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Abstract: To further improve the operational performance of a phononic crystal air-coupled ultra-

sonic transducer while reducing the number of simulations, an intelligent optimization design strat-

egy is proposed by combining finite element simulation analysis and artificial intelligence (AI) 

methods. In the proposed strategy, the structural design parameters of 1–3 piezoelectric composites 

and acoustic impedance gradient matching layer are sampled using the optimal Latin hypercube 

sampling (OLHS) method. Moreover, the COMSOL software is utilized to calculate the performance 

parameters of the transducer. Based on the simulation data, a radial basis function neural network 

(RBFNN) model is trained to establish the relationship between the design parameters and the per-

formance parameters. The accuracy of the approximation model is verified through linear regres-

sion plots and statistical methods. Finally, the NSGA-II algorithm is used to determine the design 

parameters of the transducer. After optimization, the band gap widths of the piezoelectric compo-

sites and acoustic impedance gradient matching layer are increased by 16 kHz and 13.5 kHz, respec-

tively. Additionally, the −6 dB bandwidth of the transducer is expanded by 11.5%. The simulation 

results and experimental results are consistent with the design objectives, which confirms the effec-

tiveness of the design strategy. This work provides a feasible strategy for the design of high-perfor-

mance air-coupled ultrasonic transducers, which is of great significance for the development of non-

destructive testing technology. 

Keywords: phononic crystal air-coupled ultrasonic transducer; radial basis function neural  

network; NSGA-II algorithm; −6 dB bandwidth 

 

1. Introduction 

Due to its high precision, high resolution, safety, and non-destructive, air-coupled 

ultrasonic detection technology has been widely used in industrial inspections [1–4]. The 

transducer is the core component of the air-coupled ultrasonic detection system, and its 

performance determines the accuracy and efficiency of the system. The traditional air-

coupled ultrasonic transducer is prone to experiencing coupling between thickness vibra-

tions and lateral vibrations under high sound intensity and high-power conditions [5,6]. 

Additionally, due to the significant difference in acoustic impedance between the piezoe-

lectric material and air, strong reflections occur at the interface [7], which hinders the 

transducer from achieving the expected performance and meeting the requirements of 

modern air-coupled ultrasonic inspection. Therefore, designing and optimizing high-per-

formance ultrasonic transducers is of paramount importance. 

In recent years, efforts have been made to enhance the performance of ultrasonic 

transducers in two aspects. On one hand, researchers have focused on suppressing lateral 

vibrations by employing various methods, such as adding decoupling materials to poly-

mers [5,6,8], using air as a substitute for polymers, and applying for metal plates on ce-

ramic column surfaces [9,10]. On the other hand, acoustic impedance gradient matching 
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techniques have gained a�ention. Compared to traditional quarter-wavelength sin-

gle/multi-layer matching techniques, acoustic impedance gradient matching effectively 

broadens the transducer’s operating bandwidth and improves sensitivity, enhancing 

overall performance [11–13]. Phononic crystal, with its characteristics such as bandgaps 

and defective state, offers control over the propagation of sound and elastic waves [14–

16]. Ji et al. [17,18] designed a phononic crystal air-coupled ultrasonic transducer. By in-

corporating the phononic crystal structure into the 1–3 piezoelectric composites and the 

acoustic impedance gradient matching layer, they effectively suppressed lateral vibration 

coupling during the transducer’s operation. Furthermore, they achieved good impedance 

matching, thereby expanding the transducer’s operating bandwidth. However, due to the 

complexity of the structural parameters involved, traditional design methods cannot di-

rectly obtain the optimal parameters. 

Artificial intelligence (AI) has been widely used to solve complex engineering mod-

eling and optimization problems due to its unique advantages [19–21]. Radial basis func-

tion neural networks (RBFNN) [22], as a common AI method, are widely employed in 

areas such as image recognition [23,24], nonlinear control [25,26], and structural optimi-

zation [27], thanks to their concise training approach, good convergence properties, and 

strong ability to approximate nonlinear functions. Furthermore, NSGA-II [28–31] is one of 

the most popular multi-objective genetic algorithms, which reduces the complexity of 

non-dominated sorting genetic algorithms and offers fast execution speed and good con-

vergence of solution sets. Considering these excellent modeling and optimization capabil-

ities, AI methods can be effectively applied to the optimization design of phononic crystal 

air-coupled ultrasonic transducers, thereby improving their operational performance. 

