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Abstract: Conditions of industrial production introduce additional complexities while attempting
to solve optimization problems of material technology processes. The complexity of the physics of
such processes and the uncertainties arising from the natural variability of material parameters and
the occurrence of disturbances make modeling based on first principles and modern computational
methods difficult and even impossible. In particular, this applies to designing material processes
considering their quality criteria. This paper shows the optimization of the rack bar induction hard-
ening operation using the response surface methodology approach and the desirability function. The
industrial conditions impose additional constraints on time, cost and implementation of experimental
plans, so constructing empirical models is more complicated than in laboratory conditions. The em-
pirical models of nine system responses were identified and used to construct a desirability function
using expert knowledge to describe the quality requirements of the hardening operation. An analysis
of the hypersurface of the desirability function is presented, and the impossibility of using classical
gradient algorithms during optimization is empirically established. An evolutionary strategy in the
form of a floating-point encoded genetic algorithm was used, which exhibits a non-zero probability
of obtaining a global extremum and is a gradient-free method. Confirmation experiments show the
improvement of the process quality using introduced measures.

Keywords: induction hardening; thermal residual deformation; multiobjective optimization;
response surface methodology; desirability function; evolutionary computations; genetic algorithm

1. Introduction

Engineering requirements of gear parts that have specific properties lead to research
on developing the induction hardening processes. Especially in the automotive industry,
reaching a compromise between cost, quality and reliability by using semi-automatic heat
treatment processes to ensure the mechanical and geometrical features is receiving more
and more attraction. However, the induction hardening process is challenging due to
thermal strains affecting the functionality and quality of crucial elements in the produced
structures. Other limitation factors are the formation of non-hardened zones in parts and
the change in the designed hardness of the treated elements. Moreover, the induction
hardening process is quite complex; it could be represented as a coupled field problem
with mechanical, electromagnetic and thermal fields, which are pretty hard to model in the
industrial environment, especially in the serial mode of production.

Optimization of the induction hardening process is well-known in the literature. Two
main approaches can be distinguished here: one using complex computational mechan-
ics models and the other using empirical modeling. The following works represent the
computational mechanics approach. Favennec et al. [1] show how to solve the problem
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of temperature distribution optimization using optimal control techniques, and similarly,
Jakubovicowa et al. [2] optimized the process for the uniform surface temperature distri-
bution criterion. Nemkov et al. [3] simulated the stress and distortion evolution during
the induction hardening process of tubes using the finite element method; the hardness
profile sensitivity in the induction hardening process with the finite element simulations
was explored in [4]. The coupled electromagnetic, thermal and mechanical computa-
tional models of the heat treatment process using electromagnetic fields were shown in [5].
Fisk et al. [6] have presented the complex models of induction hardening in low alloy steels.
Reference [7] shows the optimization of the edge effect of 4340 steel specimens heated by
induction process with flux concentrators using finite element axis-symmetric simulation.
The computational approach brings several advantages, such as universality and flexibility,
as shown in [8,9], and also lower cost and faster results than an experimental and analytical
approach. However, the computational approach requires tuned, complex constitutive
models, which are hard to identify, especially in industrial conditions. That is why the
empirical modeling approach was also successfully applied to solving various optimization
problems [10], also arising during the induction hardening process.

The empirical modeling approach allows for establishing relations between process
outputs and inputs using experimentation and measurements with statistical techniques
for managing data [11]. Kohli and Singh [12] have used response surface methodology
(RSM) to find the optimal values of process parameters for induction hardening of AISI
1040 steel. Various process parameters, such as feed rate, current, dwell time, and the
gap between the workpiece and induction coil, are experimentally explored. In [13], the
RSM and Taguchi method optimized the induction hardening process for maximum depth
and minimum edge effect. The multiobjective optimization problem with the appropriate
economic, environmental, and social metrics was analyzed in [14] to assure the sustain-
ability of the induction hardening process using empirical models. The reduction of edge
effect using the RSM and artificial neural network modeling of a spur gear treated by
induction with flux concentrators was shown in [15]. Artificial intelligence modeling of in-
duction contour hardening of 300M steel bar and C45 steel spur-gear was performed in [16].
Reference [17] shows that the central composite design, with a second-order response
surface design, was employed to systematically estimate the empirical models of temper-
ature and phase transformation geometry during the induction hardening. The effect of
scanning speed and air gap on the uniformity of hardened depth and mechanical properties
of large-size spur gears was investigated in [18]. Multi-response optimization using the
desirability function approach of the induction hardening process using quality responses
such as the effective case depth and hardness values were analyzed in [19] for different
combinations of medium frequency power, feed rate, quench pressure and temperature.
Asadzadeh et al. [20] have shown the hybrid model, integrating measurements and physics,
of the induction hardening.

