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Abstract: Most natural materials have rotational and hierarchical properties, so they can show excel-
lent mechanical properties such as shear resistance and impact resistance. In order to further improve
the energy absorption characteristics of vibration absorbing structures, a new type of honeycomb
structure with integral rotation and group rotation is designed and characterized. The effects of the
geometrical parameters of rotation Angle on the impact deformation mode, stress response curve
and energy absorption characteristics of the honeycomb structure are studied through numerical
simulation and experimental design. The results show that the overall honeycomb performance
of 15◦ is better than that of 0◦, the specific energy absorption is the results show that the overall
honeycomb performance of 15◦ is better than that of 0◦, the specific energy absorption is increased
by 6%, the bearing capacity is increased by 320 N, and the crushing force efficiency is increased by
2%. Compared with the whole cell and the group cell, the specific absorption energy increased by
35%, 73% and 71%. The results of this paper provide a new insight into the impact performance of
monolithic and grouped rotating honeycomb structures, which is helpful for the results of this paper
provide a new insight into the impact performance of monolithic and grouped rotating honeycomb
structures, which is helpful for the optimization of crashworthiness structural design.
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1. Introduction

As a typical periodic porous energy-absorbing structure, the honeycomb structure
is mainly characterised by dynamic instability under impact loads, with the honeycomb
structure producing violent plastic deformation and absorbing most of the impact energy,
with excellent deformation load-bearing capacity, energy absorption, and highly desirable
impact resistance, and is widely used in many engineering applications, it is widely used
in bridge [1], aerospace [2,3], automobile [4,5] and other fields. With the popularisation of
the concept of lightweighting and the development of technology, the use of honeycomb
structures is becoming more and more common. The increasing demand for energy absorp-
tion capacity and compression resistance has led to innovative designs of shape forms and
arrangements of honeycomb structures that have received much attention from scholars
at home and abroad. Studies on periodic honeycomb structures with different shapes or
arrangement distributions have shown that innovations in the structure of individual hon-
eycomb cells can improve the overall mechanical properties of honeycomb structures. Hou
Xiuhui et al. [6] analysed the deformation patterns of multi-concave honeycomb structures
under different velocity impact loads. Zhenfeng Shen et al. [7] designed a new model of the
in-concave annular honeycomb structure with negative Poisson’s ratio based on the theory
of mechanical metamaterials based on the in-concave hexagonal honeycomb structure and
investigated its impact response characteristics. Khan et al. [8] proposed a reentrant honey-
comb structure model to improve the elastic properties of the structure by adding cell ribs
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to the in-concave honeycomb structure. Yi-Xian Du et al. [9] used topology optimisation
for the innovative design of a honeycomb-like sandwich configuration to obtain a structure
with better load-bearing performance in the coplanar direction. Liang et al. [10] added
smaller hexagons at the centre and apex of the honeycomb structure to achieve a multi-
stage self-similar honeycomb structure with energy absorption. Xu et al. [11] performed
in-plane dynamic response and multi-objective optimisation of a sinusoidal curve with
negative Poisson’s ratio honeycomb structure. The development of 3D printing technol-
ogy has made it possible to fabricate multi-cell structures with fine geometric features.
Wu et al. [12] proposed various types of 2D and 3D chiral mechanical metamaterials using
the nodal rotation and ligament deformation properties of chiral elements for devices such
as deformable airfoils with chiral core configurations; Zhang et al. [13] proposed a new
anti-chiral structure with an arc-shaped ligament by replacing the straight ligament with a
circular arc-shaped ligament, with an 8-fold increase in Young’s modulus. 8 times higher
Young’s modulus and 4 times higher specific energy absorption. Wang et al. [14] proposed
a new layered lattice design method replacing straight beams with a string of higher-order
circular beams. Hamidreza Eipakchi and Farid Mahboubi Nasrekani [15,16] discussed
the influence of negative Posson ratio honeycomb structure and length-diameter ratio on
buckling load, and changed the mechanical properties of honeycomb structure by changing
its geometric parameters. Hossein Taghipoor and Mohammad Damghani Nouri [17] have
studied sandwich structures with expanded metal sheets, indicated the cell orientation was
a critical parameter affecting the failure mode and energy absorption capability, the porous
and lightweight honeycomb lattice structures mentioned above have been used in many
applications, covering a wide range of fields such as automotive, defence, aerospace, and
armour protection.