In this paper, an optimization design strategy for a phononic crystal air-coupled ul-

trasonic transducer is proposed based on AI methods, which further improves the work-

ing performance of a phononic crystal air-coupled transducer while reducing the number 

of simulations. Firstly, the optimal Latin hypercube sampling (OLHS) method is used to 

sample the design parameters of the 1–3 piezoelectric composites, including the thickness 

and radius of the piezoelectric columns, as well as the thickness and period of the acoustic 

impedance gradient matching layer. Then, the COMSOL software is employed to calculate 

performance parameters such as the upper and lower limits of the bandgaps in the piezo-

electric composite, the upper and lower limits of the bandgaps in the acoustic impedance 

gradient matching layer, the operating frequency and the −6 dB operational bandwidth of 

the ultrasonic transducer. Based on the simulation data, a RBFNN model is trained to de-

scribe the relationship between the design parameters and performance parameters. The 

accuracy of the approximate model is validated through error analysis using linear regres-

sion plots and statistical methods. Subsequently, the NSGA-II optimization algorithm is 

utilized to obtain the optimal design parameters. Finally, the optimized transducer is sub-

jected to simulation and experimental validation, confirming the effectiveness of the pro-

posed optimization design strategy. 

2. Phononic Crystal Air-Coupled Ultrasound Transducer Model 

2.1. 1–3 Piezoelectric Composites Model 

The hexagonal la�ice arrangement of piezoelectric columns can be�er suppress lat-

eral vibrations in 1–3 piezoelectric composites, resulting in improved performance [17]. 

Therefore, in this study, the hexagonal la�ice piezoelectric composite (Figure 1) is em-

ployed, with the following structural parameters: radius R = 20 mm, thickness T, la�ice 

constant a = 2.5 mm, and piezoelectric column radius r. The piezoelectric phase material 

is PZT-5A, polarized along the thickness direction, and the polymer phase material is 

epoxy resin, with specific parameters listed in Table 1. 
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Figure 1. Hexagonal la�ice piezoelectric composite. 

Table 1. 1–3 piezoelectric composite material parameters. 

Material Epoxy Resin PZT-5A 

Density ρ/kg · m�� 1063 7750 

Young’s modulus E/10� Pa 3.5 56 

Poisson’s ratio 0.38 0.36 

2.2. Acoustic Impedance Gradient Matching Layer Model 

In order to effectively suppress lateral vibrations of the transducer while achieving 

good acoustic impedance matching, Ji et al. [18] designed a phononic crystal acoustic im-

pedance gradient matching layer (Figure 2) composed of two materials with high and low 

acoustic impedance. The material near the piezoelectric material end is AlSi10Mg, and the 

material near the transmission medium end is epoxy resin. The specific parameters of the 

materials are listed in Table 2. The intersection line equation between the two materials 

(Figure 2b) is considered a function: 

cos 2Y x


 


       
 (1)

where ε represents the thickness of the acoustic impedance gradient matching layer, and 

the acoustic impedance of the matching layer changes with the variation of the parameter 

t (0 ≤ t ≤ ε) in the thickness direction, and � represents the period of the intersection line 

equation function, which is the la�ice constant of phononic crystal. 

 

 

(a) (b) 

Figure 2. Phononic crystal acoustic impedance gradient matching layer: (a) 3D model and (b) Cross-

sectional function. 
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Table 2. Acoustic impedance gradient matching layer material parameters. 

