks, including natural disasters, global climate change, geopolitical and
military conflicts, etc. These needs have led to the widespread use of coal, oil and natural
gas, which creates several problems: depletion of fossil fuel reserves; excessive emissions
of greenhouse gases; and a harmful ecological footprint of production [1–3]. Despite the
listed problems, it is expected that in the coming decades, oil and gas will remain important
components of world energy demand, especially in the transport sector [4]. However,
energy systems structured in this way are a large source of anthropogenic greenhouse
gases, so the decarbonization of the energy industry is becoming a key element of global
policy on climate change [5,6].
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Of all existing sources of energy, electricity occupies a leading position in meeting the
needs of households, industry and ordinary consumers. To effectively solve the problems of
excessive energy demands, reliable ways of storing it are required. The storage of electricity
requires a material that has an acceptable cost and that can be synthesized using natural
resources and available renewable energy sources [7–10].

Further progress concerning enhancing the performance of electric double-layer elec-
trochemical capacitors (ultracapacitors) will be possible only after the development of new
methods for obtaining porous carbon with optimized morphological properties [11]. The
study of the evolution of a porous structure is crucially important for revealing the main
effects of thermal and chemical treatments on the specific surface area and pore charac-
teristics of activated carbons. An additional important factor is the type of raw material
used to obtain carbons, such as fruit stones, coconut shells or flax fiber [12]. The chemical
composition (the ratio of the content of lignin, cellulose and hemicellulose) as well as the
structural order of plant feedstock determine the morphology of materials after carboniza-
tion and are a precondition for further changes during chemical activation [13]. The choice
of a strategy for the preparation of activated carbon based on certain plant materials will
make it possible to control its main morphological characteristics (pore size distribution,
pore type, ratio of micro- to meso-pores and specific surface area) [14–16]. Increasing the
performance of an ultracapacitor electrode requires the formation of both “transport” pores,
the diameter of which exceeds the size of the solvated electrolyte ions, and “storage” pores,
with diameters close to those of electrolyte ions. The search for an optimal balance between
different types of pores makes it possible to optimize ion transport and form an electric
double layer. Another important characteristic of activated carbon as a system consisting of
turbostratically arranged carbon fragments is its fractal dimensions [17,18]. This parameter
characterizes the degree of geometric complexity and structural heterogeneity of activated
carbon as a rigid framework consisting of both micro- and meso-pores [19]. There are three
different types of fractal analysis based on the analysis of the perimeter, surface and mass of
fractal dimensions, respectively [20]. Fractal analysis is an effective method for describing
the porous structure of porous carbons. Specialized optical interference filters have recently
been successfully used to improve the accuracy of fractal analysis procedures [21–23]. The
use of high-precision thin-film sensors based on single-crystal materials has improved the
targeting of fractal analysis [24,25].

Moreover, the fractal dimension can be used to characterize the size and distribution
of pores in the material, determine the geometric features of the pores and also compare
various porous carbon materials in terms of their structural properties. The use of fractal
dimensions makes it possible to obtain quantitative characteristics of the porous structure
of carbon materials, which can be used for further analysis and modeling of their behav-
ior. Carbon materials, including graphene, fullerenes, single-walled and multi-walled
nanotubes and carbon aerogels, have unique fractal structures. The fractal structure of
carbon materials is one of the key aspects that determine the mechanical, electrical and
thermal characteristics of these materials. The study of the fractal structure of nanoporous
carbon materials is of great importance for understanding their physical and chemical
properties, as well as for the development or optimization of the methods of synthesis
of these materials with controlled or even assigned characteristics, such as conductivity,
band gap, catalytic activity and others [26–28]. The development of porous materials with
a controlled morphology allows for expanding the possibilities of obtaining composite
materials using the infiltration technique [29] with low melting point alloys [30], leading to
desirable combinations of mechanical and tribological properties [31].

