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Abstract: Scanning tunneling microscopy measurements of height profiles, along the chains of Si
atoms on the terrace edges of a perfectly ordered Si(553)-Au surface, reveal an STM bias-dependent
mixed periodicity with periods of one, two and one and a half lattice constants. The simple linear
chain model usually observed with STM cannot explain the unexpected fractional periodicity in the
height profile. It was found that the edge Si chain stands for, in fact, a zigzag structure, which is
composed of two neighboring rows of Si atoms and was detected in the STM experiments. Tight-
binding calculations of the local density of states and charge occupancy along the chain explain the
voltage-dependent modulations of the STM profiles and show that oscillation periods are determined
mainly by the surface and STM tip Fermi energies.

Keywords: atomic chains; charge density waves; Friedel oscillations; electron occupancy along the
chain; Si(553)-Au surface; STM; tight binding

1. Introduction

Among the many effects occurring in metallic one-dimensional (1D) atomic chains,
charge density waves (CDW) [1–4] are frequently observed and can be easily investigated
with a scanning tunneling microscope (STM). The concept of this effect assumes that metallic
1D chains are unstable at low temperatures, which was originally proposed by R. Peierls in
1955 [5]. The main mechanisms that are responsible for CDW in 1D systems are the collective
displacement of atoms, electron–electron interactions, or electron–phonon couplings [4,6,7].
In a perfectly ordered system, CDW modulation is commensurate with the position of
atoms, but any lattice imperfection, including 1D structure termination, generates CDW
with characteristic length decay. Note, also, that spin-dependent CDW with spin-up and the
spin-down electron waves are characterized by having no lattice distortion [8].

Another effect associated with the wave nature of electrons in 1D systems is known as
Friedel oscillations (FO) [9] and it appears in regular systems with spatially disturbed potential
(by lattice imperfections, impurities, and dislocations) or in confined atomic systems due to
boundary effects [10–12]. This effect was theoretically predicted by J. Friedel, and it manifests
as an oscillatory behavior of the electronic density around an impurity potential [13,14]. Friedel
oscillations have first been investigated by means of the STM technique on cooper surfaces [15]
where standing wave patterns near point defects and atomic steps were observed. This effect
was also found in 1D electron gas and atomic chains [7,16] with a characteristic sinusoidal
decay of the oscillation amplitude in the fermionic density near the perturbation. The rate of
oscillation decay depends mainly on the system dimensionality [17] and may influence the
stability and other properties of metallic atomic chains as well as of ultrathin metallic films [18].
The impurity-induced Friedel oscillations along the system allow one to get information about
the electronic properties of the investigated system. For a multilayer graphene, the interference
FO pattern reveals the band structure of this material, and allows to determine the quantized
Berry phases as well as the number of stacked layers [19]. Note that FO and CDW can
appear simultaneously in regular systems that are confined (by boundaries) or have charge
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impurities inside [20,21]. As a result, one should observe standing electron waves with higher
intensity near the system imperfections and boundaries where charge waves are expected to
be more evident.

To our best knowledge, there are no experimental results on the total electron occupan-
cies along the chain. Such occupancies at each chain site can be derived theoretically and
they often form a regular charge wave. Instead, in experiments, scientists show the STM
height profiles or STM currents (with the topographic images) with well-visible oscillations
and call them FO or CDW. In such a case, these waves that are formed along the chain
should be almost independent of the STM tip and the applied STM voltage. However,
in most experiments the waves show strong dependence on the STM parameters (they
are voltage-dependent and, in particular, they can change the oscillation period) which is
unclear and should be thoroughly explained.

In this paper, we experimentally and theoretically study the problem of charge waves
in atomic chains on the surface. Both CDW and FO concern spatial variability of the local
density of states (LDOS) and overlap in most cases, leading to standing charge waves along
the system. It is known that the periodicity of these waves is determined by the system Fermi
energy. However, for the chain between two electrodes out of equilibrium or in the STM
geometry, there are two Fermi energies that influence the charge oscillation period. Thus, we
predict that the net charge modulation along the chain should depend on both Fermi energies
and can be a combination of two periods. This problem is also reflected in the interpretation
of the STM results due to at least two reasons: firstly, for the constant current operation of the
STM, the height profile carries data on both the topography and integrated LDOS modified
by the tunneling transmission coefficient; secondly, a reliable interpretation can only be made
for metallic systems where sample biases are close to zero and the bias energy window is
small. For larger biases, the shape of the system LDOS in the bias window (between the
surface and STM Fermi energies) should determine the chain occupancy and can significantly
modify charge waves in the system leading to bias-dependent oscillation periods. In this
work, we resolve this problem and unambiguously identify the nature of voltage-dependent
periodicities using the experimental studies and theoretical tight-binding calculations.