Structural bionics is inspired by the microscopic, fine, and macroscopic tissues with ex-
cellent mechanical properties of a wide variety of organisms in nature and applies them to
structural design through imitation, reproduction, and optimisation to improve structural
performance. In nature, organisms have evolved many structures with excellent impact
resistance in order to adapt to the harsh external environment and resist invasion by natural
enemies. Liu et al. [18] designed the arrangement of lattice structures based on the me-
chanical properties of the top, middle and abdominal structures of beetles; Yu established a
negative Poisson’s ratio structure mimicking the peanut shell structure by structural bion-
ics [19]; Wu Fei [20] designed a lotus root structure, a lotus horsetail structure and a lotus
honeycomb structure inspired by the lotus structure and performed axial radial and triple
bending crushing experiments; The Brigantine structure with excellent impact resistance
was discovered in the structures of fish scales [21] and arthropod exoskeletons (mantis
shrimp [22], lobster [23], beetle sheath wings [24], etc.), which is a helical structure con-
sisting of planar rotating stacks of geotinous fibers, protein matrix and calcium carbonate,
etc. Yu et al. [25] designed single-rotation and multi-rotation honeycomb structures based
on the microstructure of grass stem cross-sections; Jiang et al. [26] designed non-linear
rotational angle spiral laminates with improved impact resistance based on the microscopic
spiral structure inspired by biological microstructures, and used 3D printing technology
to prepare eight types of spiral angle tubular structures, and conducted compression tests
and finite element simulations to elucidate their deformation structures and energy ab-
sorption principles; Liu et al. [27] found that spiral specimens outperformed unidirectional
specimens in terms of impact duration, peak impact force and energy absorption in the
concrete domain. D. Ginzburg et al. [28] found that spiral laminates enhanced the damage
tolerance and impact energy absorption of laminated materials with minimal fibre damage.
In this paper, we design a rotating honeycomb structure based on a structural bionic ap-
proach, verify the validity of the model using finite element analysis and experimental tests,
and investigate the effect of angular parameters on the deformation pattern, mechanical
response, and energy absorption characteristics of the honeycomb structure under the
action of external loads to provide a reference for the design of energy-absorbing protective
structure configurations and their application in engineering.
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2. Materials and Methods
2.1. Model Design

In this paper, based on the design concept of bionic structure, combined with the defor-
mation characteristics of honeycomb structure, in order to improve the energy absorption
characteristics and impact load consistency of the ortho-hexagonal honeycomb structure,
the hexagonal honeycomb structure is rotated as a whole to form a new inclined side cell
wall, and four different angles of honeycomb model are proposed. Figure 1 shows the
schematic diagram of the honeycomb structure. The configuration of the rotating honey-
comb structure is inspired by the rotation Angle in the honeycomb structure and spiral
structure. The hexagonal honeycomb structure is rotated 15◦, 30◦ and 45◦ successively,
ensuring that the length L = 60 mm and the height H = 50 mm of the whole structure are
unchanged. The Angle of each cell wall is changed in the arrangement, and the rotation of
the structure will change the force mode and the way of force transfer during the in-plane
compression of the inner hexagonal cell. Based on the combined concept, the overall test
frame model was densely arranged using an 8 × 8 matrix, and the matrix frame length
× width × height was 60 mm × 30 mm × 50 mm, as shown in Figure 1. The effect of the
cellular microstructure parameters on the internal impact performance was investigated.
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Figure 1. Schematic diagram of a rotating honeycomb: (a) 0◦ honeycomb, (b) 15◦ integral hon-
eycomb, (c) 30◦ integral honeycomb, (d) 45◦ integral honeycomb, (e) 15◦ combined honeycomb,
(f) 30◦ combined honeycomb, (g) 45◦ combined honeycomb.

According to the specific requirements of this study, this paper uses nylon material
for the rapid preparation of rotating honeycomb specimens (Figure 2a) on the 3D print-
ing equipment FS403P, which has the advantages of wear resistance, heat deformation
resistance, and chemical corrosion resistance. In order to obtain the mechanical properties
of the nylon material used in 3D printing, three standard tensile specimen samples with
dimensions referenced to the ISO 527-2:1993 standard were produced and cut out and uni-
axial tensile experiments were carried out using a universal testing machine DDL100, the
average value of the three tensile samples was taken to obtain the tensile stress-strain curve
as shown in Figure 2b. The detailed parameters of the nylon material are as follows: density
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1100 kg/m3, modulus of elasticity 520 MPa, Poisson’s ratio 0.8, yield stress 23.36 MPa and
tensile stress 43.00 MP.
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Figure 2. (a) Tensile displacement curve of the 3D printing device FS403P (b) dog bone sample
(c) tensile experiment (d) nylon material.