Materials 
Density  

  �/�� · ��� 

Young’s Modulus 

  �/��� �� 
Poisson’s Ratio Acoustic Impedance/MRayl 

Epoxy resin 1063 3.5 0.38 2.7 

AlSi10Mg 2660 75 0.3 16.7 

3. Optimization Design Strategy for Phononic Crystal Air-Coupled Ultrasound  

Transducer 

Based on simulation data, an optimization design strategy for the piezoelectric layer 

and acoustic impedance gradient matching layer of phononic crystal air-coupled ultra-

sonic transducer is proposed. The design parameters of the transducer include the thick-

ness of the 1–3 piezoelectric composites, the radius of the piezoelectric column, the thick-

ness, and the period of the acoustic impedance gradient matching layer. The performance 

parameters include the upper and lower limits of the bandgap of the 1–3 piezoelectric 

composites, the upper and lower limits of the bandgap of the acoustic impedance gradient 

matching layer, the operating frequency, and −6 dB bandwidth of the ultrasonic trans-

ducer. In the optimization design strategy, the OLHS method is first used to sample the 

data. Then, RBFNN is employed to model the nonlinear relationship between the design 

parameters and performance parameters. Error analysis is conducted to validate the reli-

ability of the obtained approximation model. Finally, the NSGA-II genetic algorithm is 

utilized to determine the optimal design parameters. 

3.1. Radial Basis Function Neural Network Model 

3.1.1. Approximate Model Construction 

Structural optimization of phononic crystal air-coupled ultrasound transducer is 

achieved through numerical optimization methods. To begin with, it is necessary to es-

tablish the functional relationship between the output responses and the structural pa-

rameters. However, in phononic crystal theory, particularly in solid/solid phononic crys-

tal, elastic waves undergo complex reflection, transmission, and sca�ering phenomena at 

the interfaces of different materials. These various effects are coupled together, making 

the mechanism of bandgap formation more intricate. Currently, there is no precise theory 

available to accurately describe the relationship between structural parameters and 

bandgap frequencies. Furthermore, the highly complex nonlinear mapping relationship 

between the structural parameters and performance parameters of the transducer cannot 

be obtained through theoretical calculations alone. Therefore, in the structural optimiza-

tion design, we employ an approximate model to establish the relationship between the 

input sample data and the output responses. 

In this paper, the RBFNN model is chosen as the approximate model in the optimi-

zation of phononic crystal air-coupled ultrasonic transducer. The RBFNN typically con-

sists of an input layer, a hidden layer, and an output layer, as shown in Figure 3. Taking 

into consideration the impact of various structural parameters on the performance of pho-

nonic crystal air-coupled ultrasonic transducer, this study selects four parameters: the 

thickness of 1–3 piezoelectric composites, the radius of the piezoelectric column, the thick-

ness of the acoustic impedance gradient matching layer, and the period of the matching 

layer as the input variables for optimization. These parameters are denoted as X1, X2, X3, 

and X4 in the experimental design. The initial values and ranges of these parameters are 

shown in Table 3. When the operating frequency of the phononic crystal air-coupled ul-

trasound transducer is within the bandgaps of both the piezoelectric composites and the 

acoustic impedance gradient matching layer, it exhibits optimal suppression of lateral vi-

brations [17]. The −6 dB bandwidth of the ultrasonic transducer represents its higher axial 

resolution and serves as an important indicator of its performance. Therefore, in this 

study, the upper limits of the bandgap of 1–3 piezoelectric composites (BGup1), the lower 

limits of the bandgap of 1–3 piezoelectric composites (BGdown1), the upper of the bandgap 
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of the acoustic impedance gradient matching layer (BGup2), the lower limits of the bandgap 

of the acoustic impedance gradient matching layer (BGdown2), the center frequency of the 

transducer (CF) and the −6 dB bandwidth of the transducer (BW), are considered as the 

output responses of RBFNN model. 

 

Figure 3. RBFNN model. 

Table 3. Design variables. 

