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Abstract: Material innovation plays a very important role in technological progress and industrial
development. Traditional experimental exploration and numerical simulation often require con-
siderable time and resources. A new approach is urgently needed to accelerate the discovery and
exploration of new materials. Machine learning can greatly reduce computational costs, shorten the
development cycle, and improve computational accuracy. It has become one of the most promising
research approaches in the process of novel material screening and material property prediction.
In recent years, machine learning has been widely used in many fields of research, such as super-
conductivity, thermoelectrics, photovoltaics, catalysis, and high-entropy alloys. In this review, the
basic principles of machine learning are briefly outlined. Several commonly used algorithms in
machine learning models and their primary applications are then introduced. The research progress
of machine learning in predicting material properties and guiding material synthesis is discussed.
Finally, a future outlook on machine learning in the materials science field is presented.

Keywords: machine learning; material screening; property prediction; material synthesis;
artificial intelligence

1. Introduction

New materials have become the cornerstone of scientific and technological develop-
ment. Discovering materials with targeted properties, especially nanomaterials, has always
been a hotspot in science [1,2]. At present, the research and development of new materials
mainly relies on researchers’ intuitive judgment of materials and empirical trial-and-error
methods, which are not only inefficient but also often require a certain level of experience
and luck to obtain the target materials. At the same time, methods based on density func-
tional theory (DFT) are widely used in the research and development of novel materials.
Since their initial development, DFT methods have evolved from limited calculations that
provide approximate results to increasingly accurate and predictable methods. These meth-
ods have made important contributions in a variety of fields, such as materials discovery
and design, drug design, solar cells, and hydrolytic materials [3]. The accuracy of these
methods, however, is limited in fast calculations. To obtain high-accuracy results, the
computational volume often has to be much higher, which is difficult to exploit efficiently
in the research and development of new materials. In this context, artificial intelligence (AI)
is becoming highly popular with researchers as a means of accelerating the development of
innovative materials. A subfield of AI that has grown rapidly in recent years is machine
learning (ML). ML applications are built on statistical algorithms. ML performs similarly
to researchers’ performance [4]. Because of its powerful data processing capability and
relatively low research threshold, ML can effectively reduce human and material costs in
the process of novel material development and shorten the research and development cycle.
By replacing or collaborating with traditional experiments and computational simulations,
ML could be employed to analyze material structures and predict material properties,
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enabling the development of novel functional materials more efficiently and accurately.
As a result, ML has become one of the most crucial methods for replacing traditional
research and development. In the recent past, researchers in different fields, including
computer scientists and experts in AI algorithms, have used this approach extensively,
greatly contributing to the development of ML techniques [5]. ML is now widely utilized in
fields such as natural language understanding, non-monotonic reasoning, machine vision,
and pattern recognition [6].

The basic principle of ML is to learn (or guess) general patterns from a limited
amount of training data and use these patterns to make predictions on unknown data.
Figure 1 shows an ML workflow example. ML has been used to detect the solubility
of C60 in materials science as early as the last century [7]. It is now used to discover
novel materials, predict material and molecular properties, study quantum chemistry,
and design drugs. The purpose of this review is to offer an overview of the employment
of ML in predicting material properties and performance, guiding material synthesis,
and projecting models and conclusions. This review not only provides guidance for
researchers to synthesize stable and efficient materials, but also inspires their interest in
the use of ML in materials research.
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Figure 1. An example of an ML workflow.

2. Data Pre-Processing

If ML models are the engines that handle various tasks, data are the fuel that drives
the models. A sufficient amount of data is a prerequisite to making the model work.
High-quality data enable the model to run effectively. Due to this, large amounts of data
are critical to ML [8]. In general, the final ML results are directly affected by the amount
and reliability of the data. This is where data pre-processing and feature engineering are
beneficial. Data pre-processing and feature engineering could promote the reconstruction of
datasets so that computers could more easily understand the physicochemical relationships
of materials, detect material properties, and build prediction models [9].

2.1. Data Collection and Cleaning
2.1.1. Data Collection

In ML, the size and quality of the training dataset employed for learning could
significantly affect the accuracy of a predictive model. Therefore, training datasets need
to be collected or created carefully. In general, training data can be gathered in three ways.
Obtaining data from the published literature is the first method. The data obtained in this
way could be more relevant and provide a direction for synthesis and application [10].
Second, high-throughput computations or experiments can be used to obtain data. It
should be noted that, in some cases, these data may be incomplete, inconsistent, or even
spurious [11]. The third method is to obtain data from open databases available on
repository websites. The Materials Genome Initiative, initiated by the United States in
2011, emphasizes the importance of massive data in the development of materials science,
which encourages the development of high-quality material databases [12]. With the
continuous development of theoretical and experimental research, data generated from
experiments and computational simulations, including failure data, have been integrated
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into databases [13]. These databases are based on the concept of material data sharing,
which greatly simplifies the process of obtaining material information. Table 1 introduces
some commonly used methods for collecting data from publicly available databases.
For instance, Zhou et al. [14] developed an ML-based approach to predict cathode
materials for Zn-ion batteries with high capacity and high voltage. They screened over
130,000 inorganic materials from the materials project database and applied a crystal
graph convolutional-neural-network-based ML approach with data from the Automatic
Flow (AFLOW) database. This resulted in the prediction of approximately 80 cathode
materials, with 10 of them being experimentally discovered previously and agreeing
well with the observed measurements. Additionally, approximately 70 new promising
candidates were predicted for further experimental validation.

Table 1. An overview of some databases in material science.

Database Website Brief Introduction

AFLOW http://www.aflowlib.org/
(accessed on 17 July 2023)

A globally available database of 3,530,330 material compounds with
over 734,308,640 calculated properties and growing.

Crystallography Open
Database (COD)

http://www.crystallography.net/
(accessed on 17 July 2023)

Open-access collection of crystal structures of organic, inorganic,
metal–organic compounds and minerals, excluding biopolymers.

Cambridge Structural
Database (CSD)

https://www.ccdc.cam.ac.uk/
(accessed on 17 July 2023)

The world’s largest database of small-molecule organic and
metal–organic crystal structure data, now at over

1.2 million structures.

Inorganic Crystal Structure
Database (ICSD)

http://cds.dl.ac.uk/
(accessed on 17 July 2023)

A comprehensive collection of crystal structure information for
non-organic compounds, including inorganics, ceramics, minerals,

and metals, covers the literature from 1915 to the present and
contains over 60,000 entries on the crystal structure

of in-organic materials.

Materials Project https://materialsproject.org/
(accessed on 17 July 2023)

A database containing 154,718 materials, 4351 intercalation
electrodes, and 172,874 molecules.

Open Quantum Materials
Database (OQMD)

http://oqmd.org/
(accessed on 17 July 2023)

The OQMD is a database of DFT calculated thermodynamic and
structural properties of 1,022,603 materials.