A gap in the literature can be identified based on the authors’ best knowledge and the
review presented. It concerns the solution to the problem of multi-criteria optimization of
the induction hardening process in industrial conditions utilizing a hybrid approach using
empirical modeling and computational intelligence tools. The novelty of this work lies in
the application of multiple qualitative metrics regarding deformation, hardness profile and
hardening depth in a complex structural component such as a steering gear rack bar to
optimize the parameters of the induction hardening process, using empirical modeling, a
desirability function and an evolutionary algorithm.

Some essential points characterize the present work, which are identified and pre-
sented in this paper:

• There is no evidence that evolutionary optimization using a genetic algorithm has
been applied to induction hardening processes under complex industrial process
requirements, modeled empirically;
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• Lack of availability of studies showing the effect of the form of the desirability
hypersurface on the effectiveness of optimization algorithms for the induction
hardening process;

• Lack of availability of studies showing the effectiveness of global optimization algo-
rithms, such as genetic algorithms, for obtaining a set of quasi-optimal solutions to the
problem for the desirability function formulated for the induction hardening process;

• There is a lack of availability of studies showing the complex problem of conducting
experiments to confirm the optimal parameter settings of the induction hardening
process under industrial conditions and analyzing their results contained in small
samples, which precludes the use of parametric tests.

In this work, RSM with the central composite design (CCD) of experiments was em-
ployed to establish the functional relationship between the three main process parameters
that served as design variables of the induction hardening multi-criteria optimization prob-
lem. Several responses related to hardness profiles and geometrical measures of quenching
quality of the heat treatment operation of the automotive steering gear were formulated.
Among them, the most important in the following work is the problem of minimizing
residual thermal deformations, which is enforced by an additional straightening operation,
increasing the duration of the process and its costs. However, the desirability approach al-
lowed for transforming the multiobjective optimization problem into a single-optimization
problem using expert knowledge for setting the weights in the desirability function. The
quadratic models for the process responses were quantitatively analyzed, and their sig-
nificance and accuracy were confirmed statistically. Next, the reduction of the models is
performed to consider significant terms of the regression models. This step introduces a
specific consequence for the optimization problem formulation in a change of an optimized
function form. That change affects the effectiveness of the applied optimization algorithms.
The article shows that the global optimization technique as the evolutionary strategy in
the form of GA allows to meet the difficulties resulting from the form of the optimized
function. Finally, the confirmation experiments should be conducted to verify the optimal
solution the GA method determines.

This article consists of six Sections. After the introduction in the present Section,
Section 2 briefly describes the considered induction hardening process with its quality indi-
cators and experimentation methods. Section 3 is devoted to a description of the empirical
models that were obtained with RSM. Section 4 focuses on formulating the multi-criteria
optimization problem and obtaining the solution using the computational intelligence
technique, namely the GA algorithm. Section 5 analyzes confirmation experiments. The
last Section, Section 6, briefly summarizes the conducted research.

2. Process, Quality Indicators, and Experimentation Methods
2.1. Induction Hardening Process

The process is conducted using a particular equipment. The automatic inductive
hardening and tempering machine have a rotation table with three stations, as shown in
Figure 1:

• For loading rack bars before the heat treatment process and unloading rack bars after
the process is finished;

• Hardening station;
• Tempering station.

The machine is available for hardening and tempering rack bars with lengths of
500–900 mm and 22–32 mm diameters.