Prior to the compression test, the honeycomb was placed in a dry and ventilated
area to remove any moisture absorbed by the honeycomb and to homogenise it. The
dimensions were then measured using vernier calipers and weighed using an electronic
balance, and Table 1 below shows the measured dimensions and mass parameters of each
rotating honeycomb.

Table 1. Rotary honeycomb size, parameter quality table.

Honeycomb Angle Length (mm) Width (mm) Height (mm) Mass (g)

0◦ 60 30 50 36.523
15◦ 60 30 50 35.295
30◦ 60 30 50 34.085
45◦ 60 30 50 35.595

15◦ combination 60 30 50 35.485
30◦ combination 60 30 50 35.023
45◦ combination 60 30 50 35.62

2.2. Finite Element Simulation Modeling Methods

Figure 3a shows a finite element model of a hexagonal rotating honeycomb structure
under in-plane impact loading. The overall model consists of an upper steel plate and
a rotating honeycomb structure with a fixed end at the bottom. The nonlinear display
dynamic finite element software LS-DYNA is used to systematically simulate the dynamic
characteristics of the integral rotation and group rotation finite element models. In order
to better simulate the compression deformation of the structure, the elastoplastic material
model MAT_24 and the stiffness material model MAT_20 in LS-DYNA were used to model
the honeycomb structure and the rigid wall respectively. The cellular structure is modeled
by hexahedral lattice elements. The automatic single-sided contact algorithm was used
to prevent the penetration of the cell wall, and automatic face-to-face contact was used to
simulate the contact behaviour between all cell walls and the rigid plate, with the friction
factor set to 0.2 for all contacts. Boundary conditions are set for the rigid wall and the
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fixed end so that the rigid wall and the honeycomb structure are fixed in all degrees of
freedom except the direction of compression. In the experiment, the loading rate of the roof
is 2 mm/min. In the numerical simulation process, mass scale amplification and velocity
amplification methods are generally used to simulate in-plane compression behavior in
order to save calculation costs. Therefore, an amplification method with a speed of 0.1 m/s
is used for the rigid wall in this study.
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Figure 3. (a) Rotating honeycomb finite element model (b) Mesh convergence analysis.

In quasi-static compression simulations, the accurate selection of the structural mesh
size can make the structural simulation analysis more accurate and efficient, thus enabling
the structural mesh sensitive analysis. To determine the mesh size, a mesh convergence
analysis was carried out, as shown in Figure 3b. Compare the difference between calculation
time and calculation SEA, taking into account the simulation accuracy, numerical stability
and computational efficiency, ensuring convergence and reducing the amount of operations,
the mesh size was determined to be set at 1 mm optimally.

2.3. Experimental Setup

To verify the accuracy of the finite element model, quasi-static compression tests were
carried out on four angular rotating honeycombs using a universal testing machine, as
shown in Figure 4. The bottom of the specimen was placed on a rigid base below and the
rigid body above compressed the specimen at a rate of 2 mm/min. The variation process of
the reaction force with compression displacement was obtained through a force transducer,
and the compression test force-displacement curve derived from the electronic universal
testing machine system was transformed into a compression test stress-strain curve using
Equations (1) and (2) [29] for data processing. At the same time, the deformation process of
the specimen was recorded using HD video recording equipment.

σ =
F
A

=
F

LB
(1)

ε =
δ

H
(2)

where σ is the instantaneous compressive stress in MPa; F is the compressive force in N;
A is the cross-sectional area within the honeycomb surface in m2, ε is the instantaneous
strain; δ is the downward displacement of the indenter in m; L, B, and H are the overall
width, thickness, and height of the honeycomb, all in mm.
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3. Results and Discussion
3.1. Indicators of Energy Absorption Characteristics

Energy Absorption (EA), Specific Energy Absorption (SEA), Mean Crushing Force
(MCF), Initial Peak Crushing Force (IPCF), Crushing Force Efficiency (CFE), and Energy
Absorption Efficiency (EAE) were introduced as crashworthiness evaluation indexes, Crush
Force Efficciency (CFE), Energy Absorption Efficiency (EAE) [30–37] were used as crash-
worthiness indicators to evaluate the crashworthiness of rotating honeycomb structures.