In order to corroborate our predictions, we are going to investigate Si atomic chains
on a Si(553)-Au surface by means of the STM topography method. Next, for a chosen finite
chain, the detailed height profiles along the chain will be recorded. This allows us to answer
the question of whether (and how) the oscillation structure of measured curves change
with the positive and negative STM biases. In our theoretical calculations it is crucial to
consider the atomic chain on a substrate which corresponds to the experimental setup and
can be useful to explain the charge waves behavior along the chain and to verify which
physical parameters are responsible for the observed effects. The atomic chain located at
the edge of Si(553)-Au terraces seems appropriate for investigating the problems mentioned
above. However, recent intensive experimental and theoretical investigations of Si atomic
chains at the edge of Si(553)-Au terraces [22–29] assumed a single, double, triple, or even
six-unit cell as a building block of terraces, including an atomic chain of Si atoms at the
edge. These diversities were caused by the fragile atomic structure of the surface prone to
transformation upon temperature variation [30], doping [31] caused by tunneling currents
or adsorbtion of hydrogen atoms [32,33]. Note, however, that the origins of different Si
chain periodicities on Au decorated Si(553) surfaces are still under discussions [23,30,34–38].
STM techniques are the methods of first choice for studying the atomic structure of atomic
chains, therefore it seems necessary to thoroughly understand the charge distribution
effects with integer and fractional periodicities. To our best knowledge, until now, the
bias-dependent fractional periodicity of the STM height profiles of Si atomic chains on
Si(553)-Au surface has not been reported in the literature. Our experimental and theoretical
studies deliver a semi-quantitative explanation of the observed fractional periodicity in the
height profile along the Si chain and the bias-dependent variation of the periodicity upon
sample bias. Since all experimentally studied atomic chains on different surfaces interact
with the substrate, the results of the presented work should be of more general importance.
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2. Experiment: Methods and Results
2.1. Experimental Details

The experiments were carried out in an ultra-high vacuum system with a base pressure
in the middle of the range of 10−11 mbar. The system was equipped with a Reflection High
Electron Energy Diffraction (RHEED) diffractometer, OMICRON LT STM/AFM apparatus,
gold deposition sources, and a precise quartz microbalance sensor. N-type Si (553) samples
with a specific resistivity of 0.002 ÷ 0.01 Ω · cm were cleaned according to the standard
procedure for silicon samples. After several hours of degassing, the samples were finally
cleaned at a temperature of about 1500K using DC flashing under RHEED control until
a clean surface without SiC contamination was achieved. Next, 0.48± 0.02 ML of Au (in
units of one half of the Si(111) surface atom density equal to 7.84× 1014 atoms/cm2) was
deposited onto a substrate held at room temperature. The desired well-ordered surface, in
the form of one-dimensional structures of various lengths running along the periodically
arranged atomic steps, was obtained after heating the sample at 950 K for 2 s and gradual
cooling to room temperature over 3 min. During resistive heating, the current was directed
parallel to the steps. Scanning tunneling topography measurements in the constant current
and constant height modes were carried out at 4.6 K and/or 77.4 K. All sample preparation
steps were controlled with the RHEED diffractometer.

2.2. Atomic Structure of Si Edge Chains on Si(553)-Au

Figure 1 shows topographic images (panel a) and corresponding height profiles (panel b)
for the edge Si atomic chain of the Si(553)-Au sample recorded with a tunneling current of 50
pA and for sample biases from −3 V up to +3 V at 4.6 K. In each profile curve, two minima
can be seen due to defects defining the length of the atomic chain as equivalent to 17 × aSi,
where aSi = 0.384 nm is the length of the bulk Si lattice unit along the [110] direction. The
nature of these defects has been previously investigated, and their origin was found to be due
to the adsorption of residual water molecules [39]. We concentrate on finite length Si chain
where FO and CWD effects should be more evident. A chain of this length (which consists of
N = 35 Si atoms) will later be used as a model for theoretical calculations.