2.1.2. Data Cleaning

When collecting raw data, unprocessed datasets are difficult to analyze and some-
times become useless, as they tend to be inconsistent, missing, and noisy. Before using
those datasets, quality must be maintained. Data cleaning is an operation performed
on the existing data to remove anomalies and obtain the data collection, which is an
accurate and unique representation of the mini world. It involves eliminating errors,
resolving inconsistencies, and transforming the data into a uniform format [15]. Data
cleaning is an enormous task achieved by smoothing noise, completing missing values,
correcting inconsistencies, and identifying outliers in data. The common methods for
filling in missing values are as follows: fill in missing values manually; fill in missing
values with a global constant; fill in missing values with the average value of attributes;
fill in corresponding missing values with the average value of attributes of the same type
as the given tuple; and fill in missing values with the most likely value. The commonly
used methods for smoothing noise are binning, regression, and clustering [10]. Binning
is employed to handle noisy data. In this approach, the data are sorted, and then values
are partitioned by equal-frequency bins where values are put into an equal number of
bins. Regression involves predicting unknown data from known data and fitting it using
a function. The two types of regression techniques are linear and multiple linear. Linear
regression uses a known value to predict an unknown value, fitting the relationship
between the two values with a straight line. To reduce outliers, clustering can be imple-
mented. Clustering refers to grouping data points with similar properties into clusters.
By categorizing outliers as points outside these clusters, they could be easily identi-
fied and minimized in the dataset [16–18]. Data cleaning can effectively improve the
model’s prediction accuracy. Liu et al. [19] discussed the prediction of protein–protein

http://www.aflowlib.org/
http://www.crystallography.net/
https://www.ccdc.cam.ac.uk/
http://cds.dl.ac.uk/
https://materialsproject.org/
http://oqmd.org/
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interaction sites using ML-based computational approaches. The authors proposed a
method that improves prediction performance by addressing the class imbalance issue in
protein–protein interaction site prediction. They operated a data-cleaning procedure to
remove marginal targets from majority samples and a post-filtering procedure to reduce
false-positive predictions. The proposed method was tested on benchmark datasets and
showed competitive performance compared to existing predictors.

2.2. Feature Engineering

A key part of the data preparation phase in ML is feature engineering. It extracts
features (also known as descriptors) from the raw data and transforms the features into a
format suitable for ML models. The selection of features is critical for building ML models
and could even determine the upper limit of overall model performance [20]. In feature
selection, different parameters could be operated as features for chemical and material
structures (and their properties), e.g., electronic properties (band gap, dielectric constant,
work function, electron density, and electron affinity) and crystal features (translation vec-
tors, fractional coordinates of atoms, radial distribution functions, and Voronoi tessellations
of atomic positions). It is worth noting that rational feature selection is often expensive
and difficult [11]. In past studies, feature selection has typically had to be performed
manually. However, the limitations of manual feature engineering prevented the selection
of the most representative features in most cases. Over the last few years, the employment
of automated feature engineering has become increasingly widespread. It automatically
constructs brand new candidate features from data and selects the most suitable features
for model training, which could solve the dilemma faced by manual feature engineering.

Wang et al. [21] utilized automated feature engineering for the development of nano-
materials. Automated feature engineering uses deep learning algorithms to automatically
develop a set of features that are relevant to the desired output. As a result, non-experts
could select features much more easily, which would greatly reduce the use of expertise in
training models. The variation in feature engineering in the design of nanomaterials can be
observed in Figure 2.
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Figure 2. Evolution of the ML workflow in nanomaterial discovery and design. (a) First-generation
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3. Classification of ML and Algorithms

Once sufficient training data are selected, models can be built for the development of
novel materials. Choosing an appropriate algorithm for a training model is essential for
making accurate predictions. Based on the type of processed data, ML can be classified as
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning. For supervised learning, the input training data are labeled. After optimizing
the model with ML, a predictable output value for a new input value could be acquired.
In contrast, the input training data are unlabeled in unsupervised learning. Using an
algorithm, the unlabeled training set is trained to find potential features. As for semi-
supervised learning, the input training data are partially labeled. Reinforcement learning
occurs when the training object interacts with the environment, obtaining feedback from
the environment and adjusting its strategy to accomplish a specific goal or to maximize
the benefit of a behavior [22]. Next, a brief description of several commonly utilized ML
algorithms is given.

3.1. Shallow Learning

Shallow learning usually has no hidden layer or only one hidden layer [23]. The
approaches include decision tree (DT), K-nearest neighbor (KNN), support vector machine
(SVM) [24], random forest (RF), and artificial neural network (ANN). Shallow learning has
produced satisfactory results in various areas of materials science. In this section, some
algorithms for shallow learning are presented, some applications in materials science are
summarized, and the ML model used by the researchers is demonstrated.

3.1.1. KNN

The KNN algorithm was first proposed by Cover and Hart [25]. The KNN classification
is one of the most basic and simplest classification methods. It should be considered for
classification studies when little or no data distribution experience is available [26]. The
principle of the KNN algorithm is that if most of the most similar K samples in the feature
space (i.e., the nearest samples in the feature space) belong to a certain category, the sample
also belongs to this category. Figure 3 shows a schematic of a typical KNN algorithm. For
an unknown target, when K takes 3, the target is classified into class 1; when K takes 7,
the target is classified into class 2. According to this method, the sample’s category is
determined by its proximity to one or more nearby samples. The KNN algorithm itself
is simple and effective, easy to understand, and straightforward to implement. Since it
does not require prediction parameters or training, the KNN algorithm is suitable for time
classifications, especially for multimodals (i.e., objects with multiple categories). Recently,
KNN algorithms have been widely utilized in text classification, pattern recognition, image
processing, and materials science. Sharma et al. [27] employed the KNN algorithm to
predict the dynamic fracture toughness of glass-filled polymer composites. The dynamic
modulus of elasticity, aspect ratio, and volume fraction of glass particles were used as
independent model parameters. The proposed KNN model predicted the fracture behavior
of the composites with an accuracy of 96%. It is also possible to extend their model to
predict other material properties.