 
Variable 

Factor 
Design Parameter 

Initial Value 

(mm) 

Lower Limit 

(mm) 

Upper Limit 

(mm) 

1–3 piezoelectric com-

posites 

X1 thickness (T) 2.5 2 3 

X2 column radius (r) 1 0.85 1.15 

gradient matching layer 
X3 thickness 3 2.5 3.5 

X4 period (�) 2.5 2 3 

The OLHS method [32,33] is employed to sample the data. Compared to other sam-

pling methods, this method ensures that the sample points are not clustered and provides 

a higher coverage of the overall space, making it efficient in practical applications. To en-

sure accuracy, the minimum number of samples is determined as S = (N + 1) × (N + 2)/2 + 

N × 2, where N represents the number of variable factors. To ensure sufficient accuracy, it 

is appropriate to choose 1.5 to 2 times the minimum number of samples in practical sam-

pling. In order to ensure comprehensive sample point selection and reduce the number of 

simulations, 50 sample points are selected for the four variable factors within the design 

space. The performance parameters corresponding to the sample points are calculated by 

COMSOL Multiphysics v6.0. 

The interpolation function of the radial basis function can be expressed as follows: 

1

( ) (|| ||
N

i i i
i

F x w X c


  ） (2)

where �� represents the weight coefficients, � ∈ �� = ���, ��,⋯,���, and �� represents the 

center of the i-th basis function, which is determined by the K-means algorithm [34,35]. 

It has been demonstrated that a linear combination of Gaussians can approximate 

any continuous functions with arbitrarily high accuracy. Moreover, neurons with the 

Gaussian RBF present a very selective response with high activation for pa�erns close to 

the radial unit center and tiny activation for the distant pa�ern. This property reduces the 
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calculated amount and improves the learning rate of the neural network. Therefore, we 

choose the Gaussian function as the basic function: 

2

2

|| ||
(|| || exp

2
i

i i

i

X c
X c



 
   
 

）  (3)

max

2
i

d

M
   (4)

where X represents the n-dimensional input variables, �� represents the center of the i-th 

basis function, �� represents the radius of the i-th basis function, dmax is the maximum 

distance between selected center points, and M is the number of nodes in the hidden layer. 

According to Equations (2) and (3), the approximate model expression of the neural 

network can be obtained as follows: 

2

2

|| ||
exp

2
i

i

X c
Y W



 
  
 

 (5)

where W represents the optimal weight matrix between the hidden layer and the output 

layer of the RBFNN, which is trained by the Gradient descent algorithm [34,35]. 

3.1.2. Error Analysis 

To assess the accuracy of the approximate model, a linear regression plot is used to 

compare the predicted values from the RBFNN with the corresponding finite element sim-

ulation values. Cross-validation is performed with 50 sample points, and the results are 

shown in Figure 4, where the horizontal coordinates are the approximate model predic-

tions and the vertical coordinates are the finite element simulation values. From the fig-

ures, it can be concluded that the finite element simulation values agree well with the 

predicted values of the radial basis neural network. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 4. Linear regression plot: (a) BGup1; (b) BGdown1; (c) BGup2; (d) BGdown2; (e) CF; (f) BW. 

To further assess the reliability of the approximate model established using the 

RBFNN, this study performs error analysis using three evaluation metrics: normalized 

root mean square error (NRMSE), normalized maximum absolute error (NMAE), and re-

liability indicators (��). The calculations for these metrics are expressed as follows: 

 

 

2

1
2

1

ˆ
n

i ii
n

ii

y y
NRMSE

y y













 (6)

 
1

ˆmax | |

1
ˆ

i i

n

i ii

y y
NMAE

y y
n 





 

(7)

 

 

2

2 1
2

1

ˆ
n

ii
n

ii

y y
R

y y













 (8)
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where ��  represents the true values obtained from simulations, ���  represents the pre-

dicted values from the approximate model, �� represents the mean value of the true val-

ues, and n represents the number of experiments or simulations conducted. 

The errors of the approximate model obtained by calculating according to Equations 

(6)–(8) are shown in Table 4. It can be observed that the errors of the approximate model 

are within an acceptable range. 

Table 4. RBFNN model error analysis. 

Evaluation Metrics NRMSE NMAE �� 

Acceptable range ≤0.2 ≤0.3 ≥0.9 

BGup1 0.072 0.093 0.989 

BGdown1 0.026 0.062 0.995 

BGup2 0.015 0.042 0.997 

BGdown2 0.072 0.093 0.989 

CF 0.067 0.071 0.991 

BW 0.096 0.098 0.985 

Based on the linear regression plots and the related accuracy evaluation metrics, it 

can be concluded that the approximate model obtained using RBFNN can accurately pre-

dict the nonlinear relationship between the performance parameters and structural pa-

rameters of the phononic crystal air-coupled ultrasonic transducer. Therefore, this model 

can be used as a substitute for COMSOL simulation results in subsequent optimization 

designs. 

