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Abstract: Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface
area, which provide a suitable environment for the complex and dynamic wound healing process
and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber
structure can imitate the structure of the human dermis, similar to the natural extracellular matrix,
which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has
been widely studied in the field of wound dressing. This review article overviews the development
of electrospinning technology and the application of electrospun nanofibers in wound dressings. It
begins with an introduction to the history, working principles, and transformation of electrospinning,
with a focus on the selection of electrospun nanofiber materials, incorporation of functional thera-
peutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide
application of electrospun NFMs containing therapeutic factors in wound healing is classified based
on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This
article also highlights the structural design of electrospun nanofibers in wound dressing, including
porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber
membrane structures. Finally, their advantages and limitations are discussed, and the challenges
faced in their application for wound dressings are analyzed to promote further research in this field.
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1. Introduction

Skin, as the largest organ of the human body, can regulate body temperature and
resist the invasion of various pathogens and microorganisms [1], a natural barrier for the
internal environment of the human body to directly contact the outside world. Therefore,
skin integrity is very important for human health [2]. Wounds can be caused by the injury
and destruction of skin tissue, and many accidents in daily life can easily lead to wounds.
After trauma, the skin recovery process is dynamic and complex, including four stages:
hemostasis, inflammation, cell proliferation and remodeling [3]. Moreover, special diseases
such as diabetes also affect the wound microenvironment and extend its healing time.
According to the difference in wound recovery time, wounds can be divided into acute
and chronic. For chronic wounds, the recovery time is long, and the risk of exogenous
negative interference is high. To protect wounds from external pollution, avoid wound
deterioration and promote wound healing, the use of wound dressings is very critical for
wound treatment. Due to the complex and dynamic process of wound healing, wound
dressings need good biocompatibility, stability, certain mechanical properties, permeability,
and the ability to absorb the excess tissue osmotic fluid produced by the wound. Further,
the ideal wound dressing should also have antibacterial and anti-inflammatory functions
to promote cell growth and accelerate wound healing [4].
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Wound dressings have a long history, dating back to 1550 BC, when wound dressings
were a mixture of oil, honey, and cotton wool. With the continuous expansion of research,
multifunctional dressings that can provide an ideal wound recovery environment are applied
to wound healing. At present, the main forms of wound dressings are gauze, bandages,
sponges [5], films [6], scaffolds [7], hydrogels [8] and nanofibers, among which gauze and
bandages are traditional dressings with low-cost performance, but their effects on wound
healing are limited to protecting the wound from external stimulation, and there is a risk of
secondary injury caused by adhesion to the wound. Sponge, hydrogel, and nanofiber dressings
are new dressings developed by researchers according to the characteristics of wound healing
to accelerate wound healing. Compared with these wound dressings, nanofibers have
significant advantages, such as high permeability and specific surface area.

Meanwhile, nanofibers can also form a structure similar to the natural extracellular
matrix (composed of interwoven protein fibers), providing a favorable environment for
the adhesion and proliferation of cells and promoting the transport of nutrients. Moreover,
some studies have shown that cells adhere to fibers smaller in diameter than themselves [9].
The rapid development of nanotechnology positively impacts the preparation of nanofibers.
The preparation methods of nanofibers mainly include melt blowing, rotary jet spinning,
manual spinning, pressurized rotary spinning and electrospinning [10–13], which have
been developed for manufacturing drug-loaded nanofiber scaffolds.

Electrospinning is a low-cost, simple, and flexible process for producing nanofibers.
Nanofibers prepared by electrospinning technology have strong programmability, and the
nanofibers with controllable structure and uniform continuity can be fabricated by adjusting
the preparation process parameters [14], which makes them widely used in catalysis [15],
filtration [16], electrochemistry [17] and food engineering [18]. Furthermore, the structure and
composition of electrospun NFM can be similar to those of the natural extracellular matrix, and
their high porosity can promote the attachment, migration and proliferation of cells [19], which
makes them have great potential in the fields of biosensors [20], drug transportation [21] and
wound dressing [22]. Especially as wound dressings, electrospun NFMs with high surface area
and high porosity can provide a good environment for the exchange of water and gas between
the wound surface and the outside world, which is conducive to the absorption of tissue
osmotic fluid at the wound and the carrying of therapeutic factors [23]. Moreover, the inherent
high flexibility and toughness of NFMs provide convenience for using different parts of
wounds. Meanwhile, the design and combination of materials and structures for electrospun
nanofibers can also make them more likely to simulate the structure and function of natural
skin and promote wound healing [24].

In recent years, there have been many reviews based on electrospun nanofibers for
wound dressings. However, there are few reviews on the effects of the structural design
of electrospun nanofibers used for wound dressings on wound recovery. Therefore, this
review provides an overview of the development and working mechanism of electrospin-
ning technology and discusses various process parameters affecting nanofibers, with a
focus on a selection of electrospun nanofiber materials, incorporation of functional thera-
peutic factors, and structural design of nanofibers and nanofiber membranes. Further, the
recent progress of electrospun NFMs containing therapeutic factors in wound dressings is
classified according to their specific functions, such as hemostasis, antibacterial, and cell
proliferation promotion. This article also highlights the structural design of electrospun
nanofibers in wound dressing, including porous structures, bead structures, core-shell
structures, ordered structures, and multilayer NFM structures. Finally, their advantages
and limitations are discussed, and the challenges faced by electrospun NFMs for wound
dressings are analyzed to promote further research in this field.

2. Electrospinning Technology

As early as 1600, William Gilbert discovered the electrostatic motion of liquids. In 1887,
Charles Vernon and his team reported the extraction of fiber from liquid under an applied
electric field [25]. In 1964, Taylor proposed the effect of current on the conical formation of
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solution droplets using mathematical modelling. Morton and Cooley put forward the first
patent on electrospinning technology in 1902 [26]. After that, Formhals applied for several
patents on this technology, and electrospinning technology has been greatly developed
and gradually matured [27]. The important developmental stages of electrospinning are
described in detail in Ref. [28].

Electrospinning involves the stretching of liquid droplets under the action of an electric
field force and elongation into fibers. As shown in Figure 1A, the traditional electrospinning
device consists of a liquid supply device with a spinneret, a high-voltage power supply
and a collector. The high-voltage power supply connects the liquid supply device and the
collector, forming a strong electric field. When the polymer solution or melt is pushed out of
the spinneret under a certain pressure, liquid droplets will form at the nozzle. Meanwhile,
the liquid droplets subject to the combined action of surface tension and electrostatic force
will be deformed into conical liquid droplets, also known as a “Taylor cone” [29]. When
the voltage exceeds a certain threshold value, the force on the surface of the droplet is
unbalanced, and then a charged jet is ejected at the tip of a conical droplet. During the jet
movement, the solvent evaporates rapidly in the air, and then the solute solidifies into a
fiber. The instability of solvent evaporation and the change in electrostatic force can lead to
the jet’s bending and irregular movement of the jet, and finally, the jet forms fibers with
diameters ranging from microns to nanometers randomly deposited on the collector [30].
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The morphology, diameter, porosity, and mechanical properties of electrospun nanofibers
can be regulated by selecting suitable spinning parameters. The parameters mainly in-
clude process parameters, solution parameters and environmental parameters. Process
parameters generally refer to voltage [32], flow rate, and distance between the spinneret
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and collector. Spinning solution parameters mainly contain polymer molecular weight [33],
viscosity, surface tension, concentration, conductivity, etc. The environmental parameters
are primarily temperature and humidity. These parameters interact in a certain range and
jointly affect the morphology of electrospun nanofiber, as summarized in Table 1.