The drawback of the KNN algorithm is that as the amount of data increase, the
computational complexity of the KNN increases accordingly. This is because the KNN
algorithm needs to calculate both training data and test data for each classification or
regression. If there are a large amount of data, the computing power required would be
greatly increased. In addition, the randomness of training data also affects the performance
of the KNN algorithm [28].
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3.1.2. DT

A DT is a typical classification method. The earliest DT algorithm was the concept
learning system proposed by Hunt [29]. The most influential DT algorithms are ID3 [30]
and C4.5 [31], which were proposed by Quinlan in 1986 and 1993, respectively. DTs
classify training data by different features, aiming to correctly categorize instances. A
DT model consists of internal decision nodes and leaf nodes. Each internal node splits
the instance space into two or more subspaces according to a certain discrete function of
the input attribute values, and each leaf node is assigned to one class representing the
most appropriate target value [32]. Chen et al. [11] presented the structure of a typical
DT, as shown in Figure 4. A typical decision tree algorithm consists of three main steps:
feature selection, decision tree generation, and pruning. The purpose of pruning is to
minimize the structural risk of the model by optimizing the loss function and weighing
the model’s complexity and accuracy. Liu et al. [33] developed a DT model for predicting
the residual tensile strength and modulus of pultruded-fiber-reinforced polymer (FRP)
composites. Using an existing database, 746 data points were collected for training. The
accuracy of the model was verified experimentally. The significance of all attributes of
the input data was also quantitatively analyzed by the model. The proposed DT model
provides a new method for predicting the long-term degradation of FRP composites
subjected to environmental influences.
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The RF algorithm consists of multiple DTs. In RFs, each tree casts a unit vote for
the most popular class, and then combining these votes obtains the final sort result. RFs
possess high classification accuracy [34]. It would, however, take a great deal of space
and time to train an RF with many DTs. Compared with DTs, the calculation costs of RFs
would also increase significantly. In this regard, RFs and DTs should be selected based
on the actual situation.

3.1.3. ANN

The concept of an ANN was introduced by McCulloch and Pitts [35]. An ANN is a
complex network structure that is formed by a large number of nodes (neurons) connected
to each other. It is a kind of abstraction, simplification, and simulation of the organization
and operation mechanism of the human brain. Each node in an ANN represents a specific
output function, i.e., the activation function. Each connection between any two nodes
represents a weighted value for the signal passing through that connection, which is
equivalent to the memory of the ANN. The network’s connection mode, the value of
the weights, and the excitation function all have an effect on its output [36]. As a major
soft-computing technology, ANNs have been extensively studied and applied in recent
decades [37].

The structure of a typical ANN is shown in Figure 5. Its nodes are generally divided
into three categories: input, hidden, and output. The input nodes represent the information
received from the input data. The output nodes are utilized to store the results of the
data processing. The nodes between the input and output nodes are so-called hidden
nodes. Different types of nodes in an ANN are distributed in multiple layers. The nodes
on different layers could be connected by lines, which correspond to synapses in neural
structures, representing a nonlinear mapping. The learning process of an ANN is to
continuously optimize the whole network model by correcting the weights of nodes in each
layer with training data [38].
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A variety of ANN models and their variants have been developed. The variants
include back-propagation networks, perceptrons, self-organizing mappings, Hopfield
networks, and Boltzmann machines. ANNs have been applied to drive the synthesis
of a wide range of functional materials, such as shape memory alloys [39], hyperelastic
materials [40], and high-entropy alloys (HEAs) [41]. Table 2 illustrates the application of
the afore-mentioned algorithms.
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Table 2. Some applications of shallow learning in materials science.

Researchers Algorithms Purposes

Sharma et al. [42] KNN Predict the fracture toughness of silica-filled
epoxy composites.

Kumar et al. [43] KNN
Predict surface roughness in the micro-plasma

transfer arc metal additive manufacturing
(µ-PTAMAM) process.

Jalali et al. [44] KNN (Figure 6a) Predict phases in HEAs.

Wang et al. [45] SVM Achieve rapid detection of transformer
winding materials.

Martinez et al. [46] SVM and ANN Predict the fracture life of martensitic steels under
high-temperature creep conditions.

Ahmad et al. [47] Adaptive boosting, RF, and DT
(Figure 6b)

Predict the compressive strength of concrete
at high temperatures.

Sun et al. [48] Gradient boosted regression tree
(GBRT) and RF Evaluate the strength of coal–grout materials.

Samadia et al. [49] GBRT Predict the higher heating value (HHV) of biomass
materials based on proximate analysis.

Shahmansouri et al. [50] ANN (Figure 6c)
Predict the compressive strength of eco-friendly

geopolymer concrete incorporating silica fume and
natural zeolite.

Liu et al. [51] ANN Development of a predictive model for the chloride
diffusion coefficient in concrete.
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3.2. Deep Learning

Hinton et al. [52] first proposed the concept of deep learning. The unsupervised
greedy training layer-by-layer algorithm based on deep degree nets was designed to solve
optimization problems related to deep structures. Similar to an ANN, deep learning is a
multilayer neural network [53].

3.2.1. Overview of Deep Learning

Deep learning can be considered a subset of ML. The idea of deep learning is derived
from multilayer ANNs. The learning process of deep learning exhibits depth to some extent
because of the multilayer structure of ANNs. In each hidden layer, neurons receive input
signals from other neurons, combine them with their internal state, and produce output
signals. The connections between neurons have weights assigned to them, forming the
overall layer of a neural network. The learning process involves adapting the network by
adjusting the weights of the connections to minimize output errors. Deep learning, with
its self-adapting architecture, reduces the need for feature engineering and could identify
and work around defects that may be difficult to detect in other techniques [5]. Instead, the
algorithm adjusts itself in continuous learning and independently selects suitable features.
This could be viewed as a major advancement in ML. While traditional ML models may
be more accurate with small data, deep learning models tend to be more reliable when
big data is available. Deep neural networks (DNNs) with multiple hidden layers have
higher learning capacity, allowing them to saturate accuracy gains compared to traditional
models. Although training neural networks is computationally expensive, once trained,
deep learning can make very fast predictions. This one-time training cost is outweighed
by the speed of subsequent predictions [54]. After years of development, a variety of
deep learning models have been produced, mainly including stacked autoencoders [55],
deep belief networks (DBNs) [56], deep Boltzmann machines (DBMs) [57], DNNs [58], and
convolutional neural networks (CNNs) [59]. Deep learning techniques are widely utilized
in speech recognition, visual object recognition, object detection, drug discovery, and
genomics [60]. They are also some of the fastest-growing and most adaptable techniques
ever developed in materials science.

Additionally, deep learning faces the dilemma of how to effectively process large
amounts of complex data. In practical applications, building suitable deep learning models
is increasingly challenging. Although deep learning is not yet fully mature and has many
problems to solve, it has shown a strong learning capability. Throughout the future, deep
learning is expected to remain a key research focus in AI.