The hardening machine provides a possibility to control the hardening and tempering
process condition by adjusting:

• The hardening power is in the range of 0–100%;
• The hardening feed rate ranges from 100–50,000 mm/min;
• The distance of the hardening coil to rack bar teeth is in the 1.5–5 mm range.
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Figure 1. The automatic inductive hardening and tempering machine.

Moreover, the flow of quenching water could be controlled; however, due to the
low accuracy of the machine flow meter and lack of control possibility in auto mode, the
quenching flow rate was kept constant through the process with a value equal to 45 L/min.
Moreover, the hardening station has sensors in order to provide a continuous measurement
of a rack bar distance from the coil. It also provides a stable distance from the hardening
coil during the hardening process. Furthermore, during the tempering process, which
gave the required surface hardness, the power and the feed were kept constant through
experiments with settings:

• The power equals 47%;
• The feed rate equals 1600 mm/min.

The measurements of the following quantities were conducted during the quality
control of rack bars:

1. Hardness depth;
2. Surface hardness;
3. It is mandatory to use a straightening process after hardening due to deformation,

which is an effect of the hardening process; the time of the straightening operation
increases when rack bars deformation is over 1100 µm.

The main aim of the present study was to establish hardening process parameters
in order to achieve hardening conditions that match quality requirements, i.e., minimize
rack bar deformations with the proper hardening depth and hardness profiles and avoid
increasing a total machine cycle time, mainly when it includes additional operations,
e.g., straightening.
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Additional ancillary factors, e.g., coolant state, coolant flow rate, environment tem-
perature, humidity, hardening coil condition, deviation in allow composition of steel, etc.,
can influence the output variables; nevertheless, the performed experiments are restricted
to the three hardening parameters, which are automatically controlled by the machine.
Figure 2 shows the process setup.
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The hardening operation in automatic mode is as follows. After the hardening element
is delivered to the loading station, it is mounted in holders, and the inductor is fixed in
the initial position at the bottom, at a predetermined distance from the hardening piece,
according to the plan of experiments. At a fixed power and feed rate, the quenching
process begins, during which the coil moves upwards towards the upper holder with the
coolant flow, as shown in Figure 2. After passing the set distance, the holder is released,
the coil is discharged to the neutral position, and the hardened element is transferred to the
tempering operation.

2.2. Process Quality Indicators and the Measurement Setup

Specific measurements are required to identify the quality of the hardening process
qualitatively. Below, the list of performed measurements with the quality requirements
is presented:

• The hardness depth on the teeth side with minimum requirements equal to 3.9 mm;
• The hardness depth on the back side (an opposite side to teeth) with requirements

given by the range above 1 mm;
• The surface hardness on teeth with requirements given by the range 55–60 HRC;
• The surface hardness on the back side is within the 52–55 HRC range requirements;
• After finishing the hardening and tempering operations, all rack bars are straightened

to obtain a maximal deflection of value not greater than 1000 µm before going to the
next operation; in the presented study, the existence of thermal strains after induction
hardening and tempering operations is a primary driving force for performing process
optimization to reduce costs and time.

The general flow of the experimentation procedure is presented in Figure 3.
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The zones associated with the hardness measurements are shown in Figure 4. Figure 4
shows six hardness measurement zones: three zones for the tooth side and three for the
back side of the rack bar. The numbers indicate which teeth the hardness measurements
apply to.
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Places of the hardness depth measurements are also presented on the cross-section of
the rack bar in the middle of its length, as shown in Figure 5.

To measure the hardening depth, the micro Vickers method was used, and the FM-810
Micro Vickers Hardness Tester performed the inspection with an accuracy of ±1 HV. This
measurement involves determining the microhardness profile along the rack bar’s thickness
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for a tooth cross-section. The measurements assume that the hardening depth defines a
point with a hardness of 400 HV. An example of the hardness profile is shown in Figure 6.
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Figure 6. Example of hardness profile from the tooth side.