Table 1. Effects of parameters on electrospun nanofibers.

Parameters Effects

Process
parameters

voltage with increasing applied voltage, the fiber diameter first increases and then decreases [34]

distance too far, the electric field strength is significantly weakened, and the fiber diameter
becomes larger

flow rate fast: the diameter of nanofibers gradually increases
too fast: bead generation [35]

Solution
parameters

polymer molecular
weight high: form uniform large-diameter fibers

viscosity too low: bead generation [36]
high: the diameter of nanofibers gradually increases

concentration high: decrease in bead generation [37,38]

conductivity high: the nanofiber is stretched more fully, and its diameter is smaller [39]

surface tension too high: the fiber is prone to beaded structure or cannot be spun [40]

Environmental
parameters

temperature the fiber diameter will decrease with the increase in temperature [41]

humidity too high or too low humidity can increase the diameter [42,43]

Currently, many types of electrospinning equipment have been designed and developed.
Based on traditional electrospinning, the emergence of coaxial electrospinning supports the
preparation of nanofibers with a core-shell or multi-layer structure to meet special needs,
as shown in Figure 1B. Moreover, coaxial electrospinning can reduce its requirements for
spinning solutions, and the obtained multilayered nanofibers provide better protection for
carrying biologically active factors, avoiding the sudden release of drugs in the blend fibers. In
addition, the shape and motion of the collector can be adjusted to control the morphology and
arrangement of nanofibers, as shown in Figure 1C. The design of electrospinning needles and
the modification of collectors provide more possibilities for the structure and morphology
of nanofibers, making them similar to human tissue structures [44].

Further, the electrospinning efficiency is effectively improved through the design and
improvement of the spinneret, and many effective strategies have been proposed, such
as increasing the number of needles/nozzles and using needleless electrospinning [45].
Increasing the number of needles is a simple and effective method to increase nanofiber
production, where the specification, position, number, and arrangement of needles all
affect the distribution of electric fields, thereby affecting the distribution of deposited fibers.
Therefore, multi-needle electrospinning requires large operating space and appropriate
needle spacing to avoid charge repulsion between jets. The common needle arrangements
include straight lines, squares, circles, triangles, and hexagons [46,47]. For a given needle
holder configuration and configuration angle, the electric field remains constant regard-
less of the number of needles [48]. In addition, multi-needle electrospinning can deposit
nanofibers of different materials on the collector to enhance the performance of the pre-
pared composite NFM [49]. The electrostatic repulsion between needles can be effectively
alleviated by adjusting the distance between them, which is determined by the electric field
intensity and the properties of the spinning solution [50]. Moreover, the use of auxiliary
electric fields (Figure 2A), magnetic fields (Figure 2B), and airflow (Figure 2C) can control
the direction of jet motion, thereby constraining the stability of jets as well as the size and
arrangement of fibers [46,51,52].



Materials 2023, 16, 6021 5 of 33

Compared with multi-needle electrospinning, needle-free electrospinning requires
higher voltage to overcome the surface tension of the liquid and stimulate the forma-
tion of multiple jets, which can effectively solve the problem of needle plugging [53].
Xiong et al. [54] designed a mushroom-shaped electrospinning device that avoided the ap-
pearance of competitive electric fields, promoted the formation of stable circular pre-Taylor
cones with high curvature, and significantly improved production efficiency (Figure 2D).
Molnar et al. [55] improved the free surface electrospinning device, which had a narrow and
long liquid supply slot and sharp edges (corona) from the metal electrode ring. The Taylor
cone was formed on a sharp edge with high charge density, and the spinneret could rotate
at an adjustable speed, thus effectively reducing solvent volatilization and achieving the
production of high-throughput nanofibers. Jiang et al. [56] proposed improved needle-free
electrospinning that could produce core-shell fibers on a large scale by using a stepped
pyramid-shaped copper spinneret (Figure 2E). The coaxial jet was generated from the
pyramid-shaped edge, avoiding the problem of easy blockage in the coaxial needle and
significantly improving the production speed of core-shell fibers. Farkas et al. [57] com-
bined centrifugal force and needle-free electrospinning for batch preparation of nanofibers,
achieving the regulation of nanofiber diameter, which greatly enriched the development of
electrospinning technology (Figure 2F).
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Figure 2. (A) Schematic of an electrospinning apparatus with an auxiliary electric field, reproduced
with permission from [46]; (B) Schematic of an electrospinning apparatus with magnetic field, re-
produced with permission from [51]; (C) Schematic of an electrospinning apparatus with airflow,
reproduced with permission from [52]; (D) Schematic illustrations of mushroom-electrospinning
setup, red color symbols represented the surface curvature and surface charge distribution of the
covered and uncovered mushroom-spinneret and the blue circles were to help understand them,
reproduced with permission from [54]; (E) Scheme of the free surface coaxial electrospinning appa-
ratus using a stepped pyramid spinneret [55]; (F) Schematic of an electrospinning apparatus with
centrifugal force, reproduced with permission from [57].
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3. Materials
3.1. Matrix Materials

Polymers are the main matrix materials for electrospun nanofibers, which can be
divided into natural polymers and synthetic polymers. Natural polymers have the ad-
vantages of good biocompatibility, friendly structure, and nontoxicity, which make them
popular materials in the biomedical field. Meanwhile, it has been proven that materials
with good biocompatibility and degradability can be recognized by cell surface receptors in
wound recovery, thus causing cell adhesion and proliferation [58]. Common natural poly-
mers include polysaccharides (such as chitosan, cellulose, hyaluronic acid, and alginate)
and proteins (such as collagen, silk fibroin, gelatin and fibrin).

Chitosan has become a vital member of the wound dressing material family due
to its excellent biological and antibacterial properties [59]. In the inflammatory stage of
wound recovery, chitosan can promote the migration of cells to the wound area, which
is conducive to the elimination of microorganisms by macrophages, decomposition of
dead cells, and stimulation of cells related to tissue and angiogenesis. However, chitosan
has poor solubility and is difficult to directly electrospun [60]. A common strategy is to
prepare chitosan-based electrospun nanofibers by controlling chitosan’s molecular weight
and deacetylation degree or blending with other materials [61,62]. Cellulose has excellent
thermal stability, chemical resistance, and good biological properties, which can reduce
pain and promote the formation of granulation and epithelization at the wound. Due to the
limited solubility of cellulose, cellulose acetate based on modified cellulose is mostly used to
prepare nanofibers [63,64]. In addition, bacterial cellulose has good biological function and
excellent mechanical, which has a positive impact on vascular regeneration, damaged tissue
remodelling and wound healing [65]. Collagen is a three-dimensional network structure
composed of nanoscale fibrils and extracellular matrix proteins [66]. Therefore, electrospun
nanofibers prepared with collagen are very similar to the natural extracellular matrix of
cells and have tissue formation promotion and cell function regulation [67]. Zhou et al. [68]
extracted marine type I collagen from tilapia and prepared electrospun nanofibers with
smooth surfaces. In vitro studies have shown that the collagen fibers were conducive to
the adsorption of human keratinocytes and significantly promote cell proliferation, with
good cell compatibility. However, collagen nanofibers have drawbacks of easy solubility in
water, poor thermal stability, and insufficient mechanical properties. Chemical crosslinking
treatment is an effective method for improving collagen fibers, but it may be toxic [69]. In
addition, other natural polymers such as alginate, gelatin, fibroin, and nucleotides can also
serve as good substrates for electrospun fibers and are widely used in wound dressing
research [70,71]. However, electrospun nanofibers composed of natural polymers have
problems with unstable structures and poor mechanical properties [72].