3.2.2. Applications of Deep Learning

Deep learning has been widely applied in materials science due to its excellent perfor-
mance. Based on industrial data, Wu et al. [61] investigated the impact energy prediction
model of low-carbon steel. A three-layer neural network, extreme learning machine, and
DNN were compared with different activation functions, structure parameters, and training
functions. Bayesian optimization was employed to determine the optimal hyper-parameters
of the DNN. The model with the highest performance was applied to investigate the im-
portance of process parameter variables on the impact energy of low-carbon steel. The
results showed that the DNN obtained better prediction results than those of a shallow
neural network because the multiple hidden layers improved the learning ability of the
model. Sun et al. [62] applied deep learning to rapidly predict the photovoltaic properties
of organic photovoltaic materials, with a prediction accuracy up to 91%. Konno et al. [63]
reported a deep learning algorithm for discovering novel superconductors. The prediction
accuracy of their ML model for material superconductivity was as high as 62%. Employing
the ML model, the authors found two superconductors that were not in the database and
found Fe-based high-temperature superconductors (discovered in 2008) in the training
data before 2008. These results pave the way for the discovery of new high-temperature
superconductors. Li et al. [64] explored a correlated deep learning framework consisting of
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three recurrent neural networks (RNNs) to efficiently generate new energetic molecules
with high detonation velocity in the low data regime. They utilized data augmentation by
fragment shuffling of 303 energetic compounds to pretrain the RNN and then fine-tuned
it using the 303 compounds to produce molecules similar to the energetic compounds.
They also employed a simplified molecular input line entry (SMILE) system coupled with
pretrained knowledge to build an RNN-based prediction model for screening molecules
with high detonation velocity. Their strategy performed comparably to transfer learning
based on an existing big database. Quantum mechanics calculations confirmed that 35 new
molecules have higher detonation velocity and lower synthetic accessibility than the classic
explosive hexogen, with three novel molecules comparable to caged China Lake Compound
No. 20 in detonation velocity. Zhang et al. [65] utilized generative adversarial networks
(GANs) to design metaporous materials for sound absorption (Figure 7a). The researchers
trained the GANs using numerically prepared data and successfully developed designs
with high-standard broadband absorption performance. The GANs accelerated the design
process by hundreds of times, allowing for instantaneous multiple solutions. The GANs
also demonstrated the ability to generate creative configurations and rich local features.
This work highlighted the potential of ML in guiding the design and optimization process
for materials and opened up new possibilities for interdisciplinary research in AI and
materials. Unni et al. [66] introduced a deep convolutional mixture density network (MDN)
approach for the inverse design of layered photonic structures. The MDN modeled the
design parameters as multimodal probability distributions, allowing for convergence in
cases of nonuniqueness without sacrificing degenerate solutions. The MDN was applied to
the inverse design of two types of multilayer photonic structures consisting of thin films
of oxides, which present a challenge for conventional machine learning algorithms due
to their large degree of nonuniqueness in their optical properties. The MDN can handle
the transmission spectra of high complexity and varying illumination conditions. The
shape of the probability distributions provides valuable information for postprocessing
and prediction uncertainty. The MDN approach offers an effective solution to the inverse
design of photonic structures with high degeneracy and spectral complexity.

The use of vision transformers, residual networks (ResNets), and region-based-CNNs
(R-CNNs) on materials datasets has shown exceptional performance. Huang et al. [67]
proposed a waste materials classification method based on a vision transformer model
(Figure 7b). The model overcame CNN limitations by using self-attention mechanisms
to allocate weights to different parts of waste images. The vision transformer achieved
an accuracy rate of 96.98% by pretraining on ImageNet and fine-tuning on the TrashNet
dataset. The trained model can be deployed on a cloud server and accessed through
a portable device for real-time waste classification, which is convenient and efficient for
resource conservation and recycling. Jiang et al. [68] explored the use of global optimization
networks (GLOnets) with the ResNet architecture for the multiobjective and categorical
global optimization of photonic devices. The authors demonstrated that these networks,
called Res-GLOnets, could be configured to design thin-film stacks consisting of multiple
material types. The Res-GLOnets can find the global optimum with faster speeds compared
to conventional algorithms. The authors also showed the utility of their method for complex
design tasks, such as designing incandescent light filters. Wang et al. [69] proposed an
image detection method based on an improved Faster R-CNN model for wear location
and wear mechanism identification (Figure 7c). They trained and tested the model using
a wear image dataset produced by a self-made tribometer equipped with an imaging
system. The results showed that the proposed method had a detection accuracy of
more than 99%. It outperformed edge detection technology and Yolov3 target detection
models in wear location and wear mechanism identification. This research contributes
to the development of an innovative approach for the online and intelligent wear status
detection of machinery components.
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3.3. Materials Informatics Based on ML

Materials informatics is a study field that focuses on investigating and applying infor-
matics techniques to materials science and engineering. Propelled partly by the Materials
Genome Initiative and partly by algorithmic developments and successes of data-driven
efforts in other domains, informatics strategies are beginning to take shape within materials
science. Informatics strategies give rise to surrogate ML methods that can realize accurate
prediction using just historical data instead of experiments or simulations/calculations.
This methodology is usually composed of three distinct steps: acquisition of reliable
historical data, statistical quantification of information-rich material structures, and map-
ping between “input” and “output”. The commonly used ML algorithms in materials
informatics include regression, DT, ANN, and deep learning [70–73]. To meet the require-
ments of the studies of computational materials informatics, Zhao et al. [74] derived an
artificial-intelligence-aided data-driven infrastructure called Jilin Artificial-intelligence
aided Materials-design Integrated Package (JAMIP). The organization of JAMIP abides
by the data lifecycle in computational materials informatics, from data generation to col-
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lection and learning, as shown in Figure 8. It provides tools for materials production,
high-throughput calculations, data extraction and management, and ML-based data min-
ing. The authors demonstrated the usefulness of JAMIP in exploring materials informatics
in optoelectronic semiconductors, specifically halide perovskites. Hu et al. [75] proposed
and developed MaterialsAtlas.org (accessed on 19 August 2023), a web-based materials
informatics toolbox. The MaterialsAtlas platform includes tools for chemical validity check,
formation energy and e-above-hull energy check, property prediction, screening of hypo-
thetical materials, and utility tools. The toolbox lowers the barrier for materials scientists in
data-driven exploratory materials discovery.
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4. ML in Materials Science
4.1. Prediction of Material Properties

ML has gained prominence in recent years in predicting material properties due to
its advantages of high generalization ability and fast computational speed. It has been
successfully applied to predict the structure, adsorption, electrical, catalytic, energy storage,
and thermodynamic properties of materials. The prediction results could even reach the
same accuracy as high-fidelity models with low computational costs.

4.1.1. Molecular Properties

In the past, it was very time consuming to predict molecular properties based on high-
throughput density generalization calculations. ML allows fast and accurate prediction of
the structure or properties of molecules, compounds, and materials. In materials science,
solubility factors, such as Hansen and Hildebrand solubility, are critical parameters for
characterizing the physical properties of various substances. Kurotani et al. [76] successfully
developed a solubility prediction model with a unique ML method, the so-called in-phase
DNN (ip-DNN). This algorithm started with the analysis of input data (including NMR
information, refractive index, and density). The solubility was then speculated in a multi-
step approach by predicting intermediate elements, such as molecular components and
molecular descriptors. An intermediate regression model was also utilized to improve the
accuracy of the prediction. A website dedicated to the established solubility prediction
methods has also been developed, which is available free of charge. Liang et al. [77]
proposed a generalized ML method based on ANNs to predict polymer compatibility (the
total miscibility of polymers with each other at the molecular scale). The authors built a
database by collecting data from scattered literature through natural language processing
techniques. By using the proposed method, predictions could be made based on the basic



Materials 2023, 16, 5977 13 of 30

molecular structure of the blended polymers and the blended compositions (as an auxiliary).
This generalized approach yielded some results in illustrating polymer compatibility. A
prediction accuracy of no less than 75% was achieved on a dataset containing 1400 entries
in their model. Zeng et al. [78] developed an atomic table CNN that could predict the band
gap and ground energy. The model accuracy exceeded that of standard DFT calculations.
Furthermore, this model could accurately predict superconducting transition temperatures
and distinguish between superconductors and non-superconductors. With the help of
this model, 20 potential superconductor compounds with high superconducting transition
temperatures were screened out.