As one can see, the height profiles show different oscillation periods along the chain.
While the −2.0 V, +1.0 V, +1.5 V and +2.0 V profile curves clearly show the presence of the
2× aSi modulation superimposed on the usual 1× aSi oscillations, the other profiles are
more complicated, especially those for −1.5 V and −1.0 V showing modulation of 1 1

2 × aSi.
Moreover, curves with bias below −1.5 V show symmetrically decaying oscillations at both
ends that are related to FO.

Several theoretical works [25,26,28,30] indicate that Si atoms at the step edge of the
Si(553)-Au surface belong to a honeycomb structure formed from other Si atoms on the
terrace, as shown in more detail in Figure 2, where a high-resolution, constant-height image
of a Si(553)-Au terrace with Si atoms at the step edge are displayed. Bright features are
identified as edge atoms forming the Si1 atomic chain. Together with the Si2 atoms of
the next neighbouring parallel row (see Figure 2a), they form a zigzag type chain (blue
balls in the atomic scheme) where the distance between Si1 (and between Si2) atoms is
0.384nm, while between Si1 and Si2 it is only 0.222 nm [25]. In STM topographic and in
constant height images, atoms Si1 dominate due to their unbounded orbitals. Therefore, in
order to also resolve neighboring Si2 atoms in the composed chain, the image was recorded
with a relatively large current, reaching up to 2.4 nA and setting a minimal STM loop gain.
The experiment was performed at 77 K with a sample bias of +1.2 V. Figure 2b shows
the tunneling current profile along the line of Si2 atoms. Smaller peaks clearly indicate
that there are other Si atoms between the edge sites screened by Si1 edge atom orbitals.
Thus, our STM experiments confirm the existence of the Si edge chain, which is composed
of two atomic rows in the zigzag geometry; this conclusion constitutes a very important
result for this paper. In our theoretical mode we assume that the couplings between
neighboring atoms (Si1 − Si2) are defined by hopping integrals t and t′ for interactions
between (Si1 − Si1), with the dominant role of t.
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Figure 1. (a) A series of topographic images of the same Si edge atomic chain of Si(553)-Au sample.
Left side labelling denotes sample bias. Images were recorded with tunneling current of 50 pA at 4.6 K.
(b) Corresponding height profiles. Notice labelling to the right where signal multiplication factor is
displayed. For better visibility, the curves are shifted successively by 0.05 nm and the colors are changed.
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Figure 2. (a) a high-resolution constant-height image of a Si(553)-Au terrace, with structural model
of Si(553)-Au surface atoms published in reference [25]. To the left, a side view of this model is
displayed. Si1 and Si2 atoms form a zigzag chain discussed in the article. Panel (b) shows tunneling
current profile along chain formed by Si2 atoms. Large peaks originate from Si1 atoms with unbound
orbitals. The smaller ones come from Si2 bound to four other Si atoms. The image was recorded at 77
K with a sample bias of +1.2 V and setting of a minimal STM loop gain. The distance between larger
neighboring peaks corresponds to Si lattice unit cell length along the [110] direction.
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3. Theoretical Description
3.1. Model and Calculation Method

To describe the electronic properties of the considered chain at the surface, we use
tight-binding calculations, which can successfully capture the essential physics of low-
dimensional materials [40–42]. The system is modeled by a finite-length chain composed of
N atomic sites in the zigzag configuration, as shown schematically in Figure 2 (blue balls),
which corresponds to Si chains at the terrace edge of the Si(553)-Au surface. Such a system
can be described by the following second quantization Hamiltonian:

H =
N

∑
i=1

εia†
i ai + ∑

~k

ε~ka†
~k

a~k +
N

∑
i=1

∑
~k

V~ki ,i
a†
~k

ai + ∑
<i,j>

ti,ja†
i aj + h.c. (1)

The operators a†
i , ai, a†

~k
, a~k are creation/annihilation operators at the i-th atomic site,

or in the surface electrode in the~k state, respectively, and ε~k (εi) corresponds to possible
electron energies in the surface (atomic chain). Here, the summation over i runs over
all atomic sites in the chain, i = 1, . . . , N, and the sum over < i, j > in the last term
in Equation (1) includes both the neighboring and next-neighboring atomic sites. The
parameter V~k,i stands for the couplings (hybridization elements) between the states in the
surface and in the chain.