(1) Total Absorption Energy (EA)

The total energy absorption of the cellular porous structure undergoing elasto-plastic
deformation during crushing is evaluated by the total energy absorption (EA), i.e., the area
under the force-displacement curve, calculated as shown below:

EA =

d∫
0

F(x)dx (3)

where d denotes the crush distance. The greater the total energy absorption EA of a
structure at the same displacement, the better the energy absorption capacity.

(2) Specific energy absorption (SEA)

In order to eliminate mass differences between individual models, the specific ab-
sorbed energy of a structure is defined in terms of energy absorbed per unit mass and is
calculated as shown below:

SEA =
EA
m

(4)

where m is the mass of the specimen, it is clear that a higher specific energy absorption
indicates a higher energy absorption effectiveness of the structure.

(3) Mean crushing force (MCF)

The mean crush force MCF is a characterisation parameter of the energy absorption of
a porous thin-walled structure at unit displacement, the value of which can be obtained
from the ratio of the total energy absorption to the crush displacement d. The formula is
shown below:

MCF =
EA
d

(5)

(4) Initial peak force (IPCF)

The initial peak force of IPCF occurs at the beginning of the collapse of a cellular
porous structure and is the first peak impact reaction force generated during the initial
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phase of the collapse. The initial peak force IPCF makes a small contribution to the energy
absorption of the structure and too high an initial peak force IPCF can cause some injury to
people in the protective device.

(5) Crushing Force Efficiency (CFE)

It is the ratio of the Mean Crushing Force (Fmean) to the Maximum Crushing Force
(Fmax) and is a key indicator of structural load stability. The larger the crushing force
efficiency value, the more stable the deformation, as shown by the following formula:

CFE =
Fmean

Fmax
× 100% (6)

(6) Energy Absorption Efficiency (EAE)

The energy absorption efficiency η is the ratio of energy absorption to the correspond-
ing stress during quasi-static compression and is calculated as shown below:

η =

∫ ε
0 σmdε
σm

(7)

dη(ε)

dε
|ε=εd = 0 (8)

3.2. Experimental Results and Model Validation

The deformation patterns of cellular energy-absorbing structures are a key basis for the
study of energy absorption properties. It is necessary to explore the deformation patterns
or folding types of typical microcells and to clarify the deformation mechanism of the
overall structure.

Typical characteristics of honeycomb structured materials subjected to impact include
localisation of deformation and stress enhancement. Figure 5 gives typical deformation
patterns for four different angles of the honeycomb structure for compressive strain states.

For the 0◦ original honeycomb, a “V” shaped deformation zone appears on the upper
side of the model first; as the downward pressure increases, an “X” shaped deformation
zone appears throughout the model, with the deformation mainly concentrated in the
middle part of the model. For the 15◦ rotating honeycomb, One-piece deformation belt
appears first at the lower middle of the model. For the 30◦ rotating honeycomb, the same
One-piece deformation zone appears in the lower central part of the model, but the direction
of the zone is opposite to that of the 15◦ honeycomb. For the 45◦ rotating honeycomb, the
collapse pattern starts diagonally with layer-by-layer compaction, with the gap between
the honeycomb cells gradually decreasing to near zero and the compaction area gradually
approaching the fixed end.