Synthetic polymers, such as polycaprolactone (PCL), polyvinyl alcohol (PVA), poly-
lactic acid (PLA), polyethylene oxide (PEO) and polyacrylonitrile (PAN), are widely used
in electrospun nanofibers because of their excellent mechanical properties, good thermal
stability, and processing flexibility [73]. PCL has excellent mechanical properties and con-
trollable biodegradability, which has been approved by the Food and Drug Administration
(FDA) for use in many biomedical applications [74]. Due to the lack of functional groups on
the surface of PCL [75], surface coating hydrolysis or other modification methods have been
proposed, and surface alkali hydrolysis with sodium hydroxide is a simple and effective
method [76]. Further, the ammonolysis of PCL has been proven to be beneficial to cell
adhesion. Chaiarwut et al. [77] used sodium hydroxide to alkali hydrolyze the electrospun
PCL NFM to improve its hydrophilicity and then used carbodiimide to fix the antibacterial
peptide Pexiganan on PCL. After treatment, the hydrophilicity of NFM was significantly
improved, and the antibacterial rate against gram-negative bacteria could be close to 100%.
PVA is a nontoxic and hydrophilic synthetic polymer authorized by the FDA for biomedical
and pharmaceutical purposes [78]. However, it has been found that when PVA is used
to prepare electrospun nanofibers, the PVA NFM soaked in water will lose its physical
integrity and become unstable [79]. Polylactic acid (PLA) has excellent biocompatibility,
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biodegradability, and eco-friendliness, which is a good medium for drug delivery, tissue
engineering and regenerative medicine applications [80]. Compared with conventional
medical gauze, electrospun PLA NFMs have good hemocompatibility and wound-healing
properties [81,82]. It has been proved that electrospun PLA NFMs are beneficial to the
adhesion and migration of skin cells and promote the deposition of collagen [83]. However,
PLA has low impact toughness and is sensitive to hydrolysis, which is not conducive
to long-term work in the physiological environment [84]. One solution is to obtain PLA
stereocomplex by controlling the molecular weight of the homopolymer, which plays a
positive role in improving the mechanical properties and hydrolysis resistance of PLA [85].
PAN has good stability and mechanical properties, which have been applied in filtration
membranes, aerospace technology and wound dressings [86,87]. Due to the excellent fiber
formability of PAN, it is easy to prepare electrospun fibers with good morphology and
uniform diameter. It has been found that PAN may have potential antifungal properties [88].
However, PAN nanofibers have the general hydrophobic properties of synthetic fibers. By
adding amine groups on the surface of PAN nanofibers through triethylenetetramine or
by changing the active nitrile groups on PAN into hydrophilic groups through a chemical
reaction, the surface modification of PAN can be attained [89,90].

Considering the characteristics of natural polymers and synthetic polymers, their
combination can achieve a balance between the mechanical properties and biological
functions of electrospun nanofibers. Notably, when natural and synthetic polymers are
combined, their physical and chemical properties and their interactions need to be carefully
considered. Introducing synthetic polymers mainly enhances the mechanical strength and
spinnability of natural polymers. For example, some researchers blended chitosan with
PCL for electrospinning to improve the spinnability of chitosan solution and the insufficient
mechanical properties of nanofibers [91]. Zulkifli et al. [92] mixed collagen with PVA and
hydroxyethyl cellulose for electrospinning, which improved the problems of easy water
solubility and insufficient mechanical properties of collagen. Moreover, the composite NFM
showed better cell adsorption, growth rate and mobility, which had great potential in skin
tissue engineering applications.

3.2. Added Functional Factors for Wound Healing

The wound-healing process is dynamic and complex and can be divided into four
stages: hemostasis, inflammation, proliferation, and remodeling [93]. The formation of
wounds means the beginning of the hemostasis phase, and then platelets, plasma fibers
and fibrin form clots to seal the blood flow. During the inflammatory phase, neutrophils,
macrophages, and lymphocytes accumulate and are activated, with antimicrobial and
apoptotic cell removal effects. The proliferative phase is characterized by the neovascu-
larization and promotion of epithelialization of blood vessels and cells. The remodeling
phase is characterized by wound contraction and collagen deposition. The four phases
of wound recovery represent the different functional requirements of wound dressings.
Some natural polymers have inherent antibacterial or anti-inflammatory functions, but this
is insufficient. To strengthen the function of electrospun nanofibers and better promote
wound healing, more wound-healing-promoting factors are selectively added into the
nanofibers to prepare drug-loaded nanofibers [71,94]. Compared with conventional drug
delivery systems, electrospinning technology can give nanofibers faster reaction rates and
controllable release rates in the field of drug delivery. Various functions of factors, such as
hemostatic [95], anti-inflammatory [96], promote cell proliferation or vascular remodeling
and other therapeutic factors [97,98], have been proven to better promote wound healing.
Here, wound dressings for hemostasis, antibacterial and wound healing are discussed.

3.2.1. Hemostatic Factors

Rapid hemostasis is the first step in the treatment of wounds. The mechanism of
thrombosis is represented in Figure 3A [99]. The traditional method of hemostasis is to use
gauze to press the wound to block the blood flow, which has the problems of more blood loss
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as well as adhesion between the gauze and the wound. To overcome these shortcomings,
wound dressings prepared from materials with clotting properties (such as chitosan) or a
porous expandable structure or containing hemostatic agents (such as aluminum chloride,
tranexamic acid (TXA), and thrombin) have been extensively studied [100]. Wu et al. [101]
electrospun composite NFMs by mixing polybutylene succinate and chitosan. The addition
of polybutylene succinate effectively improved the spinnability of chitosan. The results
showed that when the ratio of chitosan to polybutylene succinate was 9:1, the hemostatic
performance of NFM was the best. Lamei et al. [102] introduced tannic acid and zinc-based
metal-organic frameworks (MOFs) into electrospun chitosan/PVA blend NFMs (Figure 3B).
The results showed that tannic acid could form a synergistic effect with chitosan to stop
bleeding in wounds quickly. The zinc-based MOFs endowed fibers with a porous structure
conducive to the rapid absorption of blood. Moreover, the presence of zinc ions generated
electrostatic interactions with red blood cells, forming a new coagulation pathway. In
addition, wound dressings with porous structures can effectively deal with pathogenic
bleeding. Gu et al. [103] conducted ultrasonic treatment on electrospun chitosan NFMs to
obtain a porous structure. After ultrasonic treatment, the porosity of chitosan NFM could
be increased by about 20%, and the water absorption time could be reduced by nearly 100 s.
Compared with commercial hemostatic gauze, the porous chitosan NFM was 1.35 times
more effective in clotting blood.