It is worth noting that, in our model, electron–electron interactions are assumed to
be irrelevant and can be captured by an effective shift of the chain’s onsite energies, such
that they do not lead to correlation effects. Then, both spin directions are independent of
each other, and spin indexes in the Hamiltonian are not written explicitly. Moreover, we
consider only regular chains with the same hopping integrals between the neighboring
atomic sites, ti,j = t, and uniform on-site electron energies, εi = ε0. The next-neighbor
couplings between the step Si atoms can also be considered along the chain and, for them,
we assume ti,j = t′. These terms can play a role mainly for positive STM voltage, as in
this case the electron density near the surface increases, which leads to more occupied Si
unbounded states with nonzero hybridization elements (hopping integrals), t′.

To analyze charge distribution along the chain, we need to obtain the on-site electron
occupancy from the formulae:

ni =
∫ EF

−∞
LDOSi(E)dE , (2)

where LDOS(E) is the local density of states function at a given i-th site and the zero
temperature case is assumed. The LDOS function is obtained within the framework of the
Green’s function method from the relation: LDOSi(E) = − 1

π ImGr
ii(E), where Gr

ii(E) is the
retarded Green function related to the i-th site of the chain. This function can be found from
the knowledge of the Hamiltonian and the equation of motion technique [43]. After some
algebra, one obtains the set of algebraic complex equations for Gr

ij, which can be written in

the matrix form: Â · Ĝr = Î, where Î is the unit matrix, and Â matrix elements read:

Aij = (E− ε0)δij + i
Γij

2
− tδi,j±1 − t′δiodd ,j±2 (3)

The spectral density function, Γij(E) = 2π ∑k V~kiV
∗
~k j

δ(E− ε~k ), stands for the effective

chain–surface coupling and, in general, depends on the electron localization in the substrate.
In our calculations, we model this function within a wideband approximation as energy
independent, such that Γij(E) = Γδij.

Note that the t′ parameter concerns every second atomic site, but only within the Si
topmost edge chain (Si1 − Si1), and the delta function includes only the odd i index, δiodd ,j±2.
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Thus, by finding the inverse of Â we can find the matrix of retarded Green functions Gr,
i.e.,

Gr
ij(E) =

cofÂij

det Â
, (4)

where cofÂ is the algebraic complement of Â matrix (so-called cofactor). Diagonal elements
of Gr

ij(E) allow us to obtain the LDOS function and then the occupancy. For a regular

chain on a substrate without the next neighboring couplings, t′ = 0, the matrix Â is
tridiagonal and its determinant satisfies the recurrence relation and can be expressed
analytically in terms of the Chebyshev polynomials of the second kind [44,45]. In our case,
for this determinant, we use the product representation which allows us to write the Gr

ii(E)
function as:

Gr
ii(E) =

∏i−1
j=1(E− ε0 + i Γ

2 − 2t cos jπ
i )∏N−i

j=1 (E− ε0 + i Γ
2 − 2t cos jπ

N−i+1 )

∏N
j=1(E− ε0 + i Γ

2 − 2t cos jπ
N+1 )

. (5)

Also, the LDOS function can be obtained analytically in this case and, e.g., for the
first chain site, i = 1, one finds:

LDOS1(E) =
Γ

2π

N

∑
j=1

t2(j−1)
∏

N−j
j1=1[(E− ε0 − 2t cos j1π

N−j+1 )
2 + ( Γ

2 )
2]

∏N
j1=1[(E− ε0 − 2t cos j1π

N+1 )
2 + ( Γ

2 )
2]

(6)

The above analytical solution for the LDOS function allows us to analyze the positions
of LDOS peaks in the energy scale. These peaks appear for minima of the determinant in
Equation (6), i.e., for E = ε0 + 2t cos jπ

N+1 , where j = 1, . . . , N is an integer number, and for
N-site chain one expects N peaks in LDOS. Moreover, Equation (6) is used to obtain the
electron occupancy from Equation (2), however, the transparent analytical form of ni in the
general case is difficult to derive.