3.2. Optimization Design Strategy Based on the NSGA-II Algorithm 

Due to the large number of optimization variables and objectives, the optimization 

design problem of the phononic crystal air-coupled ultrasonic transducer can be formu-

lated as a constrained multi-objective optimization problem. The NSGA algorithm exhib-

its strong search capability for optimal solutions in multi-objective optimization problems 

and demonstrates good robustness. NSGA-II algorithm, an improved version of NSGA, 

introduces a crowding distance comparison operator and incorporates an elitist strategy, 

which expands the sampling space and reduces the computational complexity of non-

dominated sorting. As a result, NSGA-II has replaced NSGA as the mainstream algorithm 

for multi-objective optimization. NSGA-II algorithm is based on the Pareto solution set 

for solving multi-objective optimization problems, and its main process is illustrated in 

Figure 5. 
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Figure 5. NSGA-II algorithm optimization process. 

In this paper, the objective of the optimization design is to obtain a phononic crystal 

air-coupled wideband transducer with a center frequency; ����� = 450 kHz . Further-

more, the center frequency of the transducer should be within the bandgap of the 1–3 

piezoelectric composites and the acoustic impedance gradient matching layer, and the 

bandgap widths of both materials should be maximized as much as possible. The nonlin-

ear relationship between the structural parameters and the output responses is predicted 

by the RBFNN in Equation (5). Therefore, the mathematical expression of the aforemen-

tioned optimization model can be wri�en as follows: 

max min 1 1 2 2

1

2

3

4

1 1 1
min , , ,

2.5 mm 3 mm

0.85 mm 1.15 mm
.

2.5 mm 3.5 mm

2 mm 3 mm

des

up down up down

CF CF

CF CF BG BG BG BG BW

X

X
s t

X

X

   
      

    
     

     
     

 (9)

where CFdes represents the desired center frequency of the transducer, CFmax represents the 

maximum calculated center frequency of the transducer, and CFmin represents the mini-

mum calculated center frequency of the transducer. 

Based on the obtained optimization model, iterative calculations are performed using 

the NSGA-II algorithm. The parameter se�ings for the algorithm are shown in Table 5. 
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Finally, we obtain the final optimized results that satisfy the constraint conditions. After 

rounding treatment, the structural parameters are shown in Table 6. 

Table 5. NSGA-II algorithm parameters. 

Parameter 
Iteration Num-

ber 

Population  

Size 

Crossover 

Probability 

Variation Prob-

ability 

Optimization Result 1000 1000 0.9 0.1 

Table 6. Optimization result parameters. 

Variable Factor X1 (mm) X2 (mm) X3 (mm) X4 (mm) 

Optimization Result 2.58 0.85 2.85 2.3 

4. Verification 

4.1. Simulation Verification 

Based on the optimized design parameters, the impedance-phase curve of the trans-

ducer (Figure 6) is simulated using COMSOL Multiphysics V6.0. The resonant frequency 

of the transducer is approximately 455.2 kHz, which is in close agreement with the design 

requirement. From the energy band structure and transmission characteristic curve of the 

optimized 1–3 piezoelectric composites and acoustic impedance gradient matching layer 

(Figure 7), it can be observed that the bandgap range of the piezoelectric composite is 262 

kHz to 583 kHz, and the bandgap range of the acoustic impedance gradient matching 

layer is 337 kHz to 498 kHz. The operating frequency of the transducer falls within these 

band gaps. Moreover, compared to the pre-optimization, the bandgap widths have in-

creased by 16 kHz and 13.5 kHz, respectively. 

 

Figure 6. Impedance-phase curve of the transducer. 
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(a) (b) 

Figure 7. Transmission characteristic curve and Energy band structure after optimization: (a) 1–3 

piezoelectric composites; (b) acoustic impedance gradient matching layer. 