Aluminium chloride is a widely used material to stop bleeding [104]. Nasser et al. [105]
electrospun poly-l-lactic acid (PLLA) NFM containing aluminum chloride by blending
method (Figure 3C). The results showed that aluminum chloride with 33% w/w had the
best hemostatic performance. The NFM had a shorter blood clotting time and a stronger
blood absorption capacity than traditional bandages. In another study, kaolin was added to
the electrospun chitosan/PEO blend fibers. The layered structure and micro-pores on the
surface of kaolin absorbed water in the blood and accelerated the aggregation of platelets
and thrombin to achieve rapid hemostasis [106]. Sasmal et al. [107] introduced TXA into the
electrospun chitosan/PVA NFM and evaluated its release and hemostatic effect. The results
showed that TXA was released 90% within 10 h, and the presence of TXA reduced the
blood clotting time by stabilizing coagulation. Mendes et al. [108] implemented thrombin
loading on PEO nanofibers through electrospinning. Studies on wound healing in vitro
and in vivo showed that thrombin was released by water at the wound site as the NFM
degraded, accelerating the clotting process. Moreover, the NFM was suitable for wounds
with different morphologies and could be removed without external force after application.

3.2.2. Antibacterial Factors

Wound infection is a common problem in clinical practice that can not only affect
the normal process of wound recovery but also aggravate the pain of patients and even
endanger their lives. To effectively reduce the probability of wound infection, antimicrobial
agents are added to wound dressings, which commonly include antibiotics, antimicrobial
peptides, metals, and metal oxides [109].

Antibiotics specifically affect inflammation caused by wound infection, but inappro-
priate dosage can lead to allergies and bacterial resistance [110]. Xu et al. [111] added
amoxicillin (AMX) and MXene into a PVA spinning solution and prepared an antibacterial
composite NFM (Figure 4A). The release rate of AMX could be controlled by PVA, and MX-
ene, as a photothermal agent, could convert near-infrared light into heat for local hyperther-
mia of the wound surface, thus promoting the release of AMX and assisting in sterilization
by destroying the bacterial membrane. In a mouse skin defect model, the NFM showed out-
standing bacteriostatic effects and wound healing ability after treating Staphylococcus aureus
infection. Yue et al. [112] used fluorinated polyurethane and ethanol-soluble polyurethane
to prepare a waterproof and breathable NFM through in-situ electrospinning technology,
which could protect the wound from external stimulation (Figure 4B).
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Further, thymol was added to the NFM, which made the drug-loaded NFM have good
antibacterial effects against Escherichia coli and Staphylococcus aureus. Sun et al. [113] pre-
pared puerarin-loaded electrospun composite NFMs with silk protein and polyvinylpyrroli-
done (PVP) as matrix materials. It has been proven that puerarin improved the porosity,
hydrophilicity, and antioxidant capacity of NFMs. In in vivo studies, the composite NFMs
reduced the inflammatory response, promoted cell adhesion and proliferation, and acceler-
ated wound healing.

Antimicrobial peptides are a new antibacterial agent with little drug resistance, strong
bactericidal ability, good thermal stability, and no immunogenicity. Yu et al. [114] used
chitosan and PEO as matrices, added different contents of antibacterial peptides, and
prepared antibacterial nanofibers using electrospinning technology. This NFM had a good
inhibitory effect on Escherichia coli and Staphylococcus aureus. In the animal wound heal-
ing experiment, the wound healing rate of NFM containing antimicrobial peptides was
better than that of NFM without drug loading and common gauze. Metals and metal
oxides are widely used as antibacterial materials in wound dressings, among which ZnO
quantum dots are a low-toxicity and inexpensive nanomaterial. Li et al. [115] prepared
PCL/collagen porous scaffolds containing ZnO quantum dots, which showed that adding
ZnO quantum dots endowed the porous scaffold with high antibacterial performance
against Staphylococcus aureus and Escherichia coli. Meanwhile, the composite scaffold exhib-
ited excellent cell compatibility in promoting cell proliferation. In addition, the composite
scaffold with vascular endothelial growth factor was proven to accelerate wound healing
by promoting the expression of transforming growth factor-β (TGF-β) and vascular factor
in tissues during the early stages of wound healing.

3.2.3. Growth Factors

The four stages of wound healing involve different cells, growth factors and proteins.
For example, activated platelets at the hemostatic stage can secrete a large number of
growth factors, such as transforming growth factors (TGF-α, TGF-β) and platelet-derived
growth factors, which promote the migration of inflammatory cells [116]. Therefore, the
introduction of growth factors is very attractive for wound healing. Here, we mainly
discuss the effects of introducing growth factors on wound recovery.

Skin reconstruction is accompanied by the release of growth factors [117], which
promote cell proliferation and granulation tissue formation and play an important role
in different stages of wound healing [118,119]. For example, epidermal growth factor
(EGF) can promote the proliferation and epithelialization of keratinocytes and has syn-
ergistic effects with fibroblast growth factor. Platelet-derived growth factor (PDGF) can
facilitate fibroblast proliferation and granulation tissue growth, playing a role in the initial
stage of wound healing. Vascular endothelial growth factor (VEGF) accelerates angiogen-
esis and granulation tissue formation. Fibroblast growth factor (FGF) promotes mitosis
and angiogenesis and plays a role in the later stage of wound recovery, among which
basic FGF (bFGF) facilitates cell proliferation, migration, and differentiation. However,
the stability of growth factors is poor, and their half-lives are short. The introduction of
growth factors requires consideration of their concentration and biological activity. Elec-
trospun nanofibers with a similar skin structure are undoubtedly a good growth factor
carrier, which can provide a controlled release of therapeutic factors and protect their
biological activity.

Dwivedi et al. [120] prepared electrospun blended NFMs with poly(d, l-lactide co
glycolide) (PLGA)/gelatin as the matrix. They introduced recombinant human epidermal
growth factor (rhEGF) and gentamicin sulfate on their surface to accelerate the treat-
ment of diabetes wounds (Figure 5A). The composite NFM retained the stability and
bactericidal properties of gentamicin sulfate, releasing only 36.64 ± 0.51% within 12 h,
and the maximum inhibition rate of bacterial growth could reach 98.73 ± 0.68%. In the
wound healing model of a mouse, the NFMs containing rhEGF played a positive role
in the initial stage of wound healing, significantly increasing the wound closure rate.
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Chen et al. [121] prepared collagen/GO nanofiber membranes containing bFGF through
electrospinning (Figure 5B). The maximum cumulative release rate of bFGF in the NFM
containing bFGF was 30.94 ± 7.77%, with a release time of up to 27 days. In the wound
healing model, the NFM showed a 96.39 ± 0.66% wound healing rate, and the promoting
effect of growth factors on wound healing was demonstrated. Taborska et al. [122] used
poly(L-lactide-co-ε-caprolactone)/PCL nanofibers as a matrix containing human platelet
lysates (hPL), and the fibrin network of VEGF and FGF as a coating to prepare a composite
wound dressing. The results showed that the fibrin network was a good receptacle for
bioactive molecules, and the sustained release of growth factors and hPL from the coating
significantly increased the survival rate of human saphenous vein endothelial cells in
collagen wound models.
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Figure 5. (A) Process of fabrication of aminolyzed PLGA/Gelatin nanoscaffolds and subsequent
application on diabetic wounds, reproduced with permission from [120]; (B) Col-GO and PLA through
coaxial electrospinning to form core–shell fiber scaffolds for skin tissue engineering applications,
reproduced with permission from [121].