For atomic chains, the condition for the charge waves is closely related to the conduc-
tance oscillations effect [36,46,47]. Then, the charge oscillations with the period of M-sites
along the chain occur if the following condition is satisfied:

EF − ε0

2t
= cos

mπ

M
(7)

where m = 1, . . . , M− 1, and EF is the Fermi energy of the surface. For example, the oscil-
lation with the period of M = 3 sites along the chain can be observed for EF − ε0 = ±2t
(here, sign+ is for m = 1 and sign− for m = 2). Similarly, the charge oscillations with
the period of M = 2, M = 4, M = 5 or M = 6 appear for EF − ε0 = 0, EF − ε0 = ±

√
2t,

EF − ε0 = ±
√

2t, EF − ε0 = ±
√

5±1
2 t, and EF − ε0 = ±

√
3t, respectively. A detailed discus-

sion with graphical illustrations of these conditions are given in the next section. Note
that charge oscillation period, M, is closely related to the periodicity of height profiles
along the Si atoms, which is usually expressed in terms of the lattice constant, aSi (distance
between every second site in the zigzag edge chain). In this case, experimentally observed
periodicity (in aSi units) corresponds to the half periodicity of the zigzag chain, M/2.

3.2. Charge Oscillations

The relative position between the Fermi energy and the on-site electron energies in the
chain determines the appearance of charge oscillations [36,46]. According to Equation (7),
it is also important how strong the hopping integrals are between the neighboring sites,
t. To illustrate the relation between the LDOS function and the charge oscillations in the
chain, in Figure 3 we analyze the role of the surface Fermi energy on the charge oscillation
period. In panel (a), the energy-dependent LDOS at the first atomic site, i = 1, is shown
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for the chain length N = 35 and the site–site coupling t = 2. As one can see, this function
is nonzero in the energy range (−2t,+2t), as is predicted for infinity 1D TB chains, and is
characterized by N peaks, which appear for all minima of the determinant in Equation (6).
Panel (b) shows the LDOS function for the second atomic location, i = 2, with an overall
shape different from the first, but with the same number of LDOS peaks. The different
intensities of these LDOS peaks at both sites lead to different occupancies of these sites
by electrons.

The horizontal colorized dashed lines in panels (a) and (b) indicate the energy positions
of the surface Fermi energy for which the condition for charge oscillations is satisfied with
the period of M = 2 (black line, EF = 0), M = 3 (magenta lines, EF = ±2), M = 4
(green lines, EF = ±2

√
2), M = 5 (blue lines, EF = ±(

√
5± 1)), and M = 6 (red lines,

EF = ±2
√

3). These energies were calculated using Equation (7). Note that instead of
changing the Fermi energy of the system, EF, one can equivalently change the on-site
energies of the chain, ε0, to obtain the same oscillation periods (for fixed EF).

In Figure 3, panel (c), electron occupancy along the chain is depicted for the chosen
positions of EF which correspond to the charge oscillations with the period of M = 3, 4, 5,
and 6 (from upper to bottom curves, respectively). As can be seen, the electron occupancy
along the chain varies depending on the Fermi energy of the substrate with very well
visible periodicities. These oscillations are more intense near the ends of the chain, as
expected for FO.

e

(a) (b)

F

(c)

M=3
M=4

M=5

M=6

M=2

M=5

–
–
–
–

Figure 3. Local density of states at the first atomic site, LDOS1(E), (panel a), and the second site
LDOS2(E), (panel b), for the chain length N = 35 atoms and for t = 2, t′ = 0, Γ = 0.1, ε0 = 0. The
dashed colorized lines indicate the positions of the Fermi energy for which charge oscillations along
the chain occur with a period of M = 2 (black line), M = 3 (magenta lines), M = 4 (green lines),
M = 5 (blue lines), and M = 6 (red lines), respectively. (c) Charge occupancy, ni, at every site of
the chain, i = 1, . . . , N, for the Fermi energy: EF = −t (which corresponds to the oscillation period
M = 3), EF = −

√
2t (M = 4), EF = −t(

√
5 + 1)/2 (M = 5), and EF = −

√
3t (M = 6), from the

upper to bottom curves (as is depicted in the legend). The lines are a guide for the eye.