4.1.2. Band Gap

The band gap size not only determines the energy band structure of a material but
also affects its electronic structure and optical properties. Recently, researchers have
applied ML to forecast the band gap of various materials. Venkatraman [79] developed an
algorithm for band gap prediction based on a rule-based ML framework. With descriptors
derived from elemental compositions, this model accurately and quickly predicted the
band gap of various materials. After testing on two independent sets, this model obtained
squared correlations > 0.85, with errors smaller than those of most density generalization
calculations, improving the material screening performance. Xu et al. [80] developed an
ML model called support vector regression (SVR) for predicting the band gaps of polymers.
They used training data obtained from DFT computations and generated descriptors
using Dragon software. After feature selection, the SVR model using 16 key features
achieved high accuracy in predicting polymer band gaps. The SVR model with a Gaussian
kernel function performed the best, with a determination coefficient (R2) of 0.824 and a
root mean square error (RMSE) of 0.485 in leave-one-out cross-validation. The authors
also provided correlation analysis and sensitivity analysis to understand the relationship
between the selected features and the band gaps of polymers. Several polymer samples
with targeted band gaps were designed based on the analysis and validated through DFT
calculations and model predictions. Espinosa et al. [81] proposed a vision-based system
to predict the electronic band gaps of organic molecules using deep learning techniques.
The system employed a multichannel 2D CNN and a 3D CNN to recognize and classify
2D projected images of molecular structures. The training and testing datasets used in the
research were derived from the Organic Materials Database (OMDB-GAP1). The results
showed that the proposed CNN model achieved a mean absolute error of 0.6780 eV and
an RMSE of 0.7673 eV, outperforming other ML methods based on conventional DFT.
These findings demonstrate the potential of CNN models in materials science applications
using orthogonal image projections of molecules. Wang et al. [82] explored the use of ML
techniques to accurately predict the band gaps of semiconductor materials. The authors
applied a stacking approach, which combined the outputs of multiple baseline models, to
enhance the performance of band gap regression. The effectiveness of different models
was tested using a benchmark dataset and a newly established complex database. The
results showed that the stacking model had the highest R2 value in both datasets, indicating
its superior performance. The improvement percentages of various evaluation metrics
for the stacking model compared to other baseline models range from 3.06% to 33.33%.
Overall, the research demonstrated the excellent performance of the stacking approach in
band gap regression. On the basis of generalized gradient approximation (GGA) band gap
information of crystal structures and materials, Na et al. [83] established an ML method
that used the tupleswise graph neural network (TGNN) algorithm for the accurate band
gap prediction of crystalline compounds. The TGNN algorithm showed strong superiority
in predicting the band gap of four different open databases. It has better accuracy for
48,835 samples of G0W0 (a widely used technique in which the self-energy is expressed
as the convolution of a noninteracting Green’s function (G0) and a screened Coulomb
interaction (W0) in the frequency domain) band gaps than the standard density generalized
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theory without high computational costs. Moreover, this model could be extended to
project other valuable properties.

4.1.3. Energy Storage Performance

Energy storage is a key step in determining the efficiency, stability, and reliability
of power supply systems [84]. Exploring the energy storage performance of materials
is critical to energy storage, and ML accelerates the exploration process. Feng et al. [85]
collected over one thousand composite energy storage performance data points from the
open literature and utilized ML to analyze and build a predictive model. The prediction
accuracies of the RF, SVM, and neural network were 84.1%, 80.9%, and 70.6%, respectively.
They then added processed visual information data of the composite into the dataset,
resulting in improved prediction accuracies of 91.9%, 68.9%, and 81.6% for the three
models, respectively. This demonstrated that the dispersion of the filler in the matrix is
an important factor affecting the maximum energy storage density of the composite. The
authors also analyzed the weights of each descriptor in the RF model and explored the
effects of various parameters on the energy storage of the material. Figure 9 shows the
logic diagram of their ML models. Yue et al. [86] utilized the packing dielectric constant,
packing size, and packing content as descriptors to predict the energy storage density
of polymer matrix composites. High-throughput random breakdown simulations were
performed on 504 datasets. The simulation results were then applied as an ML database and
combined with classical dielectric prediction equations. They experimentally validated the
predictions, including the dielectric constant and breakdown strength. This work provides
insights into the design and fabrication of polymer matrix composites with enhanced
energy density for applications in capacitive energy storage. Ojin et al. [87] built four
traditional ML models and two graph neural network models. Through them, 32,026 heat
capacity structures were predicted using a high-precision deep graph attention network.
Additionally, the correlation between heat capacity and structure descriptors was inspected.
A total of 22 structures were predicted to have high heat capacity, and the results were
further validated by DFT analysis. Through the combination of ML and minimal DFT
queries, this study provides a path to accelerating the discovery of new thermal energy
storage materials.
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4.1.4. Structural Health