3.2.4. Other Therapeutic Factors

Cell therapy is a treatment that uses living cells to renew and regenerate damaged
tissue. Pluripotent cells such as macrophages, endothelial progenitors, and stem cells have
been used in cell therapy [123]. Among them, stem cells can self-renew and differentiate
into various cells, which is of great significance for the repair and reconstruction of dam-
aged tissues and shows great potential in wound healing. Bone marrow mesenchymal stem
cells (BMSCs) are useful in the treatment of different types of wounds (Figure 6A) [124].
Xu et al. [125] prepared a PVA/BMSCs NFM through a handheld electrospinning device
(Figure 6B). The good biocompatibility of NFM was verified by cytotoxicity and cell prolif-
eration experiments. The introduction of BMSCs had a positive effect on the formation of
granulation tissue and epithelialization in full-layer skin wounds of rats. Compared with
blank control, BMSCs could significantly accelerate wound healing. In another study, a
PLGA electrospun NFM with LPS/IFN-gamma activated macrophage cell membrane was
constructed and loaded with BMSCs (Figure 6C). In vitro oxidative stress tests, the modified
NFM had been shown to promote BMSCs proliferation and keratinocyte migration. In a
diabetic wound healing model, the composite NFM exhibited faster-epithelialized regener-
ation, collagen remodeling and angiogenesis, accelerating wound healing, compared with
the fibrous membrane without modification of the cell membrane [126].
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repair, reproduced with permission from [124]; (B) Schematic diagram of preparation of polymer
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The combination of stem cells and growth factors is an effective strategy to enhance
wound healing. Fu et al. [127] constructed a composite sponge material loaded with nano-
adipose tissue by using electrospun short fibers modified by polydopamine, in which
nano-adipose tissue contained a variety of cells such as adipose-derived stem cells and
could secrete various growth factors such as VEGF. The composite dressing could promote
angiogenesis by releasing cells and growth factors, accelerate the growth of granulation
tissue, and close the wound through granulation tissue, providing an enabling environment
for tissue regeneration and repair. In addition, it is worth noting that the addition of
therapeutic factors needs to consider their compatibility with the hydrophilic properties
of polymers.

By designing the components of electrospun nanofibers, different parts of the wound
healing process can be well promoted. The applications of electrospun nanofibers in
hemostasis, antibacterial, and wound healing promotion have been summarized in Table 2.

Table 2. The influence of electrospun nanofiber composition design on wound healing.

Base Materials Active Ingredients Types Functions Ref.

polybutylene succinate/chitosan / blend hemostatic [101]

chitosan/PVA tannic acid, zinc-based MOFs blend hemostatic [102]

chitosan/PEO kaolin blend hemostatic [106]



Materials 2023, 16, 6021 13 of 33

Table 2. Cont.

Base Materials Active Ingredients Types Functions Ref.

PVA AMX, MXene blend bacteriostatic [111]

polyurethane thymol blend antibacterial [112]

chitosan/PEO antibacterial peptides blend antibacterial [114]

PCL/collagen ZnO quantum dots blend antibacterial [115]

PLGA/gelatin rhEGF, gentamicin sulfate blend bacteriostatic, promoting the wound closure [120]

collagen/GO bFGF blend promote the wound closure [121]

PVA BMSCs blend promote the formation of granulation tissue
and epithelialization [125]

PLGA LPS/IFN-gamma, BMSCs blend promote epithelialized regeneration,
collagen remodeling and angiogenesis [126]

4. Structural Design
4.1. Structural Design of Single Nanofiber
4.1.1. Porous Structure

Porous nanofibers have a larger surface area, rich internal space and surface-active
sites, which provide a good platform for drug delivery and osmotic absorption and acceler-
ate the diffusion, transmission, or transformation of substances. The preparation methods
of porous nanofibers mainly include post-treatment and phase separation. Post-treatment
refers to the selective removal of a component from blended nanofibers to form pores [128].
Phase separation is to form porous structures by adjusting spinning parameters to take
advantage of the space occupied by the volatilisation or evaporation of the liquid phase
during the fiber forming process, with the temperature difference being the driving force
behind the phase separation [129,130]. Chen et al. [131] used a phase separation method to
prepare porous cellulose acetate nanofibers containing thymol (Figure 7A). The principle
was that after the jet was ejected from the spinneret, the rapid volatilization of highly
volatile solvents would decrease the fiber surface temperature, which could induce the
phase separation of the jet at low temperatures.

Moreover, there were water droplets liquefied by water vapor and concentrated sol-
vents on the fiber surface. During the drying stage, the space occupied by the solvents
and water droplets formed pores. Compared with drug-loaded nonporous nanofibers,
drug-loaded porous nanofibers have a slower initial release rate, longer drug release time
and higher drug utilization, which can improve the proliferation of cells, exhibiting bet-
ter cell compatibility [132]. The effect of pores in nanofibers on the interaction between
living cells and nanofibers has been confirmed, which is beneficial for wound dressings’
biocompatibility and antibacterial efficacy [133]. Lanno et al. [134] electrospun porous
PCL nanofibers under high relative humidity. Compared to nonporous PCL nanofibers,
porous PCL nanofibers were more conducive to the adsorption and growth of fibroblasts.
Yin et al. [135] adopted free surface electrospinning technology to achieve the batch prepa-
ration of drug-loaded porous PLA/CS nanofibers (Figure 7B), which had good swelling
properties, excellent blood coagulability, and biocompatibility.

4.1.2. Beaded Structure

Beaded nanofibers have been proven to be beneficial for some emerging applications,
including air filtration [136], superhydrophobic surface modification [137] and drug deliv-
ery (Figure 8A) [138,139]. The formation of beads is mainly affected by the concentration,
electrical conductivity, and surface tension of the spinning solution. Higher concentration
and higher electrical conductivity are conducive to the formation of beadless fibers. In
contrast, higher surface tension tends to form beaded fibers because the formation of beads
is beneficial to reducing the surface energy of the fluid. Li et al. [140] electrospun beaded
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nanofibers with controllable diameter by adjusting the concentration of PLGA and the ratio
of solvent. The results showed that within a certain concentration range, with the increase
of PLGA concentration, the diameter of beads increased, and the shape of beads changed
from elliptical to elongated. Rasouli et al. [141] explored the effects of spinning solution
concentration, voltage, and flow rate on the morphology of beaded polysulfone nanofibers
(Figure 8B), which indicated that when the concentration of polysulfone was 7–18 wt%,
the fibers exhibited a bead-like morphology. When the concentration was constant, the
number of beads decreased as the flow rate or voltage increased. Moreover, as the voltage
increased, the bead shape changed from spherical to spindle.
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The bead structure of nanofibers has a positive effect on drug delivery, which can
increase the embedding depth of the drug by coating the drug in the beads with a larger di-
ameter, thus alleviating the initial burst drug release and achieving a longer-term sustained
drug release [142,143]. Saeed et al. [144] prepared curcumin-loaded beaded nanofibers
using PCL and PVA. The presence of curcumin and PVA increased the antibacterial and
osmotic absorption of the dressing. In drug release experiments, increasing the number of
beads effectively reduced the sudden release of curcumin. In addition, the wound dress-
ing obtained through the beaded nanofibers had excellent osmotic absorption ability and
biocompatibility, and the bactericidal rate could reach 100% when containing 5% curcumin.