There are already a few works dealing with the synthesis of carbon from coffee
grounds, for example [32], but a feature of our work is the approach of predicted op-
timization of the morphological properties of coffee-ground-biowaste-derived carbons.
Compared to [33], the novelty of this work is finding general regularities of the fractal
structure changes of biocarbons synthesized using a fast one-pot method. The typically
used activated agents for preparation of biochar-derived activated carbon are H3PO4 and
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ZnCl2 as well as alkali metal carbonates and oxides [33]. The process of the chemical activa-
tion of biochar with hydroxides of alkali metals is complicated because the structural and
textural parameters of activated carbons significantly depend on the activation procedure
details [34]. Simultaneously, the use of potassium hydroxide as an activated agent with
adjusting the activation procedure conditions (concentration, temperature and duration
of the process, pretreatment carbonization) allows us to produce porous carbons with
extremally high specific surface areas (up to about 3500 m2·g−1) combined with a high con-
tent of meso- and macro-pores [32]. As a result, the study of potassium-hydroxide-assisted
thermochemical activation of coffee ground waste without precarbonization or additional
chemical treatment is of significant scientific and practical interest.

This paper presents results on the effect of thermochemical activation conditions on
the morphological characteristics and textural properties of activated carbon obtained from
waste coffee grounds. Based on the analysis of nitrogen adsorption isotherms using the
slit-like pore model, changes in the fractal dimension of microporous activated carbons
are presented. Processing coffee ground waste into a porous carbon material allow us
to effectively repurpose this waste and reduce its environmental impact according to the
principles of a circular economy and waste reduction, contributing to a more sustainable
approach to waste management. The ability to repurpose a common waste product into a
valuable and versatile material underscores the importance of this approach for sustainable
development and resource optimization. This approach offers versatile solutions across
various sectors, including energy, environment and healthcare industries [35]. As an
example, porous carbon derived from coffee grounds is a perspective electrode material in
energy storage devices such as supercapacitors and batteries that can drive advancements
in renewable energy technologies and electric vehicles, ultimately reducing the reliance on
fossil fuels.

The purpose of this research is to develop a technology for the production of activated
carbon from coffee waste and to study the effect of the synthesis conditions on its properties.

2. Materials and Methods

The production of activated carbon from waste coffee grounds was carried out accord-
ing to the developed technological process (Figure 1).

Fresh coffee ground waste without fermentation was used as a raw material for the
preparation of activated carbon without additional milling after washing and drying at a
temperature of 90 ◦C for 48 h (Figure 2).

A mixture of dried coffee waste, KOH and water (mass ratio 1:0.5:1) was transferred
to a stainless steel autoclave and sealed. To design the autoclave, we used the methodical
approach proposed in paper [36]. Special attention was paid to the tightness and reliability
of the threaded connections [37–40]. The mixture was heated in an autoclave at a rate of
10 ◦C/min. After reaching the thermochemical treatment temperatures (400, 500, 600, 700,
800 and 900 ◦C), the autoclave was kept under these conditions for 0.5 h. After isothermal
exposure, the furnace was turned off and cooled to room temperature. The resulting
carbons were repeatedly washed with distilled water and 5% aqueous HCl solution to pH
= 5.0–5.5, dried at 90 ◦C for 48 h, grinded to a fraction size of about 100–150 µm (Figure 3)
and labelled according to the thermochemical treatment temperature (◦C) as SX, where
X = 400, 500, 600, 700, 800 or 900.