The Zwick/Roell ZHR 8150LK inspects surface hardness in the HRC scale with an
accuracy of ±1 HRC. The mentioned methods are indirect; moreover, destroying the
component (a rack bar) to perform measurements is necessary.
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Runout inspection and straightening are performed by the automatic process of a
rack bar straightening; the “Rack Bar Bend M/C” machine performs measurements by
eight of the high accuracy digital displacement transducer gauge probe with an accuracy
of ±1.2 µm. Figure 7 shows how deformation is measured and how the machine performs
straightening during the automatic process.
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2.3. Experimental Design

The central composite design (CCD) [11] as a plan of experiments is used. Three input
factors (design variables) were set within the following ranges according to the knowledge
of the process before optimization:

• The power x1: 45–69%;
• The coil distance x2: 1.5–5 mm;
• The feed rate x3: 600–900 mm/min.

Due to the destructive inspection, it is necessary to scrap all components used in the
experiments; therefore, due to cost reduction, there is no replication in the current plan of
experiments. The results of the experiments are presented in Table 1.

Table 1. The CCD plan of experiments with process responses.

No. x1 x2 x3
y1

[µm]
y2

[mm]
y3

[mm]
y4

[HRC]
y5

[HRC]
y6

[HRC]
y7

[HRC]
y8

[HRC]
y9

[HRC]

1 1 −1 −1 1721 10.358 5.098 47.9 50.0 53.3 47.4 52.7 54.5
2 −1 1 −1 720 4.008 1.416 56.1 57.6 58.0 55.0 55.1 55.6
3 1 1 1 1258 4.831 2.420 54.0 57.5 58.0 53.7 54.8 56.0
4 0 0 0 962 4.810 1.954 55.2 57.2 58.2 54.4 54.5 54.5
5 −1 −1 1 958 3.776 0.351 56.4 58.8 58.8 40.4 40.0 40.9
6 0 0 0 1160 4.767 1.957 56.0 58.6 58.9 54.0 54.9 55.9
7 −1 −1 −1 948 4.784 1.451 55.3 57.8 58.8 53.5 54.5 53.8
8 −1 1 1 1213 4.771 1.987 56.5 59.6 59.8 39.4 37.7 39.1
9 0 0 0 987 2.933 0.234 55.1 57.8 58.7 52.5 54.7 55.2

10 1 1 −1 2005 7.250 4.507 52.2 56.1 56.7 50.8 54.3 55.8
11 1 −1 1 981 5.778 2.512 53.4 56.5 57.1 52.2 55.0 54.7
12 0 0 0 1020 4.672 1.946 55.1 57.0 58.3 54.2 54.6 55.5
13 1.682 0 0 2131 7.704 4.579 46.2 51.2 56.1 46.3 51.6 51.5
14 0 0 1.682 745 4.059 1.174 56.4 58.3 58.9 54.6 54.3 54.5
15 0 0 0 1085 4.818 1.932 56.4 58.5 59.0 52.3 55.3 56.3
16 −1.682 0 0 1089 2.953 0.000 56.9 58.5 58.8 27.7 27.4 26.5
17 0 0 0 1013 4.766 1.969 55.6 57.4 58.0 54.0 55.2 56.1
18 0 1.682 0 821 4.331 1.938 55.7 58.2 58.6 55.1 56.0 56.0
19 0 −1.682 0 1435 5.669 1.991 55.0 57.3 57.8 53.0 55.1 56.0
20 0 0 −1.682 2057 6.132 3.267 52.1 55.4 56.0 52.9 55.0 56.4

Response y1 denotes the maximal deflection of the rack bar after the induction harden-
ing operation is finished. Responses y2 and y3 denote the hardness depths on the teeth and
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back-side, along the cross-section of the rack bar, in the middle of its length, respectively.
Responses y4–y6 indicate the average hardness measured in the I, II and III zones on the
teeth side and responses y7–y9 indicate the hardness measured in the I, II and III zones on
the back side of the rack bar.

Grubb’s test [11] was performed for data given in Table 1 to identify outliers. The
significance level was 0.05, and the following outliers are identified in the collected data:

• In experiment no. 1—in responses 2, 5 and 6, the result indicates that the deep
hardening was obtained without the required hardness of the teeth in the 2nd and
3rd zones;

• In experiment no. 13—response 4 indicates that the hardness of the teeth in the 1st
zone is insufficient;

• In experiment no. 16—in responses 7, 8 and 9, the result indicates that the hardening of
the back side of the rack bar was not achieved; moreover, in response 3—the hardening
depth on the back side—is equal to 0, however, on the assumed significance level this
response is not an outlier.