4.1.3. Core-Shell Structure

Core-shell nanofibers are generally obtained by coaxial electrospinning equipment,
which can reduce the requirement for spinning solution and effectively improve the drug
burst in drug-loaded fibers. Meanwhile, unstable proteins and other biological factors can
be wrapped in the core layer of core-shell nanofibers by coaxial electrospinning, which
reduces the interaction between organic polymers and water-based biological molecules
and better protects the biological activity of biological molecules [145]. However, in the
preparation of core-shell nanofibers, the selection of polymers and solvents, as well as the
flow rates of shell and core layer solutions, should be considered, which can affect the
integrity of the core-shell structure and the diameter of core-shell nanofibers [146,147].

Tavakoli et al. [148] prepared composite nanofibers with core-shell structures by coaxial
electrospinning technology using PVA as the core spinning solution as well as gelatin and
advanced platelet-rich fibrin mixture as the shell-spinning solution (Figure 9A). The core-
shell nanofibers showed a high specific surface area, porosity, and hydrophilicity. Compared
with blended nanofibers, core-shell nanofibers had better mechanical properties, higher
cell proliferation and adhesion rates, and accelerated wound healing. The characteristics
of the core-shell structure also allow the loading of the dual-drug system. Lin et al. [149]
introduced the hydrophobic ciprofloxacin into PCL as the core layer and the hydrophilic
tetracycline hydrochloride into gelatin as the shell layer using coaxial electrospinning.
They developed an antibacterial wound dressing that delivered two antibiotics (Figure 9B).
The results showed that the core-shell nanofibers had strong antibacterial activity against
Escherichia coli and Staphylococcus aureus and good biocompatibility.
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Furthermore, hollow nanofibers can be prepared using soluble or volatile solutions
as the core spinning solution. Yilmaz et al. [150] prepared hollow PLA/polyurethane
nanofibers using a mixed solution of PLA and polyurethane as the shell-spinning solution
and a PVP solution as the core spinning solution. Compared to solid PLA/polyurethane
nanofibers, hollow-structured nanofibers had smaller diameters, higher tensile strength,
and liquid absorption capacity.
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Figure 9. (A) (a) Extraction and preparation of dried A-PRF. (b) Preparation of core-shell nanofibers
by coaxial electrospinning method, reproduced with permission from [148]; (B) The preparation
of coaxial nanofibers with co-delivering of CIP and TH antibiotics, reproduced with permission
from [149]; (C) Diagram of modified triaxial electrospinning for creating tri-layer core-shell nanofibers
with discrete drug distributions, reproduced with permission from [151]; (D) Schematic diagram of
the preparation of electrospun triaxial fiber membranes, the black arrow represented fiber diameter,
reproduced with permission from [152].
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4.1.4. Multicore-Shell Structure

Multicore-shell or multi-layer nanofibers have also been extensively studied and
produced by multiaxial electrospinning. Yang et al. [151] used triaxial electrospinning
to prepare three-layer nanofibers with the drug model ketoprofen in the inner and outer
layers and pure cellulose acetate in the middle layer (Figure 9C). Compared with core-shell
nanofibers, the system had a better performance in both the drug’s initial and sustained
release phases. Similarly, Han et al. [152] designed three-layer nanofibers with an outer layer
of hygroscopic cellulose acetate, an inner layer of nisin, and a hydrophobic middle layer of
PCL to prevent the sudden release of drugs in the inner layer (Figure 9D). The antibacterial
activity test showed that the bactericidal rate of nisin was more than 99.99% within five days
and the nanofibers provided more sustained antimicrobial activity compared with coaxial
and single homogenous nanofibers. Nagiah et al. [153] presented a new type of three-layer
nanofibers with PCL as the inner layer, gelatin as the middle layer and PLGA as the outer
layer, which had significantly better mechanical properties than pure PLGA and gelatin
(core)/PLGA (shell) nanofibers. The drug release tests also showed their excellent drug
sustained release. The unique structure of multicore-shell nanofibers has great potential
in drug delivery and wound dressings. However, the selection of materials presents a
challenge for preparing multicore-shell nanofibers.

4.1.5. Self-Assembled Multi-Layer Structure

Layer-by-layer self-assembly technology is a common method to prepare multi-layer
structured nanofibers by alternating deposition of substrates through electrostatic inter-
actions between electrolytes, which can be used to improve the performance of electro-
spun nanofibers. Hu et al. [154] deposited positively charged quaternary ammonium salt
chitin and negatively charged silk fibroin layer by layer on the surface of electrospun PCL
nanofibers to prepare multi-layer nanofibers through self-assembly technology (Figure 10A),
which has stronger antibacterial properties, angiogenesis, and collagen deposition. To in-
crease the anti-inflammatory and reactive oxygen elimination functions of the dressing, in
the follow-up study, the research team interactively deposited dihydromyricetin and quater-
nized chitosan on the electrospun PCL nanofibers and characterized their biocompatibility
and wound application. The results showed good hydrophilicity and biocompatibility,
which could effectively stop bleeding, resist bacteria, diminish inflammation, remove re-
active oxygen species, promote cell migration, and facilitate wound healing [155]. This
provides an important reference value for the preparation of wound dressings with multi-
component and multi-layer structural designs. Wu et al. [156] deposited positively charged
chitosan and negatively charged collagen on electrospun silk fibroin/PCL nanofibers
through layer-by-layer self-assembly technology (Figure 10B). The deposition of chitosan
and collagen increased the diameter of nanofibers, resulting in irregular protrusions on
their surface, and significantly improved the mechanical properties and hydrophilicity
of nanofibers, exhibiting excellent antibacterial activity. The rat model test showed that
the multi-layer nanofibers could accelerate wound healing, promote collagen deposition,
and reduce scar formation through the TGF-b/Smad signaling pathway, which had great
potential in the application of skin regeneration. Huang et al. [157] deposited positively
charged chitosan and negatively charged tannic acid on the alkali hydrolyzed cellulose ac-
etate nanofibers to prepare multi-layer nanofibers (Figure 10C). The results showed that the
layer-by-layer self-assembly technology could effectively improve nanofibers’ hydrophilic-
ity and mechanical properties, and the multi-layer nanofibers had significant antibacterial
activity against Escherichia coli and Staphylococcus aureus.

Furthermore, the effect of the number of coating layers on the properties of multi-
layer nanofibers has been investigated. Huang et al. [158] used electrospun cellulose
acetate/PCL composite nanofibers as the substrate. They applied layer-by-layer self-
assembly technology to repeatedly deposit positively charged chitosan and negatively
charged type I collagen. With the increase in the number of coating layers, the fiber
morphology became rough and irregular bulges appeared, which might be caused by
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uneven deposition. When the number of layers was 10, the mechanical properties of
nanofibers increased significantly, but when the number of layers was 15 and above,
the mechanical properties of nanofibers decreased significantly. When the number of
layers was 20, some filamentous films appeared between adjacent fibers, restoring the
mechanical properties of nanofibers to the level of the uncoated sample. In addition,
the greater the number of coating layers, the fewer apoptotic cells on the NFM, and
the higher the biocompatibility and support for cell proliferation of the NFM. Similarly,
Tu et al. [159] deposited carboxymethyl chitosan on the electrospun silk fibroin nanofibers’
surface by layer self-assembly treatment to prepare multi-layer nanofibers. It was found
that with the increase of carboxymethyl chitosan layers, nanofibers’ mechanical properties,
biocompatibility, and antibacterial ability were significantly improved, and the effect of
inhibiting bacteria would be better.