Thermal analysis was performed on an STA 449 F3 Jupiter simultaneous thermal
analyzer using NETZSCH Proteus® 8.0 software (Erich NETZSCH GmbH & Co. Holding
KG, Selb, Germany). Measurements were carried out in an argon atmosphere in the
temperature range of 20–850 ◦C with a heating rate of 10 K·min−1 up to a temperature of
1000 ◦C.
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Characterization of morphological properties (specific surface area, pore volume and
pore size distribution) of the obtained activated carbons was performed by N2 adsorption–
desorption at 77 K using a Quantachrome Autosorb Nova 2200e device and the NovaWin
software package (Quantachrome Instruments, Boynton Beach, FL, USA). Degassing of
the samples was carried out at a temperature of 170 ◦C. The Brunauer–Emmett–Teller
(BET) specific surface area SBET (m2/g) was determined from the adsorption isotherm
in the range of relative nitrogen vapor pressures (0.05 ≤ p/p0 ≤ 0.3). The cumulative
pore volume, Vtotal (cm3/g), was determined from the amount of nitrogen adsorbed at
p/p0 ≈ 1 (p/p0 = 0.996). Parameters of the meso- and macro-porous structure of the
synthesized carbons were calculated via the Barrett–Joyner–Halenda (BJH) method based
on the modified Kelvin equation. This approach is considered valid for the capillary
condensation theory and was used for the evaluation of the meso- and macro-pore size
distribution (model of cylindrical pores) [41]. In parallel, the non-local density functional
theory (NL–DFT) method of pore-size distribution calculation was used. This approach is
based on the construction of adsorption isotherms in certain pore geometries using classical
fluid density functional theory [42]. The pore size distribution was determined by solving
the adsorption integral equation using regularization techniques. A slit pore model in
NovaWin 10.0 software was applied in this paper. The surface morphology of the obtained
activated carbons was determined using scanning electron microscopy (SEM, JSM–6700F,
JEOL, Tokyo, Japan).

3. Results and Discussion

The thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of raw
coffee waste obtained in an argon atmosphere are shown in Figure 4. Fitting of the DTG
curve with Gaussian functions (Figure 4) made it possible to determine the temperatures of
the maximum intensity of chemical transformations, as well as the relative contents and
temperature intervals of decomposition of the main components of raw plant materials.
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heating waste coffee grounds at a rate of 10 ◦C/min.

Weight loss in the temperature range of 60–180 ◦C with a maximum at 100 ◦C is associ-
ated with the process of dehydration of the initial material without structural changes. The
first stage of feedstock pyrolysis proceeds at temperatures between 200 and 380 ◦C with a
maximum at 296 ◦C and is associated with thermal depolymerization of hemicellulose as
the main sugar component of coffee waste, with an estimated content of 48.9%. The evapo-
ration/decomposition of aromatic oils also occurs at this stage [43]. The decomposition of
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cellulose at a corresponding cellulose content of 17.4% occurs in the temperature range of
310 to 390 ◦C (stage 2), with the highest intensity at 345 ◦C, and is completely overlapped
with the pyrolysis of hemicelluloses/oils. The final stage (stage 3) of thermally induced
transformations is observed in a wide temperature range from 307 to 514 ◦C, reached at
403 ◦C and associated with the decomposition of lignin. The weight loss corresponding to
the degradation of lignin makes it possible to evaluate the component of coffee grounds
rich in aromatic rings (about 33.7%). However, above 520 ◦C and up to 1000 ◦C, only a
slight weight loss (up to 6%) is observed, with a total of weight loss of about 78%. Nitrogen
adsorption/desorption isotherms for S400 and S500 materials (Figure 5a,b) are type II
isotherms according to the IUPAC classification [44], and both have hysteresis in the region
of low relative pressures. The divergence of the adsorption and desorption branches at
low pressures can be explained by the irreversible retention of nitrogen molecules in the
carbon material powder, the size of which is close to that of the adsorbate molecules [45].
These isotherms are typical for meso- and macro-porous adsorbents and are determined
by the physical sorption of the adsorbate on the outer surface of the particles. S400 carbon
adsorption isotherms (Figure 5a) start from p/p0 ≈ 0, and the completion of the monolayer
nitrogen coating occurs at p/p0 ≈ 0.05 and corresponds to a specific surface area (SBET) of
about 31 m2/g (Table 1). For S500 carbon (Figure 5b), the inflection of the adsorption branch
is relatively flatter, which indicates multilayer adsorption with incomplete formation of
a nitrogen monolayer. The completion of the monolayer coating can be considered at the
pressure range 0.12 < p/p0 < 0.19, which corresponds to SBET ≈ 170 m2/g. A change in the
shape of the isotherm with a further increase in relative pressures for both S400 and S500
samples indicates an increase in the thickness of the adsorbed nitrogen layer.