In the “x” deformation mode, the hexagonal honeycomb expands laterally with the
compression. This is because the special structure of the hexagonal honeycomb causes
the cell wall to produce a plastic hinge, resulting in the gradual collapse of the hexagonal
honeycomb and the formation of an X-shaped shear band. This X-shaped shear band causes
cells near the free boundary on both sides of the hexagonal honeycomb to have less capacity
than the lateral constraints near the central region, which will squeeze the cells outward,
causing lateral expansion. There is no obvious macroscopic deformation at the initial stage
of compression. However, the internal cell is slightly bent, and after the stress exceeds the
initial peak, the stress is stabilized at the stress value in the plateau period with the increase
of strain. The deformation of the overall rotating honeycomb is mainly due to the bending
and rotation of the cell wall. Once the inclined wall is crushed, an external bending moment
will occur around the node. The deformation zone is gradually expanded layer by layer,
which will not cause the transverse contraction and expansion of the structure. Compared
with the X-shaped shear zone, the one-shape shear zone has a more stable deformation
mode and better self-restraint ability, which is conducive to maintaining stable mechanical
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properties in practical applications. The deformation of the grouped rotating honeycomb
structure is quite different from that of the whole rotating structure. The initial peak force
of the grouped rotating honeycomb structure is 1.2–1.45 times that of the whole rotating
honeycomb, which indicates that the grouped rotating design has a favorable influence
on the crushing load. The structural strength of different components is different, and
the load force required for deformation is greatly different. The component that deforms
first reaches a dense state before the deformation zone is formed by a large macroscopic
deformation in the next component, which is the obvious reason why the impact resistance
is better than the whole rotating honeycomb.
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3.3. Quasi-Static Crushing Response of an Integral Rotating Honeycomb

The rotating honeycomb has excellent deformation performance as well as good
energy absorption characteristics. The force-displacement curves obtained from quasi-static
compression experiments, as shown by Figure 6, show that the rotating honeycomb of four
angles all have the same three typical stress characteristic phases as the porous structure
under forward compression conditions: the linear elastic phase at the beginning of loading
(I), the plastic deformation plateau at the middle of loading as the yielding phase reflecting
the energy absorption capability of the structure (II) and the crushing densification stage at
the end of loading (III). The experimental results are consistent with the simulation results
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in terms of stress levels and deformation patterns, confirming the accuracy and validity of
the finite element simulation.
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Figure 6. Experimental and simulated stress-strain curves for quasi-static compression of a
rotating honeycomb.

During the initial stages of loading, the overall experimental model presents the mate-
rial properties of the nylon material, with the image curve exhibiting linear characteristics.
At this stage, the stress curve increases linearly with strain, rising sharply to approximate a
straight line and reaching its first peak.

In the middle stage, when the compressive stress of the honeycomb exceeds the yield
strength, the load continues to be applied, the deformation increases substantially, the stress
tends to level off or even shows a downward trend, theoretically this stage belongs to a
performance of yielding, at the same time the porous structure of each layer absorbs energy
through its own deformation, the curve shows a smooth and slow rise, so it also belongs to
the energy absorption stage, this interval is long, reflecting that the structure has quite good
At the same time, during the platform stress phase, as the strain increases, the individual
diagonal beams of the honeycomb structure collapse and fail, showing a layer-by-layer
folding state, and the stress fluctuates within a certain range, which is determined by the
deformation form of the honeycomb.

At the end of loading, the model structure tends to densify and this phase is the damage
phase of the model, when the internal cellular elements of the structure are crushed and
the stresses increase sharply to their maximum values and the curve increases steeply.

As can be seen from Table 2, the rotating honeycomb structure of equal relative density,
the best energy absorption effect of 15◦ honeycomb is 142 J and 4.02 J/Kg, which is 1.06
and 1.09 times of 0◦ honeycomb, and the bearing capacity of 15◦ honeycomb is 1.06 times
of 0◦ honeycomb, meanwhile, the best crushing force efficiency of 15◦ honeycomb is 65%,
which is 2% higher than 0◦ honeycomb; the stress-strain curve of 15◦ honeycomb fluctua-
tions were smaller and no frequent fractures occurred. In summary, a structure with better
energy absorption should have higher platform stress and lower fluctuations.

Table 2. Analysis of energy absorption results.

0◦ 15◦ 30◦ 45◦

IPCF (kN) Experiment 5.9 5.5 4.1 3.9
MCF (kN) Experiment 5.4 5.7 4.8 4.5

EA (J)
Experiment 134 142 120 113
Simulation 136 143 118 115

Error/% −2.2 −0.7 1.67 −1.7

SEA (J/g)
Experiment 3.7 4 3.5 3
Simulation 3.6 3.95 3.4 3.1

Error/% −2.7 −1.25 -2.8 3.3
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The specific absorption energy of honeycomb increased by 8 J over 0 honeycomb, and
the average stress increased by 0.3 kN. The deformation behavior and mechanical properties
of honeycomb structures depend on their microstructure arrangement or topology, and
some unique properties can be obtained by rationally adjusting the microtissue arrangement
of materials. The deformation of the honeycomb structure is dominated by bending
deformation, which is easy to form a shear band, thus affecting its mechanical properties.
The shear band is usually formed along the diagonal direction of the specimen, and
strengthening the diagonal of the rotating honeycomb by rotating the diagonal rod can
further increase the in-plane stress while creating more plastic hinges, thus increasing the
energy absorption capacity of the structure.