Figure 8 shows the time domain and frequency domain plots of the echo signal ob-

tained from the pulse echo analysis of the transducer model. In order to compare the dif-

ference between the operating performance of each transducer model, we investigate the 

−6 dB bandwidth (BW), which can be defined using the following equations: 

 2 H L

H L

f f
BW

f f





 (10)

where Hf  and Lf  are the frequency points corresponding to the 6 dB lower of the max-

imum value of fast Fourier transform. 

From the time and frequency domain analysis of the echo signal, it can be calculated 

that the BW of the optimized transducer is about 107.8%, which represents an improve-

ment of 11.5% compared to the pre-optimized. Therefore, the proposed optimization de-

sign strategy for the phononic crystal air-coupled ultrasound transducer is effective and 

feasible. 

 

Figure 8. Pulse-echo simulation result. 
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4.2. Experimental Verification 

To further verify the effectiveness of the optimization design strategy, a transducer 

sample (Figure 9) is fabricated based on the optimized results. In practical testing, to pre-

vent interference from acoustic wave reflections generated by the piezoelectric material 

during operation, polyurethane material is chosen as the backing material for the trans-

ducer to absorb the reflected acoustic waves. The matching layer, the piezoelectric mate-

rial and the backing are bonded to each other using epoxy resin. 

 

Figure 9. Optimized transducer sample. 

First, the fabricated transducer was subjected to impedance testing using the HIOKI-

IM3570 Precision Impedance Analyzer to determine its resonant frequency. Due to varia-

tions in the driving frequency of the transducers, there are corresponding differences in 

the internal currents generated. When the driving frequency matches the mechanical res-

onant frequency of the transducer, the internal current reaches a peak. Therefore, the ac-

tual resonant frequency of the transducer can be obtained through impedance measure-

ments. During the test, the impedance analyzer was used to sweep the connected trans-

ducer samples, resulting in impedance-phase curves for each corresponding frequency. 

The test results are shown in Figure 10, and it can be observed that the resonant frequency 

of the fabricated transducer is 445 kHz. 

 

Figure 10. Impedance-phase curve of optimized transducer sample. 

After determining the resonant frequency of the transducer sample, pulse-echo anal-

ysis was performed to test its operational performance. A pulse-echo test platform (Figure 
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11) was assembled for this purpose. First, the RITEC RPR-4000 high-power pulse genera-

tor/receiver is used to generate the excitation signal, which is then transmi�ed to the ul-

trasonic transducer samples through the RDX-6 duplexer module. The transducer emits 

ultrasonic waves under the action of the excitation signal, and these waves travel through 

the air, reach the aluminum plate, and produce echoes. The echoes are received by the 

transducer again through the duplexer, generating echo signals that are displayed on an 

oscilloscope. During the experiment, it is essential to keep the transducer surface parallel 

to the surface of the aluminum plate, and the distance between the transducer and the 

aluminum plate should be 20 mm. Under these conditions, the received echo signal is in 

the time domain. To obtain the corresponding frequency spectrum, the time-domain 

waveform is subjected to fast Fourier transform. To avoid experimental interference, it is 

preferable to use narrowband high-power signals to excite the transducer with a relatively 

single mode. In this study, a 5-cycle sine wave with rectangular window modulation pro-

vided by the RPR-4000 system, is chosen as the excitation signal. The excitation frequency 

corresponds to the resonant frequency of each transducer obtained from the impedance 

analyzer, with an emission voltage of 10 Vpp. The test result (Figure 12) shows that the −6 

dB bandwidth of the transducer is 106.3%. The test result closely aligns with the simulated 

result, further validating the effectiveness of the optimization design strategy. 

 

Figure 11. Pulse-echo test platform. 
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Figure 12. Pulse-echo test result. 

5. Discussion 

The obtained results from intelligent optimization, finite element simulation, and ex-

perimental testing demonstrate consistency. However, it is observed that the measured 

resonant frequency of the transducer is slightly lower compared to the simulated value. 