The effect of charge density waves in atomic systems is widely reported in the literature
and is investigated mainly using the STM technique. The profile heights or the STM electron
current often show intriguing oscillations in space but, in fact, these oscillations depend on
the local DOS only between the surface and the STM chemical potentials, Esur f

F and ESTM
F .

This is the reason they cannot represent the total occupancy at a given site (which depends
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on LDOS below Fermi energy), but they are related only to the biased window charge, ∆n. In
this case, the STM current is directly proportional to this quantity:

ISTM ∼
∫ ESTM

F

Esur f
F

LDOSi(E)dE = ∆ni , (8)

Note that, for small biases (small difference between the STM and surface Fermi
energies), the tunneling current is proportional to the LDOS function at the Fermi energy.
For greater voltages, one expects a more complex dependence of the current as the LDOS
function in the bias window varies from site to site. Thus, it is desirable to investigate
how this function (bias window charge) changes along the chain for different voltages and
whether it reveals the Friedel oscillation effect.

In the beginning, we analyze the total charge (obtained according to Equation (2))
along the chain composed of N = 35 sites, where the condition for the period of M = 4
sites is satisfied, ε0 = +

√
2t (Figure 4, panel (a), black dots). The Friedel oscillations are

very visible, with decreasing oscillation amplitude towards the chain center. Additionally,
in this panel, the LDOS function at the surface Fermi level, LDOS(EF), is depicted (blue
squares), which also shows oscillations with a period of four sites. However, in contrast
to the Friedel oscillations, this function oscillates with a constant amplitude and does not
decrease along the chain. Thus, for a small voltages, the STM current oscillations can be
observed along the whole atomic chain, ISTM ∼ LDOS(EF) but, in addition to the same
oscillation period, it does not duplicate the Friedel oscillations in the system.

The situation is more complicated for larger STM voltages where the current depends
on the bias window charge, ∆n, which we study in Figure 4, panel (b). The curves represent
∆n distribution along the chain for negative and positive voltages, i.e. for the STM Fermi
energy ESTM

F = −2.75 (curve A) up to +1.5 (curve F). Now, for each curve, the surface
Fermi level corresponds to the oscillation period of four sites (ε0 = +

√
2t), whereas the

position of the STM Fermi energy can satisfy the condition for other charge oscillation
periods, thus the four-site oscillations of ∆n are modified in such a case. For example,
curve A is a composite of M = 4 and M = 2 periods, giving the net four-site oscillations.
The position of the STM Fermi energy for curve B corresponds to the oscillations with a
period of three sites, and these oscillations dominate in the system. Note that curve C
is obtained for a small bias voltage, and its structure is similar to the oscillations of the
LDOS function (panel a). Also, for possitive STM Fermi energies, the curves reveal bias-
dependent structures. Thus, by changing the STM voltage, one can register various shapes
and different periods of the STM current along the chain. This important result shows
that both surface and STM tip Fermi energies determine the charge oscillation period. The
system parameters in our numerical calculations were chosen in order to satisfy qualitative
agreement with the experimental data. In the calculations, all the energies are expressed in
units of Γ0 = 1, such that for Γ0 = 0.2 eV the surface coupling strength is below 1eV and
the site–site coupling is t = 0.4 eV.
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D

(a)

(b)

Figure 4. (a) Charge occupancy, ni (black dots), and the LDOS at the Fermi level (blue squares)
along the chain composed of N = 35 atomic sites and EF − ε0 = −

√
2t (the oscillation period is

M = 4), t = 2, t′ = 0. Panel (b) presents the bias window charge (LDOS integrated over the
energy between the surface and STM Fermi energies), ∆ni, along the same chain for Esur f

F = 0
and ESTM

F = −2.75,−1.0,−0.2,+0.4,+0.7,+1.5, curves from A to F, respectively. For negative
ESTM

F : t = 2, t′ = 0, and for positive ones: t = 2, t′ = 0.4, and all B–F curves are shifted for
better visualizations. The characteristic periodic structures at each curve in (b) are indicated by the
blue marks.