Structural health monitoring (SHM) utilizes engineering, scientific, and foundational
knowledge to prevent damage to property and life. The core of the field of construction
informatics is the transmission, processing, and visualization of architectural information,
providing effective methods for monitoring structural changes [88,89]. ML provides effec-
tive methods for monitoring structural changes. Dang et al. [90] proposed a cloud-based
digital twin framework for SHM employing deep learning. The framework consists of
physical components, device measurements, and digital models formed by combining
different sub-models including mathematical, finite element, and ML sub-models. The data
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interactions among the physical structure, digital model, and human interventions were
enhanced by using cloud computing infrastructure and a user-friendly web application.
The feasibility of the framework was demonstrated through case studies of the damage de-
tection of model bridges and real bridge structures utilizing deep learning algorithms, with
a high accuracy of 92%. Dong et al. [91] discussed the use of the eXtreme gradient boosting
(XGBoost) algorithm for predicting concrete electrical resistivity in SHM (Figure 10a). The
proposed XGBoost-algorithm-based prediction model considers all potential influencing
factors simultaneously. A database of 800 experimental instances was used to train and test
the model. The results showed that the XGBoost model achieved satisfactory predictive
performance. The study also identified the importance of curing age and cement content
in electrical resistivity measurement results. The XGBoost algorithm was chosen for its
high performance, ease of use, and better prediction accuracy than other algorithms. The
bond effect between the reinforcement and concrete guarantees the combined action of the
two materials. This is a critical factor that affects the mechanical properties of reinforced
concrete components and structures, e.g., bearing capacity and ductility [92]. Gao et al. [93]
developed a new solution for evaluating the bond strength of an FRP using AI-based
models. Two hybrid models, the imperialist competitive algorithm (ICA)-ANN and the
artificial bee colony (ABC)-ANN, were designed and compared. The results showed that
the ICA-ANN model had a higher predictive ability than the ABC-ANN model. The pro-
posed hybrid models can be used as a suitable substitute for empirical models in evaluating
FRP bond strength in concrete samples. Li et al. [94] utilized ML approaches to estimate
the bond strength between ultra-high-performance concrete (UHPC) and reinforcing bars.
A new database was created by integrating data from multiple published works. Nine
ML models, including linear models, tree models, and ANNs, were implemented to train
bond strength estimators based on the database. The results showed that the ANN and
RF models achieved the highest estimation performances, surpassing empirical formulas.
The study also analyzed the relative importance of different factors in determining bond
strength. Overall, the research provides a data-driven approach to estimating bond strength
and contributes to the understanding of bond performance between UHPC and reinforcing
bars. Su et al. [95] applied three ML approaches (multiple linear regression, SVM, and
ANN) to predict the interfacial bond strength between FRPs and concrete (Figure 10b). They
trained these models using two datasets containing experimental results from single-lap
shear tests, employed random search and grid search to find the optimal hyperparameters,
and analyzed input variables’ contributions using partial dependence plots. They also
developed a stacking strategy to improve prediction accuracy. The results showed that the
SVM approach had the best accuracy and efficiency. They concluded that ML methods
are feasible and efficient for predicting the bond strength of FRP laminates in reinforced
concrete structures.

4.1.5. Nanomaterial Toxicity

It has been proven that ML can be used to identify nanomaterial properties and expo-
sure conditions that influence cellular and organism toxicity, thus providing information
required for risk assessment and safe-by-design approaches in the development of new
nanomaterials [96]. Huang et al. [97] combined ML with high-throughput in vitro bioassays
to develop a model to predict the toxicity of metal oxide nanoparticles to immune cells, as
shown in Figure 11. In the training, test, and experimental validation sets, the ML model
displayed prediction accuracies of 97%, 96%, and 91%, respectively. ML methods were
used to identify features that encode information on immune toxicity. These features are
crucial for the scientific design of future experiments and for the accurate depiction of
nanotoxicity. According to Gousiadoua et al. [98], advanced ML techniques were applied
to create nano quantitative structure–activity relationship (QSAR) tools for modeling the
toxicity of metallic and metal oxide nanomaterials, both coated and uncoated, with various
core compositions tested on embryonic zebrafish at various dosage concentrations. Based
on both computed and experimental descriptors, the scientists identified a set of properties
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most relevant for assessing nanomaterial toxicity and successfully correlated these prop-
erties with zebrafish physiological responses. It has been concluded that for the group of
metal and metal oxide nanomaterials, the core chemical composition, concentration, and
properties are influenced by the nanomaterial surface and medium composition (such as
zeta potential and agglomerate size), which have a significant impact on toxicity, even
though the ranking of different variables is subject to variation in the analytical method
and data model. Generalized nano-QSAR ensemble models offer a promising framework
for predicting the toxicity potential of new nanomaterials. Liu et al. [99] presented a meta-
analysis of phytosynthesized silver nanoparticles (AgNPs) with heterogeneous features
using DTs and RFs. The researchers found that exposure regime (including the time and
dose), plant family, and cell type were the most important predictors for cell viability for
green AgNPs. In addition, a discussion of the potential effects of major variables (cell
assays, inherent nanoparticle properties, and reaction parameters used in biosynthesis)
on AgNP-mediated cytotoxicity and model performance was presented to provide a basis
for future research. The findings of this study may assist future studies in improving the
design of experiments and the development of virtual models or optimizations of green
AgNPs for specific applications.
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4.1.6. Adsorption Performance of Nanomaterials

Because of their high surface area, ease of functionalization, and affinity toward a
wide range of pollutants, nanomaterials are excellent adsorbents [100]. Moosavi et al. [101]
applied four machine learning methods to model dye adsorption on 16 activated carbon
adsorbents and determined the relationship between adsorption capacity and activated
carbon parameters. The results indicated that agro-waste characteristics (pore volume,
surface area, pH, and particle size) contributed 50.7% to the adsorption efficiency. Among
the agro-waste characteristics, pore volume and surface area were the most important
influencing variables, while particle size had a limited impact. With a hypothetical set of
approximately 130,000 structures of metal–organic frameworks (MOFs) with methane and
carbon dioxide adsorption data at different pressures, Guo et al. [102] established models
for estimating gas adsorption capacities using two deep learning algorithms, multilayer
perceptrons (MLPs) and long short-term memory (LSTM) networks. The models were eval-
uated by performing ten iterations of 10-fold cross-validations and 100 holdout validations.
The performance of the MLP and LSTM models was similar with high accuracy of predic-
tion. Those models that predicted gas adsorption at a higher pressure performed better
than those that predicted gas adsorption at a lower pressure. In particular, deep learning
models were more accurate than RF models reported in the literature when predicting
gas adsorption capacities at low pressures. Deep learning algorithms were found to be
highly effective in generating models capable of accurately predicting the gas adsorption
capacities of MOFs.

4.2. Accelerated Materials Synthesis and Design

In addition to being widely utilized for predicting material properties, ML also plays
a pivotal role in the synthesis of new materials. During the past few years, ML has made
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significant progress in the exploration of novel materials, such as highly efficient molecular
organic light-emitting diodes [103], low thermal hysteresis shape memory alloys [104],
and piezoelectric materials with large electrical strain [105]. The use of ML for materials
synthesis not only significantly speeds up novel material discovery but also provides
insight into the basic composition changes in materials from big data.