It is well known that outliers affect the response surface models, but in the pre-
sented study, no replications of experiments were assumed; hence all results were applied
for modeling.

3. RSM for Empirical Modelling

Empirical models of process responses are assumed in the form of full quadratic
models as follows:

y(i) = b0 + bTx + xTBx + ε(i),
x =

[
x1 x2 x3

]T ; b =
[

b1 b2 b3
]T ;

B =

 b11 b12/2 b13/2
b12/2 b22 b23/2
b13/2 b23/2 b33

; ε(i) ∼ N
(

0, σ(i)
)

,
(1)

where y(i) is the i-th response, b0 is the free term of the model, vector x denotes the design
variables, vector b collects the linear terms coefficients, and matrix B includes the quadratic
terms of the response surface model; it is assumed that the responses are uncorrelated and
each model is under the normal noise with 0 mean and standard deviation σ(i). Models are
linear with respect to the coefficients, which is why the least square method (LSM) [11] was
applied to identify coefficients.

An analysis of variance (ANOVA) is carried out to estimate the validity of the identified
mathematical models and the effect of every model term on the responses. The p-value
is used to check the significance, which means the response is greatly determined by the
model term whose p-value is sufficiently low (less than or equal to the significance level of
0.05). On the contrary, the higher the F-value, the stronger the significance of the model
item. Symbol S indicates the significant term in the considered model.

The ANOVA of the mathematical model for the maximal deflection is shown in
Table 2. The F-value (5.26) and p-value (0.008) imply that the model is significant, while the
F-value (22.24) and p-value (0.002) imply that the lack of fit is significant. If the lack of fit is
significant, the higher-order model terms should be taken into consideration to improve
the accuracy of the model; however, in the present study, only the full quadratic models
are considered. According to the F-value and p-value, there are four significant model
terms, among which the power x1 and the feed rate x3 have the most significant influence,
followed by the linear-by-linear interaction effect between the power x1 and the feed rate
x3 and the quadratic effect of the power x1

2. The coil distance x2 and other model terms
also containing it seem to have little influence on the maximal deflection of the rack bar.
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Table 2. Analysis of variance for the mathematical model of maximal deflection response y1.

Source Sum of
Squares

Sum of Squares
Contribution [%] df Mean

Square
F-

Value
p-

Value Notes

Model 2,908,285.706 82.568 9 323,142.856 5.263 0.008 S
x1 1,101,450.148 31.271 1 1,101,450.148 17.939 0.002 S
x2 14,482.149 0.411 1 14,482.149 0.236 0.638
x3 745,417.899 21.163 1 745,417.899 12.140 0.006 S

x1x2 35,644.500 1.012 1 35,644.500 0.581 0.464
x1x3 495,012.500 14.054 1 495,012.500 8.062 0.018 S
x2x3 28,322.000 0.804 1 28,322.000 0.461 0.512
x1

2 394,238.133 11.193 1 394,238.133 6.421 0.030 S
x2

2 361.006 0.010 1 361.006 0.006 0.940
x3

2 120,678.769 3.426 1 120,678.769 1.965 0.191
Residual 613,997.244 17.432 10 61,399.724

Lack of fit 587,578.410 16.682 5 117,515.682 22.241 0.002 S
Pure error 26,418.833 0.750 5 5283.767

Total 3,522,282.950 100.000 19 185,383.313

The ANOVA of the mathematical model for the hardening depth of the teeth is shown
in Table 3. The F-value and p-value of the lack of fit are 0.41 and 0.82, respectively, while
the F-value and p-value of the model are 14.41 and less than 0.00013, respectively, which
indicates that the model is significant enough and no higher-order model terms need to
be considered. The power and the feed rate amount have the most significant influence
on the hardening depth of the teeth, followed by the linear-by-linear interaction effect
between the power and the feed rate, the coil distance x2 and the quadratic effect of the
power x1

2. The linear-by-linear interaction effect between the power and the coil distance
is also significant.

Table 3. Analysis of variance for the mathematical model of the hardening depth of teeth y2.