The main reason for the discrepancy is that during the experiment, impedance testing was 

conducted on the transducer, while in the simulation, only the impedance analysis of the 

piezoelectric composite material was conducted, neglecting the effects of the backing layer 

and matching layer. The backing layer primarily serves to absorb acoustic waves emi�ed 

by the piezoelectric composite material toward the backside, thereby reducing reflection. 

However, in the experiment, it is not possible to completely absorb the acoustic waves, 

which may lead to a slight deviation in the resonant frequency. The backing layer and 

excessive epoxy resin in bonding the parts increase the mass and stiffness of the trans-

ducer, which can also lead to a lower resonant frequency. Furthermore, the thickness of 

the fabricated piezoelectric material might be larger than the designed thickness due to 

limitations in processing precision, which could also contribute to this phenomenon. De-

spite the variation, the experimentally measured resonant frequency still falls within the 

bandgap frequency range of the piezoelectric composite material and the acoustic imped-

ance gradient-matched layer. The suppression effect on transverse vibration is not signif-

icantly weakened. Therefore, the impact of this deviation on the overall performance of 

the air-coupled ultrasonic transducer is minimal. 

The consistency between the finite element simulation and experimental results con-

firms the improved performance of the optimized transducer, validating the effectiveness 

of the proposed optimization design strategy for phononic crystal air-coupled ultrasound 

transducer based on RBFNN and NSGA-II algorithm. However, during the optimization 

process, we only consider the influence of four factors: the thickness and piezoelectric col-

umn radius of 1–3 piezoelectric composite, as well as the thickness and period of the 

acoustic impedance gradient matched layer, while neglecting the impact of other factors. 

For example, the backing layer, which primarily serves for sound absorption and damp-

ing, prevents acoustic waves from reflecting back to the piezoelectric composite material. 

The material, structure, and thickness of the backing layer determine the effectiveness of 

backward sound wave suppression, further affecting the bandwidth of the ultrasonic 

transducer. Additionally, the relative position of the resonant frequency of the transducer 

within the bandgap of the piezoelectric composite material and the acoustic impedance 

gradient matched layer was found to influence the suppression effect of transverse 
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vibration. Moreover, when the filling ratio of the piezoelectric composite is fixed, changes 

in the la�ice constant can alter the bandgap width and position, consequently affecting 

the suppression effect of transverse vibration. Therefore, the la�ice constant of the piezo-

electric composite is another potential influencing factor. Certainly, considering more in-

fluencing factors will bring forth new potential challenges. Firstly, it increases the com-

plexity of the optimization problem, and the complexity and workload of training the 

RBFNN model and implementing the NSGA-II algorithm will significantly escalate. Ad-

ditionally, during the optimization process, certain trade-offs or compromises may be re-

quired. For instance, in pursuit of placing the resonant frequency in the middle of the 

bandgap, it might be necessary to sacrifice a portion of the bandgap width. 

6. Conclusions 

In this study, based on the RBFNN model and NSGA-II algorithm, an optimization 

design strategy for the piezoelectric layer and impedance gradient matching layer of pho-

nonic crystal air-coupled ultrasound transducer is proposed to further improve its perfor-

mance. Firstly, by combining the OLHS method with simulation data obtained from 

COMSOL software, a RBFNN model is trained to describe the nonlinear relationship be-

tween the design parameters and performance parameters of the transducer. The accuracy 

of the approximate model is verified through error analysis using linear regression plots 

and statistical methods. Then, the optimal design parameters of the transducer are deter-

mined based on the RBFNN model and NSGA-II algorithm. Furthermore, the effective-

ness of the proposed optimization design strategy is verified through simulations and ex-

periments. After optimization, the resonant frequency of the transducer falls within the 

bandgap range of both the piezoelectric composite material and the acoustic impedance 

gradient matching layer. Additionally, the bandgap width of the piezoelectric composite 

material and the acoustic impedance gradient matching layer is increased by 16 kHz and 

13.5 kHz, respectively, and the −6 dB bandwidth of the transducer is improved by 11.5%. 

The optimized phononic crystal air-coupled ultrasound transducer holds great potential 

for applications in non-destructive testing. 
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