Figure 7 shows that the compression modulus of the 15◦ honeycomb is the same
as that of the 0◦ honeycomb, and the compression strength is slightly less than that of
the 0◦ honeycomb. The compression strength and compression modulus of the 0◦ and
15◦ honeycombs are significantly higher than those of the 30◦ and 45◦ honeycombs, due
to the changes in the structure of the 30◦ and 45◦ honeycombs resulting in the cell walls
touching each other during compression, the lateral shrinkage of the structure being more
impeded and the compression modulus being lower.
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Figure 7. Three-stage energy evolution of a rotating honeycomb structure.

The percentage of energy absorption in the three phases of the compared species of
rotating honeycomb, is shown in Figure 8. From Figure 8, it can be seen that the load-bearing
capacity of the four rotating honeycombs is more varied in the plateau phase, the energy
absorption capacity in the platform plateau phase is the most sensitive to the difference in
structure, and the energy absorption capacity in the linear elastic phase is least influenced
by the model structure; compared with 30◦ and 45◦, 0◦ and 15◦ have better stable plastic
crush section and smooth collapse phase; while in the dense phase of 15◦ honeycomb, the
amplitude of the stress curve The 15◦ honeycomb has a slightly higher amplitude than
the 0◦ honeycomb, so the energy absorption density of the 15◦ honeycomb eventually
exceeds that of the 0◦ honeycomb. In general, the lattice structure can effectively absorb
energy through plastic deformation until it is compacted, and when the energy absorption
efficiency reaches its maximum, the structure reaches the densification stage. Figure 9
shows that the energy absorption efficiency of all four types of honeycomb is reflected as
first increasing and then decreasing, and the maximum value of 15◦ honeycomb is smaller
than that of 0◦ honeycomb, but the moment when the maximum value of 15◦ honeycomb
appears is smaller than that of 0◦ honeycomb. In the compression test, the cell walls of the
lattice bend and fracture, providing volume space for further compression of the structure.
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3.4. Simulation Results of the Combined Design Rotating Honeycomb

Figure 10 compares the deformation patterns of the three rotating combinations of
honeycombs. From the deformation diagram, it can be seen that the 15◦ combined honey-
comb shows a small deformation, with a “V” shaped deformation zone at the top, and as
the compressive strain increases, the deformation at the impact end gradually increases,
and the deformation at the bottom fixed end starts to deform and gradually increases,
with an “X” shaped deformation zone. Eventually, the honeycomb structure enters the
densification stage and the cellular elements are destructively crushed, the honeycomb
structure increases in four sub-regions at close angles, so the shape of the deformation zone
is similar to that of the 0◦ honeycomb; the 30◦ combined honeycomb has a one-piece defor-
mation zone at the impact end of the honeycomb structure at the beginning of the impact,
as the compressive strain increases, more honeycomb cell elements enter the deformation
region, the 30◦ honeycomb is rotated to create vertical supports and each cellular structure
is deformed to its limit above and below the vertical rod, resulting in a “cavity” inside; The
45◦ honeycomb is rotated at a large angle and at a strain of 0.25, the upper honeycomb
is deformed while the lower honeycomb is also deformed by tilted rotation, resulting in
multiple deformation zones and more instability overall than the 15◦ and 30◦ combinations.
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Figure 10. Simulated deformation of a rotating combined honeycomb structure.

Compared to the integral rotating structure, the stress curve of the grouped rotating
structure (as shown in Figure 11) has no obvious plateau period, when impacted, the upper
structure deforms before the lower structure, when compression gradually increases, the
lower structure still has the ability to deform and absorb energy, the stress-strain curve
continues to increase upwards, there is no horizontal plateau period; the slope of the curve
of the 15◦ honeycomb elastic deformation stage 1 is higher than that of stage 2, while The
30◦ and 45◦ honeycombs pass through a buffer zone in the second stage and the slope of
the curve is close to that of the initial stage. The combined design can compensate for the
weakening of the energy absorption capacity of the overall deformation of the structure at
a later stage.
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Figure 11. Combined rotating honeycomb quasi-static compression simulation stress-strain curve.