To corroborate our theoretical findings with the experimental results, it is necessary to
analyze in more detail the height profiles for the Si zigzag chain depicted in Figure 1 (right
panel). In Figure 5, such selected experimental curves (red lines) with marked positions of
the Si atoms (blue dots) that form a zigzag chain are depicted. Evidently, in height profiles
measured at biases of −2.0 V, +1.0 V, +1.5 V, and +2.0 V an oscillation period of 2× aSi
dominates (which corresponds to the period of M = 4 atoms in the zigzag chain), whereas,
on profiles recorded at −1.5 V, we observe the period of 1 1

2 × aSi (which is equivalent to
M = 3), and for−1.0 V the oscillation periodicity of 2× aSi mixed with 1 1

2 × aSi oscillations
are seen. One should note that, despite the same periodicity of some curves in Figure 5,
their shapes differ from each other, especially for positive and negative voltages.
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Figure 5. Selected parts of experimental height profile (red lines) as shown in Figure 1 with marked
positions of Si atomic chains considered in the theoretical calculation. The blue dots and dashed
lines have been drawn for easier comparison with the theoretical ∆ni (bias window charge) profiles
presented in Figure 4. The right side label indicates the bias voltages and the signal multiplication
factors for each curve. For better visibility, the curves are shifted successively by 0.075 nm from
the bottom. Note the periodicity of 1 1

2 × aSi, 2× aSi and the superposition of those depending on
applied biases.

To compare these experimental height profiles with the theoretical results shown in
Figure 4, panel (b), there are highlighted parts (blue dots in Figure 4) in each A–F curve
and, as one can see, they have quite similar/equivalent structures to the curves shown
in Figure 5 (the corresponding curves are arranged from the bottom to the top at both
figures and are labelled by the letters A–F). It shows that the STM profiles observed in the
experiment along the Si chain are related to the bias window charge. Here, one can notice
that not only general shapes of the theoretical and experimental curves are consistent, but
also the oscillation periods match each other, e.g., for the oscillation period M = 3 (curve B
in Figure 4), the step Si chain reveals the period 1 1

2 × aSi (curve B for −1.5 V in Figure 5),
and this is similar for other curves. Thus, it can be seen that the height profile curves do
not simply represent the total charge oscillations, which stand for the Friedel oscillations,
but the ∆ni quantity (bias window charge). Although the theoretical results are not fully in
line with the experimental ones due to the relatively simple model of the TB chain, they
address the main electronic features of the system and explain the bias-dependent nature
of STM topography oscillations in 1D systems.

4. Conclusions

In this work, we analyzed the STM height profiles along one-dimensional Si atomic
chains located at the edges of the Si(553)-Au surface terraces. We found that STM height
profiles vary with integer and fractional 1D lattice periods, which was not expected for
a simple monoatomic chain. Similar fractional periodicity of tunneling current was seen
in tunneling current profiles along the Si step-edge chain. We also observed that the STM
profile curves change their shape and periodicity depending on the applied voltages. As a
consequence, the edge chain cannot be considered as a simple linear row of atoms but it
has a structure of a zigzag geometry. The proposed setup of this chain is composed of a
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row of edge Si atoms and, not detected in previous STM experiments, a nearest row of Si
atoms on the terrace. This conclusion constitutes the main result of the paper.

To explain the bias-dependent oscillations in the STM experiments, the tight binding
model Hamiltonian of an atomic chain was considered, and the local density of states and
charge occupancy were obtained. For a regular chain on a surface, analytical solutions
for the retarded Green function and LDOS were derived. As further important results
of the work, it was found that: (i) the profiles of the heights or currents along the chain
(which are related to the bias window charge) depend mainly on the Fermi energies of
both the substrate and the STM tip, which determine the resultant oscillation periods
in the system; and (ii) charge occupancies along the chain change their distribution and
oscillation period for different STM voltages. This semi-quantitatively explains the voltage-
dependent relation of the STM profiles. Note that all experimentally studied atomic chains
considered in this paper are very stable and regular; additionally, they interact with the
substrate, thus the results of the presented work should be of more general importance for
1D atomic structures.
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