4.2.1. Chalcogenide Materials

Chalcogenide materials can be used in a variety of photovoltaic and energy devices,
including light-emitting diodes, photodetectors, and batteries. ML has promoted the
development of high-performance chalcogenide materials [106]. Li et al. [107] proposed an
ML model based on an RF algorithm for speculating the formation of ABX3 and A2B′B′′X6
compound chalcogenides. With geometric and electrical parameters, the RF classification
model reached 96.55% accuracy for ABX3 samples and 91.83% accuracy for A2B′B′′X6
samples. A total of 241 ABX3 chalcogenides with a 95% probability of formation were
filtered from 15,999 candidate compounds, and a total of 1131 A2B′B′′X6 chalcogenides
with a 99% probability of formation were filtered from 417,835 candidate compounds. The
method presented in their work could offer valuable enlightenment for the acceleration of
discovering perovskites. Liu et al. [108] used data from 397 ABO3 compounds and nine
parameters (e.g., tolerance factor and octahedral factor) as input variables for ML. The
gradient-enhanced DT obtained by training was compared as the optimal model by 10-fold
cross-validation of the average accuracy. A total of 331 chalcogenides were filtered by the
model from 891 data points with a classification accuracy of 94.6%. Omprakash et al. [109]
compiled a model including organometallic salt chalcogenides to 2D chalcocite and its
corresponding band gaps. An ML model for predicting all types of chalcocite band gaps
was then trained using a graphical representation learning technique. The model could
accurately estimate the band gap within a few milliseconds with an average absolute
error of 0.28 eV. Wang et al. [110] applied unsupervised learning to discover quaternary
chalcogenide semiconductors (I2-II-IV-X4) and were successful in screening eight of these
materials with good photoconversion efficiency despite a data shortage. This method
shortens the material screening cycle and facilitates rapid material discovery.

4.2.2. Catalytic Materials

In traditional experiments, it is difficult to design efficient catalytic materials in a
short time because a clear reaction mechanism is required [111]. ML can rapidly extract the
relationship between the structure and performance of catalytic materials and effectively
expedite the development process of new catalytic materials. Zhang et al. [112] employed
a gradient boosting algorithm to build an ML model. The model utilized four key stability
and catalytic features of graphene-loaded single-atom catalysts as targets to find catalytic
materials suitable for electro-hydrogenation nitrogen reactions. With this model, a total of
45 catalytic materials with efficient catalytic performance were successfully screened from
1626 samples. The model could be operated for the rapid screening of other electrocata-
lysts. Figure 12 illustrates their computational framework. Wei et al. [113] developed an
ML model, which was applied in a Bayesian optimization framework to obtain molyb-
denum disulfide (MoS2) catalysts with stable hydrogen reaction activity. To explore the
structure–property relationship of the samples optimized by the ML technique, nine elec-
trochemical characterizations were performed to verify the results, including SEM, TEM,
XRD, and XPS. A strong correlation was found between the structure of the optimized
MoS2 and its hydrogen evolution reaction performance. Hueffel et al. [114] reported an
unsupervised ML workflow that uses only five experimental data points, which could be
used to accelerate the recognition of binuclear palladium (Pd) catalysts. Based on their
method, some phosphine ligands were successfully predicted and experimentally verified
from 348 ligands, including those that had never been synthesized before, which formed
binuclear Pd(I) complexes on Pd(0) and Pd(II) species. Their strategy plays an important
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role in studying the formation mechanisms of Pd catalyst species, as well as the further
integration of ML into catalytic research.
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4.2.3. Superconducting Materials

Superconductivity, intrinsically regulated by finite phonon-coupled electron–electron
attractions, has aroused decades of intense research interest in condensed matter physics.
The development and prediction of upcoming superconducting materials with high critical
temperatures are essential in many applications. ML-guided iterative experimentation may
outperform standard high-throughput screening for discovering breakthrough materials in
high-temperature superconductors [115,116]. Zhang et al. [117] developed an integrated
ML model to accurately and robustly predict the critical temperature (Tc) of superconduct-
ing materials (Figure 13a). They used open-source materials data, ML models, and data
mining methods to explore the correlation between chemical features and Tc values. The
integrated model combined three basic algorithms (gradient boosting decision tree, extra
tree, and light gradient boosting machine) to improve the prediction accuracy. The model
achieved an R2 of 95.9% and an RMSE of 6.3 K. The study also identified the importance of
various material features in Tc prediction, with thermal conductivity playing a critical role.
The integrated model was used to screen out potential superconducting materials with
Tc values beyond 50.0 K. This research provides insights for accelerating the exploration
of high-Tc superconductors. Roter et al. [118] used ML to predict new superconductors
and their critical temperatures. They constructed a database of superconductors and their
chemical compositions and applied this information to train ML models. They achieved
an R2 of approximately 0.93, which was comparable to or higher than similar estimates
based on other AI techniques. They also discussed factors that limit learning and sug-
gested possible ways to overcome them. The researchers used both unsupervised and
supervised ML techniques, including singular value decomposition and KNN, to improve
their models’ accuracy. They achieved a classification accuracy of 96.5% and an R2 of
approximately 0.93 for predicting critical temperatures. They also employed their models
to predict several new superconductors with high critical temperatures. However, the
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authors noted that incorrect entries in the database can lead to outliers in the predictions.
Pereti et al. [119] proposed an ML approach to identify new superconducting materials.
They utilized DeepSet technology, which allows them to input the chemical constituents of
the compounds without predetermined ordering (Figure 13b). The method was successful
in classifying materials as superconducting and quantifying their critical temperature.
The trained neural network was then used to search through a mineralogical database for
candidates that might be superconducting. Three materials were selected for experimental
characterization, and superconductivity was confirmed in two of them. This was the first
time a superconducting material was identified using AI methods. The results demon-
strated the effectiveness of the DeepSet network in predicting the critical temperatures of
superconducting materials.
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4.2.4. Nanomaterial Outcome Prediction

Rapid advancements in materials synthesis techniques have led to more and more
attention being paid to nanomaterials, including nanocrystals, nanorods, nanoplates, nan-
oclusters, and nanocrystalline thin films. Materials of this class offer enhanced physical and
chemical tunability across a range of systems, including inorganic semiconductors, metals,
and molecular crystals. A nanomaterial is defined as a material with a dimension smaller
than 100 nanometers in at least one dimension. Unlike bulk materials, nanomaterials possess
different physical and chemical properties due to their unique size and shape. This tech-
nology has a broad array of application prospects, including the conversion and storage of
energy, the restoration of water, medical treatment, and the storage and processing of data.

Using experimental data, Xie et al. [120] reported the development of an ML-aided
method for predicting the crystallization tendency of metal–organic nanocapsules (MONCs).
A prediction accuracy of >91% was achieved by using the XGBoost model. Furthermore,
they synthesized a set of new crystalline MONCs using the derived features and chemical
hypotheses from the XGBoost model. The results of this study demonstrate that ML algo-
rithms can assist chemists in finding the optimal reaction parameters from a large number
of experimental parameters more efficiently. Figure 14 shows a schematic representation of
the working flow. Pellegrino et al. [121] tuned the TiO2 nanoparticle morphology using
hydrothermal treatment. In their work, an experimental design was employed to investi-
gate the influence of relevant process parameters on the synthesis outcome, enabling ML
methods to develop predictive models. After validation and training, the models were
capable of accurately predicting the synthesis outcome in terms of nanoparticle size, poly-
dispersity, and aspect ratio. They presented a synthesis method that allows the continuous
and precise control of nanoparticle morphology. This method affords the possibility to tune
the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated
nanoparticles) and a length from 20 to 140 nm.
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4.2.5. Nanomaterial Synthesis