The surface of sample S400 is mostly uniform (Figure 5a,b). Large pores ranging
in size from 0.1 to 1 µm are visually observed both on the surface and inside of carbon
particles. The surface of the material is visually smooth, without corrosion caused by the
thermochemical activation of potassium hydroxide, which is the reason for the relatively
low specific surface area (Table 1).

The adsorption isotherms measured for samples S600 and S700 (Figure 5c,d) are similar
and can also be assigned to type II according to IUPAC. The main difference between these
samples is the volume of absorbed gas required for the formation of a nitrogen monolayer,
which indicates an increase in the content of micropores for sample S700 (Table 1). At
the same time, low-pressure hysteresis was observed for both samples. The evolution
of the microporous structure for samples S800 and S900 causes high-pressure hysteresis
of the H4 type (Figure 5e,f) according to the IUPAC classification [44], associated with
capillary condensation of nitrogen in the micro- and meso-pores of the carbon material. The
growth in the adsorption branch of isotherms for S800 and S900 carbons is due to multiple
processes of evaporation and condensation of nitrogen at p/p0 ≈ 1.

The development of a porous structure is directly observed in the SEM images of the
S900 sample (Figure 6c,d). Increasing the thermochemical treatment temperature leads to
narrowing of the pores and the formation of root-shaped pores, resulting in a sponge-like
carbon particle. Surface corrosion of carbon is caused by the thermochemical activation
of potassium hydroxide and is the reason for the high specific surface area of the material
(>1000 m2/g). It can be argued that an activation temperature in the range of 800–900 ◦C is
optimal for obtaining a carbon material with a highly developed surface area based on the
raw material composition (Table 1).
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Table 1. Morphological parameters of activated carbons obtained at different temperatures.

Sample S400 S500 S600 S700 S800 S900

SBET, m2/g 31 172 374 446 703 1056
SDFT, m2/g 23 193 309 478 632 1170
Smeso, m2/g 30 44 27 27 22 45
Smicro, m2/g – 80 319 402 671 996
Vtotal, cm3/g 0.092 0.161 0.228 0.237 0.331 0.507
Vmicro, cm3/g – 0.038 0.132 0.162 0.272 0.398
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Figure 7. BJH distributions of (a) areas and (b) volumes of pores for carbon samples obtained at 
different temperatures. 
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plot for S900 sample.

The EDS spectrum measured for the S900 sample indicates that the obtained material
mainly contained carbon (about 93.46 at.%), oxygen (about 4.85 at.%) and potassium (about
1.31 at.%) elements. Respectively small quantities of silica (about 0.38 at.%) as well as the
possibility of magnesium and calcium presence was detected.

A more detailed analysis of the development of meso- and micro-pores as a result
of thermochemical activation was performed using complementary BJH and DFT meth-
ods [46]. Pore size distributions of the surface area and volume were calculated by modeling
adsorption isotherms for 0.35 < p/p0 < 1 using the BJH approach (Figure 7). An increase in
the thermochemical activation temperature from 400 to 500 ◦C causes an increase in the
area by 50%, mainly due to a change in the area of mesopores. The main contribution to
the pore surface area for S400 carbon is observed for pores with a diameter in the range of
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3–4 nm. An increase in temperature to 500 ◦C causes structural changes with an increase
in the content of pores of about 3.5 nm in size and a redistributive transition of 4 nm to
5 nm pores (Figure 7a). The next increase in the activation process temperature from 500 to
800 ◦C leads to a decrease in the area of pores with a size of 4 nm by 30%, as well as to an
increase in the pore size from 5 nm to 6.5 nm (Figure 7a).
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Figure 7. BJH distributions of (a) areas and (b) volumes of pores for carbon samples obtained at 
different temperatures. 
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Simultaneous burnout of the inner surface of the pores initiates an increase in the pore 

Figure 7. BJH distributions of (a) areas and (b) volumes of pores for carbon samples obtained at
different temperatures.