The 30◦ honeycomb has a higher first stage curve than the 15◦ and 45◦ combinations,
the initial peak force IPCF is the highest of the three (as shown in Table 3), the average
crushing force, total energy absorption and specific energy absorption of the 30◦ combi-
nation are better than the other two combinations, but the initial peak force of the 15◦

combination is lower than the 0◦ and 15◦ compared to the overall honeycomb, and the
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energy absorption level of the 30◦ combination is higher than the overall 15◦ honeycomb,
suggesting that the combination honeycomb can reduce the peak force of the structure
while increasing the level of energy absorption.

Table 3. Analysis of combined rotary honeycomb energy absorption results.

Honeycomb Angle IPCF (kN) MCF (kN) EA (J) SEA (J/g)

15◦ combination 9.3 7.76 194 5.4
30◦ combination 9.2 8.52 213 6.08
45◦ combination 8.2 7.36 184 5.13

Compared with the typical third-order process of overall honeycomb, the combined
rotating honeycomb consists mainly of two stages, linear elastic stage and fluctuating
plateau, which introduces higher platform stress, and the results show that the combined
rotating honeycomb structure has excellent energy absorption capacity. The deformation
range of the combined honeycomb structure is wider, which can more effectively bear
the surface compression load, and more cell walls can produce more plastic hinges, thus
generating more energy dissipation in the plastic deformation stage; the combined rotation
structure can improve the modulus and energy absorption capacity of the material, for
application scenarios with auxiliary and bearing performance requirements; its character-
istics can be further adjusted by adjusting the Angle value of the combined structure. It
should be noted that this paper focuses on the quasi-static loading case, considering the
large impact velocity range of protective structures in practical applications, the results
of the rate on the mechanical properties of the rotating honeycomb are discussed, which
requires further study.

4. Conclusions

In this paper, the mechanical behaviour, in-plane impact response and energy absorp-
tion mechanism of the integral rotating honeycomb structure are investigated through
quasi-static compression tests and finite element simulations by comparing 0◦, 15◦, 30◦, 45◦

rotating honeycomb and 15◦, 30◦, 45◦ combined honeycomb, and based on this, initial peak
force, platform stress, energy absorption and specific energy absorption are used to show
the influence of compression performance in the plane.The comparative analysis of The
deformation patterns and energy absorption characteristics of the combined honeycomb
structures were investigated and the main conclusions were as follows:

(1) Deformation patterns: 0◦ honeycomb has a typical “X” shaped deformation zone,
15◦, 30◦ and 45◦ are more obvious zigzag deformation zones, all are more uniform in-
plane compression deformation patterns; combined rotating honeycomb has obvious
layered deformation characteristics, the upper layer deforms first, the lower layer
deforms later, and the local deformation zone is obvious.

(2) In terms of platform stress: both the 15◦ honeycomb and the 0◦ honeycomb outperform
the 30◦ honeycomb and the 45◦ honeycomb, and the 15◦ honeycomb is higher than
the 0◦ honeycomb in terms of average crush force and crush force efficiency, but in
the combined rotary honeycomb, the 15◦ combination is smaller than the 30◦ and
45◦ combinations in terms of overall stress-strain curve and average crush force.
Compared with the integral honeycomb, the combined honeycomb has higher initial
peak force and platform stress, which plays an important role in the energy absorption
of the structure.

(3) Energy absorption: The energy absorption capacity of 0 and 15 is significantly higher
than that of 30 and 45. The total energy absorption of the 15, 30 and 45 honeycomb
was 194 KJ, 213 KJ and 187 KJ, which are 35%, 73% and 71% higher than the overall
honeycomb, respectively, 15, 7.76 kN, 8.52 kN and 7.36 kN, respectively, and the
30 honeycomb was better in the combined cells.
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It can be seen that, compared to 0◦ honeycomb, the different pressure-bearing direc-
tions of the rotating honeycomb cell walls lead to significant changes in the compressive
deformation pattern and energy absorption properties of the honeycomb material, and
the rotating design of the cell walls can enhance the impact resistance of the honeycomb.
The overall rotational and combined rotational design strategies proposed in this study
provide a new way to design lattice structures with controllable deformation mechanisms
and adjustable mechanical properties.
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