Biocompatible micelles can also be coated on degradable nanofibers through layer-
by-layer self-assembly technology to build a dual-release system. Albright et al. [160] first
introduced transforming growth factor-β1 into electrospun PCL/collagen nanofibers and
then deposited biocompatible nanomicelles based on polypeptide block polymer and tannic
acid on the surface of nanofibers to form multi-layer nanofibers (Figure 10D). Transforming
growth factor-β1 could attract inflammatory cells, promote angiogenesis, and stimulate
the differentiation of myofibroblasts, and biocompatible micelles could prevent wound
infection. Compared with the uncoated nanofibers, the coated nanofibers had considerable
fibroblast adhesion and diffusion ability and significantly enhanced fibroblast migration.
The influence of electrospun nanofiber structures on wound healing has been summarized
in Table 3.

Table 3. The influence of electrospun nanofiber structures on wound healing.

Base Materials Active Ingredients Structure Functions Ref.

cellulose acetate thymol porous improve cell compatibility, promote cell proliferation [131]

PCL / porous promote the adsorption and growth of fibroblasts [134]

PLA/CS aloin porous good swelling property, excellent blood coagulability [135]

PCL/PVA curcumin beaded controlled release of drugs, excellent osmotic
absorption ability [144]

PVA, gelatin advanced platelet-rich
fibrin mixture core-shell high cell proliferation and adhesion rates [148]

PCL, gelatin ciprofloxacin, tetracycline
hydrochloride core-shell antibacterial loading of the dual-drug system [149]

PLA/polyurethane,
PVP / hollow high liquid absorption capacity [150]

cellulose acetate,
PCL nisin multicore-shell bactericidal, high drug utilization rate [152]

PCL, gelatin,
PLGA / multicore-shell excellent drug sustained release [153]

PCL, chitin, silk / self-assembled
multi-layer antibacterial, angiogenesis and collagen deposition [154]

silk/PCL,
chitosan,
collagen

/ self-assembled
multi-layer

antibacterial, promote collagen deposition and
reduce scar formation [157]

PCL/collagen transforming growth
factor-β1

self-assembled
multi-layer

promote angiogenesis, considerable fibroblast
adhesion and diffusion ability [160]
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4.2. Structural Design of NFMs
4.2.1. Ordered Structure

The nanofibers collected through a flat plate collector are generally randomly oriented,
caused by the irregular movement of charged jets. However, randomly arranged NFMs
have relatively poor mechanical properties, and increasing the orientation of nanofibers is
an effective strategy for improving the mechanical properties of NFMs [161,162]. Mean-
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while, the influence of nanofiber arrangement on cell migration and phenotypic expression
has also been widely reported [163,164], which shows great potential in wound healing.
To obtain electrospun nanofibers with high orientation, NFMs with ordered structures are
prepared by introducing additional mechanical force fields, and electric or magnetic fields
to control the trajectory of charged jets. Moreover, collecting electrospun nanofibers using
a rotary collector is a common method for preparing ordered NFMs. Zhu et al. [165] used
a high-speed rotating (3000 rpm) collector wrapped in aluminum foil to collect ordered
NFMs and prepared PCL NFMs loaded with tazarotene(Figure 11). Biocompatibility testing
showed that the ordered NFMs promoted cells to creep along the main fiber direction,
forming elongated cells, which was conducive to the growth of cell populations towards a
unified direction. The promoting effect of ordered NFMs on angiogenesis had also been
demonstrated in the Matrigel experiment.
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Figure 11. Preparation of Aligned Electrospun Membrane and SEM micrographs of each group.
fibers’ direction, as shown by the red arrows. Membranes with histograms for the diameter (red) and
orientation (blue) distributions of the nanofibers from corresponding SEM images, reproduced with
permission from [165].

Xie et al. [166] studied the effect of aligned electrospun nanofibers on macrophage
polarization in a lipopolysaccharide-induced inflammatory environment (Figure 12A).
The results showed that aligned nanofibers could down-regulate the pro-inflammatory
M1 phenotype, up-regulate the pro-healing M2 phenotype and inhibit M1 macrophage
polarization via the JAK-STAT and NF-KB signaling pathways. In animal experiments,
aligned nanofibers could alleviate mouse wound inflammation, promote angiogenesis, and
accelerate wound healing by conditioning the macrophage phenotype, indicating that the
structural design of NFMs could provide a new strategy for their application in macrophage
polarization and wound healing. Furthermore, Ren et al. [167] prepared ordered porous
PLLA NFMs containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanopar-
ticles (DS) (Figure 12B). The results showed that aligned fibers had significant impacts on
directing the cellular alignment and migration, and finally promoted angiogenesis. The
porous structure increased the specific surface area of fibers and provided more sites for
cell adhesion. The ordered porous NFMs with DScould promote cell attachment, migration,
and revascularization and significantly promote collagen deposition in diabetes wounds.
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and characterization of electrospun membranes: SEM images, stress–strain curves, elasticity modulus
and water contact angles of the aligned and random electrospun membranes, reproduced with permis-
sion from [166]; (B) Preparation of an aligned porous electrospun fibrous membrane with controlled
drug delivery, and SEM and TEM images of the aligned porous electrospun membranes and the corre-
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showed the DS particles incorporated within the nanofibers), reproduced with permission from [167].

4.2.2. Asymmetric Double-Layer Structure

To simulate the structure and characteristics of human natural skin epidermis and
dermis and improve the therapeutic effect of wound dressings, asymmetric double-layer
dressings have been developed. Generally, asymmetric biomimetic dressings comprise a
tight outer layer and a porous inner layer, which can effectively prevent bacterial penetra-
tion and wound drying. In addition, 3D printing has gained widespread popularity due to
its ability to precisely control the sample aperture and obtain the desired 3D morphology
of samples. However, most 3D printing lacks the simulation of extracellular matrix. The
combination of 3D printing and electrospinning technology can simultaneously realize
the controllable construction of 3D morphology and simulation of extracellular matrix,
which can be divided into three categories. One is to use short nanofibers as components
of 3D printing ink [168], the other is to use 3D printing to improve the stability of electro-
spun jet [169], and the other is to combine 3D printing samples with electrospun NFMs to
simulate the gradient structure of the skin surface and dermis [170].

Liu et al. [171] used electrospinning to prepare a hydrophobic PCL NFM as the
outer layer to simulate the density and permeability of the epidermis. They applied low-
temperature 3D printing technology to fabricate the hydrophilic inner layer of the dressing
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with chitosan and copper-doped Laponite, which was responsible for killing bacteria and
promoting wound healing. The results showed that the asymmetric dressing had good
biocompatibility and antibacterial properties and significantly promoted the migration
of endothelial cells, which had a positive impact on wound healing. Zhang et al. [172]
prepared an electrospun PCL/PLA composite NFM as the hydrophobic outer layer. They
fabricated a porous hydrogel scaffold with sodium alginate, chitosan and PVA through 3D
printing as the hydrophilic inner layer of dressing, thus obtaining a double-layer bionic
composite membrane (Figure 13A). The results indicated that the bionic skin dressing had
high hydrophilicity, porosity, and mechanical properties, which could effectively inhibit
the growth of Staphylococcus aureus and promote cell proliferation while absorbing excess
tissue osmotic fluid to keep the wound moist.
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Interestingly, Shi et al. [173] designed a wound dressing with self-pumping absorption
capacity based on electrospinning technology (Figure 13B). The wound dressing could
remove excess osmotic fluid from the wound in one direction by covering a hydrophilic
NFM on a hydrophobic NFM. In the wound healing test of the mouse back, the self-pump
dressing showed faster healing speed.