The observed evolution of the porous structure is due to the burnout of carbon par-
ticles along their contour surface, which leads to a decrease in pores with a size of 4 nm.
Simultaneous burnout of the inner surface of the pores initiates an increase in the pore size
up to 6.5 nm when the burnout of the pore walls causes the merging of several micropores
into mesopores, which corresponds to a sharp increase in both the area (Figure 7a) and
the volume of mesopores (Figure 7b). The observed changes in pore volume are correlated
with the specific surface area. In the case of S400 and S700 carbons, pores of about 10 nm in
size contribute to the total volume, the number of which decreases with a further increase
in the activation temperature.

The specific surface area of mesopores is provided mainly by pores up to 7 nm in size,
since at these sizes the S(d) curves reach a plateau (Figure 8a). In addition, an increase in
the pore volume occurs in the entire studied range of sizes (Figure 8b), and no inflection
is observed in the V(d) dependences. The change in the microporous structure of carbon
samples as a result of thermochemical activation at various temperatures was studied
using the DFT method for modeling nitrogen adsorption/desorption isotherms with the
approximation of a slit-like pore shape.
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The formation of micropores begins at 500 ◦C (Figure 9) when the material obtained
at 400 ◦C has a mesoporous structure with only a surface area of 23 m2/g (Table 1, DFT
method). It was noticed that in the samples obtained at temperatures of 500 to 800 and
900 ◦C there was an increase in the content of pores with a size of 0.65–1.25 nm, which
provide up to 90% of the specific surface area and up to 80% of the total pore volume
(Figure 9). In the case of a constant ratio of potassium hydroxide and raw materials in the
production of carbon material, an important factor affecting the morphology and porous
structure of the resulting sample is the temperature of thermochemical activation.
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Figure 9. DFT distributions of pore (a) areas and (b) volumes for carbon samples obtained
at different temperatures.

The surface roughness of the obtained carbons was characterized by the fractal di-
mension D by calculation based on nitrogen adsorption porosimetry data. For the case
of a Euclidean surface, D = 2; however, for an irregularly developed surface, the D value
can vary from 2 to 3 and thus expresses the degree of surface roughness and/or porous
structure. To determine the fractal dimensions of a surface, several models based on the
gas adsorption and desorption method can be used, including the Langmuir model, the
Frenkel–Halsey–Hill (FHH) model and the thermodynamic model [47].

The fractal dimension of the obtained carbons was studied by the modified FHH
method, which is used for multilayer adsorption [48]. The surface fractal dimension is
determined by rearranging the nitrogen adsorption isotherms (Figure 5) and plotting
the dependence of lgV on lg(lg(p0/p)) according to the following equation: lg(V/V0)
= A(lg(lg(p0/p))) + const, where V is the volume of adsorbed gas, V0 is the volume of
adsorbed gas corresponding to the formation of a monolayer of N2 molecules, p is the
equilibrium pressure, p0 is the vapor pressure of saturated gas and A is the slope of the
curve, which depends on the fractal dimension [47].

The dependences of lgV on lg(lg(p0/p)) were linearly approximated in different
ranges of relative pressures (ranges 1 and 2 in Figure 10), corresponding to single-layer
and multilayer adsorptions, respectively, and the values of slope A were determined for
each sample. The values of fractal dimension D were calculated as D = A + 3 or D = 3A + 3.
The van der Waals interactions of nitrogen molecules with the carbon surface dominate
at low relative pressures (range 1, Figure 10). Surface tension at the liquid–gas interface
at the initial stage of adsorption can be neglected. In this case, the relationship between
parameters A and D is determined by the equation: D = 3A + 3. In the case of multilayer
adsorption (range 2, Figure 10), the surface tension between gas and liquid prevails, and
the equation transforms into D = A + 3 [49].
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Figure 10. Dependences of lgV on lg(lg(p0/p)) for carbon samples obtained in different ranges of
relative pressures (ranges 1 and 2) at different temperatures: (a)–400 ◦C; (b)–500 ◦C; (c)–600 ◦C;
(d)–700 ◦C; (e)–800 ◦C; (f)–900 ◦C.