Source Sum of
Squares

Sum of Squares
Contribution [%] df Mean

Square F-Value p-Value Notes

Model 51.625 92.841 9 5.736 14.410 <0.001 S
x1 26.068 46.881 1 26.068 65.488 <0.001 S
x2 2.712 4.878 1 2.712 6.814 0.026 S
x3 8.431 15.162 1 8.431 21.180 0.001 S

x1x2 2.283 4.106 1 2.283 5.736 0.038 S
x1x3 5.702 10.254 1 5.702 14.325 0.004 S
x2x3 1.933 3.476 1 1.933 4.855 0.052
x1

2 2.479 4.458 1 2.479 6.227 0.032 S
x2

2 1.285 2.311 1 1.285 3.228 0.103
x3

2 1.592 2.863 1 1.592 3.999 0.073
Residual 3.981 7.159 10 0.398

Lack of fit 1.165 2.096 5 0.233 0.414 0.822
Pure error 2.815 5.063 5 0.563

Total 55.606 100.000 19 2.927

The ANOVA of the mathematical model for the hardening depth on the back side is
shown in Table 4. As can be seen from the table, the model is significant with an F-value
(11.71) and a small p-value (<0.0004), while the lack of fit is still not significant with a
smaller F-value (0.25) and larger p-value (0.92). The power x1 has the most significant
influence on the hardening depth on the back side, with the largest F-value (69.29), followed
by the feed rate x3 and the linear-by-linear interaction effect between the power and the
feed rate. Other model terms seem to have little influence on the hardening depth on the
back side of the rack bar.
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Table 4. Analysis of variance for the mathematical model of the hardening depth on the back side y3.

Source Sum of
Squares

Sum of Squares
Contribution [%] df Mean

Square F-Value p-Value Notes

Model 32.331 91.339 9 3.592 11.718 <0.001 S
x1 21.244 60.016 1 21.244 69.295 <0.001 S
x2 0.050 0.142 1 0.050 0.164 0.694
x3 5.570 15.737 1 5.570 18.170 0.002 S

x1x2 0.652 1.842 1 0.652 2.127 0.175
x1x3 2.147 6.064 1 2.147 7.002 0.024 S
x2x3 0.589 1.663 1 0.589 1.920 0.196
x1

2 1.127 3.185 1 1.127 3.677 0.084
x2

2 0.391 1.106 1 0.391 1.277 0.285
x3

2 0.939 2.654 1 0.939 3.064 0.111
Residual 3.066 8.661 10 0.307

Lack of fit 0.606 1.713 5 0.121 0.247 0.925
Pure error 2.459 6.948 5 0.492

Total 35.397 100.000 19 1.863

The ANOVA of the mathematical model for the hardness of the teeth in the first zone is
shown in Table 5. As can be seen from the table, the model is significant with an F-value of
20.72 and an extremely small p-value <0.0001, while the lack of fit is still not significant with
an F-value of 4.42 and a p-value of 0.06. The power x1 has the most significant influence on
the hardness of the teeth in the first zone, with the largest F-value (112.54), followed by the
quadratic effect of the power x1

2 and the feed rate x3. The linear-by-linear interaction effect
between the power and the feed rate is also significant at the 0.05 significance level.

Table 5. Analysis of variance for the mathematical model of the hardness of the teeth in the first
zone y4.