Nanomaterial synthesis often involves multiple reagents and interdependent exper-
imental conditions. Each experimental variable’s contribution to the final product is
generally determined through trial and error, along with intuition and experience. The
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process of identifying the most efficient recipe and reaction conditions is therefore time
consuming, laborious, and resource intensive [122]. In a recent study, Erick et al. [123] used
SVM classification and regression models to predict the synthesis of CsPbBr3 nanosheets
with controlled layer thicknesses. The SVM classification is shown to accurately predict the
likelihood that CsPbBr3 synthesis would form a majority population of quantum-confined
nanoplatelets. Additionally, SVM regression can be used to determine the average thickness
of the synthesis of CsPbBr3 nanoplatelets with sub-monolayer accuracy. Epps et al. [124]
proposed a method that is based on ML experiment selection and high-efficiency au-
tonomous flow chemistry. The approach utilized SVM regression to predict the thickness of
the nanoplatelets and was shown to be accurate and reliable. Using this method, inorganic
perovskite quantum dots (QDs) in flow were synthesized autonomously. By using less than
210 mL of starting solutions and without user selection, this method synthesized precision
tailored QD compositions within 30 h. This would enable the commercialization of these
QDs, as well as their integration into various applications. Furthermore, the method could
be used for other types of nanomaterials, such as nanorods and nanowires.

4.2.6. Inverse Design of Nanomaterials

As opposed to the direct approach that leads from the chemical space to the desired
properties, inverse design starts with desired properties as the “input” and ends with
chemical space as the “output” [125]. In the field of nanomaterials, the complexity of
inverse design is enhanced by the finite dimensions and variety of shapes, resulting in
a larger design space [126]. The inverse design of nanomaterials was quite challenging
in the past. The inverse design of nanomaterials could be explored using interpretable
relationships between structure and property generated by ML methods. A new inverse
design method for metal nanoparticles based on deep learning was proposed and demon-
strated by Wang et al. [127]. In comparison to the least squares method, the calculated
results indicated that the inverse design method utilizing the back-propagation network
had greater adaptability, a smaller minimum error, and can be adjustable based on S pa-
rameters. Inverse design systems based on deep learning neural networks may be applied
to the inverse design of nanoparticles of different shapes. In another study, Li et al. [126]
demonstrated a novel approach to inverse design using multi-target regression methods
using RFs. A multi-target regression model was used with a precursory forward structure–
property prediction to capture the most important characteristics of a single nanoparticle
before the problem was inverted and a number of structural features were simultaneously
predicted. A general workflow has been demonstrated on two nanoparticle datasets, and
it has the capacity to predict rapid relationships between properties and structures for
guiding further research and development without the need for additional optimization
or high-throughput sampling. He et al. [128] employed a DNN to establish mappings
between the far-field spectra/near-field distribution and dimensional parameters of three
different types of plasmonic nanoparticles, including nanospheres, nanorods, and dimers.
Through the DNN, both the forward prediction of far-field optical properties and the
inverse prediction of nanoparticle dimensional parameters can be accomplished accurately
and efficiently. Figure 15 shows the structure of the reported machine learning model for
predicting optical properties and designing nanoparticles.
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5. Conclusions, Challenges, and Prospects

This review discussed the use of machine learning (ML) in the field of materials science
for predicting material properties and guiding material synthesis. The review briefly
outlined the basic principles of ML and introduced commonly used algorithms and their
applications in material screening and property prediction. It also presented the research
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progress of ML in predicting material properties and guiding material synthesis. The review
suggested that ML can greatly reduce computational costs, shorten the development cycle,
and improve computational accuracy, making it a promising research approach in novel
materials screening and material property prediction.

It is important to note, however, that the following challenges still exist. Most ML
algorithms require large amounts of data to work properly. Even for the simplest problems,
thousands of examples are desired. Acquiring an effective dataset is critical for the research
and implementation of ML in materials science. However, data in materials science are
characterized by high acquisition costs, excessive concentration or dispersion, and a lack
of uniform processing standards. A dataset with a large amount of data, a uniform distri-
bution, and matching feature parameters is often extremely difficult to obtain. Although
material databases have greatly facilitated researchers’ access to data, many published data
have not been specified to date. The task of enriching existing databases is challenging. Text
mining techniques could be effective in rapidly collecting data scattered in the literature.
This approach could greatly enhance existing databases and create specialized databases.

The selection of features significantly affects the accuracy of ML models. Currently, the
use of manual feature engineering to filter features is often influenced by the researcher’s
experience and intuition. This approach may overlook some significant features. In contrast,
automated feature engineering automatically constructs new candidate features from the
data and selects the most appropriate features for model training, which could effectively
solve the current dilemma.

ML methods cannot replace traditional computational and experimental studies. Al-
though ML methods have shown remarkable promise in guiding the synthesis of novel
materials and predicting material properties, they are still mostly “black boxes” [108]. The
predicted results still need to be experimentally verified and the underlying physicochemi-
cal laws still need to be studied in depth. Therefore, ML can only perform some exploratory
tasks at present. With further improvement of theories and methods, however, ML might
eventually replace traditional experimental research by providing novel ideas and research
methods for the field of materials science. The application of ML in the field of materials
science and engineering is just the beginning, and its potential is endless in the future.
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AFLOW Automatic Flow
AgNP Silver nanoparticle
AI Artificial intelligence
ANN Artificial neural network
CNN Convolutional neural network
COD Crystallography Open Database
CSD Cambridge Structural Database
DBM Deep Boltzmann machine
DBN Deep belief network
DFT Density functional theory
DNN Deep neural network
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FDTD Finite-difference time-domain
FRP Fiber-reinforced polymer
GAN Generative adversarial network
GBRT Gradient boosted regression tree
GGA Generalized gradient approximation
GLOnet Global optimization network
HEA High-entropy alloy
HHV Higher heating value
ICA Imperialist competitive algorithm
ICSD Inorganic Crystal Structure Database
JAMIP Jilin Artificial-intelligence aided Materials-design Integrated Package
KNN K-nearest neighbor
LSTM Long short-term memory
MDN Mixture density network
ML Machine learning
MLP Multilayer perceptron
MOF Metal–organic framework
MONC Metal–organic nanocapsule
NMR Nuclear magnetic resonance
OMDB Organic Materials Database
OQMD Open Quantum Materials Database
QD Quantum dot
QSAR Quantitative structure–activity relationship
R-CNN Region-based CNN
ResNet Residual network
RF Random forest
RMSE Root mean square error
RNN Recurrent neural network
SEM Scanning electron microscope
SHM Structural health monitoring
SMILE Simplified molecular input line entry
SVM Support vector machine
SVR Support vector regression
TEM Transmission electron microscope
TGNN Tupleswise graph neural network
UHPC Ultra-high-performance concrete
XGBoost eXtreme gradient boosting
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
µ-PTAMAM Micro-plasma transfer arc metal additive manufacturing
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