The calculated values of A and D parameters for both ranges are given in Table 2. It was
determined that the calculated values of the fractal dimension for single-layer adsorption
are in the range of 2.07 < D < 2.67. The maximum value D = 2.67 is observed for sample
S800. The values of the fractal dimension obtained for multilayer adsorption are close to 3
for samples S800 and S900. The maximum value of D is also observed for S800. It can be
concluded that the samples obtained at higher temperatures of thermochemical activation
(800–900 ◦C) have a rough, disordered surface, with splitting of micropores to mesopores.
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Table 2. Values of fractal dimensions calculated for carbons obtained at different temperatures.

Sample
Range I

Single-Layer Adsorption
Range II

Multilayer Adsorption

A D = 3A + 3 A D = A + 3

S900 −0.19 2.43 −0.03 2.97
S800 −0.11 2.67 −0.02 2.98
S700 −0.31 2.07 −0.11 2.89
S600 −0.25 2.25 −0.17 2.83
S500 −0.23 2.31 −0.34 2.66
S400 −0.56 1.32 −0.32 2.68

Pore narrowing can be expected at a certain distance from the surface, corresponding
to the formation of a root-like porous structure. Carbon materials obtained at temperatures
of 500–700 ◦C have a smoother surface, which corresponds to a fractal dimension close to
2 for single-layered sorption. The fractal dimension for sample S400 (D = 1.32) exceeds
the limits of 2 < D < 3, which can be explained by the irreversible retention of nitrogen
molecules on the surface of the carbon sample and the inexpediency of using the formula
in the pressure range of monolayer formation. Therefore, the obtained D values for these
materials in multilayer adsorption are in the range of 2.66–2.68. Carbons obtained at 600
and 700 ◦C have intermediate values of fractal dimension (2.07 and 2.25 for single-layer
absorption and 2.83 and 2.89 for multilayer adsorption, respectively), which indicates the
formation of a porous structure at these temperatures, combining 2D and 3D elements.

The novelty of the presented results in comparison with previously published data [50–52]
lies in the use of a combined carbonization/activation synthesis route, as well as in a com-
plex approach to the analysis of nitrogen adsorption porosimetry data and the establishment
of general patterns of the effect of activation temperature on the fractal dimensions of acti-
vated carbons derived from coffee waste. In addition, the obtained results agree with the
data in paper [8].

In further research, it is planned to introduce the developed technology for the pro-
duction of porous carbon into production.

4. Conclusions

Activated carbon was prepared from waste coffee grounds by thermochemical activa-
tion with potassium hydroxide in the temperature range of 400–900 ◦C. These materials
were characterized by adsorption/desorption of nitrogen, TG, DTG and SEM. Thermal
analysis showed that the decomposition of hemicellulose, cellulose and lignin occurs in the
temperature ranges of 200–380, 310–390 and 307–514 ◦C, with a relative content of the three
sugars of 48.9, 17.4 and 33.7 mass%, respectively. For all the obtained samples, the presence
of both micro- and meso-pores was observed, and the content of micropores increased with
an increase in the thermochemical treatment temperature. The BET specific surface area
simultaneously increased in the range of 400–1050 m2/g. Active carbons obtained at an
activation temperature of 900 ◦C with a micropore content of about 95% have the maximum
BET surface area. A comparative analysis of the evolution of the pore size distribution was
carried out using the BJH and NL-DFT (slit-like pore approximation) approaches. Fractal
dimension analysis based on the Frenkel–Halsey–Hill approach indicates a complex porous
system formed in the carbon sample containing micro-, meso- and macro-pores. There is a
nonlinear change in the fractal dimensions calculated for single-layer adsorption with a
minimum (D = 2.02) for carbons obtained at 600 ◦C. At the same time, an increase in the
activation temperature in the range of 400–900 ◦C causes an increase in the values of the
fractal dimension calculated for single-layer adsorption from 2.68 to 2.97. The obtained
results indicate that the formation of a developed porous structure during the thermo-
chemical activation of coffee waste occurs in the temperature range of 700–800 ◦C. Tuning
the structure and morphology of carbon materials is a promising way to optimize their
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electrochemical performance in aqueous electrolytes and improve the efficiency of charge
storage systems.
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