4.2.3. Multi-Layer Structure

A multi-layer NFM can be obtained by folding or stacking electrospun NFMs, which
can promote the agglutination of platelets and blood cells, help to rapidly form a fibrillar
protein reticulum on the wound surface, and complete hemostasis due to its high expansion
rate [174]. Leung et al. [175] stacked 40 layers of electrospun NFMs, then pressed and
sintered them to prepare stable multi-layer NFMs. Song et al. [176] first seeded human
fetal osteoblasts on both sides of the electrospun PCL/apatite NFMs and then stacked
the NFMs loaded with cells layer by layer in the nanofiber box obtained from origami,
thus obtaining a 3D multi-layer wound dressing loaded with cells. Furthermore, multi-
layer NFMs can also be obtained by layer-by-layer spinning. Tort et al. [177] obtained
a multi-layer wound dressing composed of sodium alginate NFM, chitosan NFM and
PCL/collagen core-shell NFM by layer-by-layer electrospinning method (Figure 14A). The
sodium alginate and chitosan NFMs as the inner layer could promote contact between
the dressing and the wound and shorten the inflammatory period. The PCL/collagen
core-shell NFM containing doxycycline provided mechanical support for cell migration
and wound remodeling, effectively promoting wound healing. Shokrollahi et al. [178]
prepared a three-layer composite NFM by electrospinning, using chamomile, carboxy
chitosan and PVA as the inner layer materials, PCL as the outer layer materials, and inner
and outer layer materials mixed as the middle layer material (Figure 14B). The inner layer
containing hydrophilic chamomile could establish a good interface with the wound, the
outer layer of hydrophobic PCL provided strength for the dressing, and the middle layer
was a cohesive promoter between the hydrophilic and hydrophobic layers, making the
three-layer composite NFM have good mechanical properties, high bacteriostatic effects,
and good biocompatibility.
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Figure 14. (A) Schematic diagram of the preparation of three-layered doxycycline-collagen loaded
nanofiber, reproduced with permission from [177]; (B) Schematic diagram illustrating multilayer
nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and
polycaprolactone, reproduced with permission from [178].

Sponges not only have excellent hydrophilicity and swelling rat, but also provide sup-
port and antibacterial functions, so they can also participate in the formation of multi-layer
wound dressings. He et al. [179] first prepared a collagen/quaternary ammonium chitosan
sponge by the freeze-drying method. Then, they prepared the superhydrophobic outer
layer of PCL/polystyrene microspheres and the hydrophilic inner layer of PCL/gelatin
composite NFMs on both sides of the sponge by electrospinning (Figure 15A). The multi-
layer structural dressing was similar to the structure of natural skin but also had good
physical properties, biocompatibility, permeability absorption and antibacterial ability,
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effectively promoting wound healing. Nonwoven fabrics have good flexibility and mechan-
ical properties. By combining nonwoven fabrics with electrospun NFMs, the mechanical
properties of dressings can be significantly improved. Qiu et al. [180] used zein and ethyl
cellulose as basic materials to prepare the outer layer NFM containing an antibacterial agent
and the inner layer NFM with a healing agent through electrospinning (Figure 15B). Then,
nonwoven containing bacterial cellulose was used as the intermediate reinforcement layer
and bonded under certain thermal pressure conditions. The existence of the intermediate
layer compensated for the lack of mechanical properties of zein, while the addition of
bacterial cellulose made it have good hygroscopicity and biocompatibility. In addition, the
NFMs prepared from cellulose have a porous structure and good light transmittance, creat-
ing conditions for wound visualization to monitor wound changes better. Xia et al. [181]
fabricated porous cellulose membranes with chitosan-coated nanofibers using a simple
electrospinning technology (Figure 15C). The results showed that the composite membrane
had high wettability, hydrophilicity, and gas permeability, in addition to excellent light
transmittance and mechanical compliance. The influence of electrospun NFM structures on
wound healing has been summarized in Table 4.
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Table 4. The influence of electrospun NFM structures on wound healing.

Base Materials Active Ingredients Structure Functions Ref.

PCL tazarantine ordered promote targeted cell growth
and angiogenesis [165]

PLLA / ordered alleviate inflammation and
promote angiogenesis [166]

PLLA dimethylglycan porous and
ordered

promote cell attachment, migration and
revascularization [167]
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Table 4. Cont.

Base Materials Active Ingredients Structure Functions Ref.

PCL, chitosan copper-doped Laponite double-layer Antibacterial, promotes the migration of
endothelial cells [171]

PCL/PLA,
PVA/chitosan/alginate / double-layer promote cell proliferation, absorb excess

tissue osmotic fluid [172]

alginate, chitosan,
PCL/collagen doxycycline multi-layer shorten the inflammatory period, promote

cell migration [177]

chitosan/PVA, PCL chamomile multi-layer good mechanical properties, bacteriostatic [178]

zein/ethyl cellulose,
bacterial cellulose / multi-layer antibacterial, good hygroscopicity and

biocompatibility [180]

5. Conclusions

Electrospun nanofibers have a high specific surface area, high porosity, and a structure
similar to the natural extracellular matrix of the skin, making them suitable and effective
wound dressings. This review first provides an overview of the origin and development of
electrospinning technology and analyzes its working principle and key process parameters.
Afterwards, the influence of devices and materials for electrospinning on the morphology
and properties of nanofibers is discussed. The advantages and limitations of electrospun
matrix materials are described, the selection and combination of polymers are proposed,
and the introduction of functional factors with hemostatic, antibacterial, cell proliferation
and other therapeutic effects into electrospun matrix materials is illustrated. Then, the
structural design of single nanofiber for wound dressing, including porous structure,
bead structure, core-shell structure, and multicore-shell structure, is described in detail.
Finally, a detailed introduction is given to the structural design of electrospun NFMs for
wound dressings, containing ordered structure, double-layer biomimetic structure and
multi-layer structure.

The structural design of single nanofiber and NFMs provides creativity for the pro-
duction of more perfect wound dressings. However, the diversity of structures represents
the complexity of the production process, such as the easy blockage of coaxial needles, fast
volatilization of solvents in free surface electrospinning, and low mechanical properties of
porous structured fibers, which increases the difficulty of selecting materials and limits the
production efficiency of nanofibers to some extent. Moreover, the binding force between
multi-layer NFMs or NFMs and other scaffolds also affects the overall stability of wound
dressings. Nevertheless, as a simple and flexible method for preparing nanofibers, elec-
trospinning technology still has great potential in the application of wound dressings. In
recent years, electrospun nanofibers have been used to prepare functional yarns [182,183],
which provides the possibility of using them as wound sutures, thus prompting electro-
spun nanofibers to be applied in more diverse forms in wound dressings. In the future,
the preparation of electrospun nanofibers should avoid the use of toxic organic solvents
and reasonably design electrospinning equipment to achieve its industrial development.
The design of electrospun nanofibers will tend to meet more complex needs and adapt to
wounds that are difficult to heal. For example, an NFM that can induce corresponding
drug-release reactions according to the wound microenvironment or external stimulation
will be developed to treat different types of wounds. Functional NFMs with diagnostic or
therapeutic effects for wound treatment will be proposed. In general, wound dressings
based on electrospun NFMs have a bright future due to their diversity in component
selection and structural design.
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