Source Sum of
Squares

Sum of Squares
Contribution (%) df Mean

Square F-Value p-Value Notes

Model 146.920 94.911 9 16.324 20.722 <0.001 S
x1 88.654 57.271 1 88.654 112.539 <0.001 S
x2 3.564 2.303 1 3.564 4.525 0.059
x3 18.820 12.158 1 18.820 23.890 0.001 S

x1x2 2.000 1.292 1 2.000 2.539 0.142
x1x3 4.205 2.716 1 4.205 5.338 0.043 S
x2x3 2.420 1.563 1 2.420 3.072 0.110
x1

2 25.952 16.765 1 25.952 32.944 <0.001 S
x2

2 0.000 0.000 1 0.000 0.000 0.995
x3

2 2.163 1.397 1 2.163 2.746 0.129
Residual 7.878 5.089 10 0.788

Lack of fit 6.424 4.150 5 1.285 4.420 0.064
Pure error 1.453 0.939 5 0.291

Total 154.798 100.000 19 8.147

The ANOVA of the mathematical model for the hardness of the teeth in the sec-
ond zone is shown in Table 6. The model is significant, with an F-value of 10.49 and a
p-value < 0.0006, and the lack of fit is still insignificant. The most important factors are the
power x1, the feed rate x3 and the quadratic effect of the power x1

2. Similar significance
levels show the coil distance x2 and the linear-by-linear interaction effect between the
power and the coil distance.
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Table 6. Analysis of variance for the mathematical model of the hardness of the teeth in the second
zone y5.

Source Sum of
Squares

Sum of Squares
Contribution (%) df Mean

Square F-Value p-Value Notes

Model 98.206 90.424 9 10.912 10.492 <0.001 S
x1 49.412 45.497 1 49.412 47.512 <0.001 S
x2 6.216 5.723 1 6.216 5.977 0.035 S
x3 18.226 16.782 1 18.226 17.525 0.002 S

x1x2 5.281 4.863 1 5.281 5.078 0.048 S
x1x3 3.001 2.763 1 3.001 2.886 0.120
x2x3 2.101 1.935 1 2.101 2.020 0.186
x1

2 13.157 12.114 1 13.157 12.651 0.005 S
x2

2 0.070 0.065 1 0.070 0.067 0.800
x3

2 0.889 0.819 1 0.889 0.855 0.377
Residual 10.400 9.576 10 1.040

Lack of fit 8.125 7.481 5 1.625 3.571 0.094
Pure error 2.275 2.095 5 0.455

Total 108.606 100.000 19 5.716

The ANOVA of the mathematical model for the hardness of the teeth in the third zone
is shown in Table 7. The model is significant, with an F-value of 9.44 and a p-value < 0.0009,
and the lack of fit is still insignificant. The most important factors are the power x1, the
feed rate x3 and the coil distance x2. Similar levels of significance, but with smaller values
of the F-statistics than earlier considered factors, show the quadratic effects of the power
and the feed rate.

Table 7. Analysis of variance for the mathematical model of the hardness of the teeth in the third
zone y6.

Source Sum of
Squares

Sum of Squares
Contribution (%) df Mean

Square F-Value p-Value Notes

Model 36.465 89.467 9 4.052 9.438 <0.001 S
x1 16.127 39.568 1 16.127 37.566 <0.001 S
x2 2.502 6.138 1 2.502 5.828 0.036 S
x3 10.156 24.918 1 10.156 23.658 0.001 S

x1x2 2.101 5.155 1 2.101 4.895 0.051
x1x3 1.361 3.340 1 1.361 3.171 0.105
x2x3 0.061 0.150 1 0.061 0.143 0.714
x1

2 2.257 5.536 1 2.257 5.256 0.045 S
x2

2 0.246 0.603 1 0.246 0.572 0.467
x3

2 2.257 5.536 1 2.257 5.256 0.045 S
Residual 4.293 10.533 10 0.429

Lack of fit 3.465 8.501 5 0.693 4.183 0.071
Pure error 0.828 2.032 5 0.166

Total 40.758 100.000 19 2.145

The ANOVA of the mathematical model for the hardness of the back-side in the
first zone is shown in Table 8. The model is significant with an F-value of 11.32 and
p-value < 0.0004, and the lack of fit is significant with a p-value of 0.003. Only three factors
are significant: the quadratic effect of the power x1, the linear-by-linear interaction effect
between the power and the feed rate and the pure quadratic effect of the power.



Materials 2023, 16, 5791 13 of 24

Table 8. Analysis of variance for the mathematical model of the hardness of the back-side in the first
zone y7.

Source Sum of
Squares

Sum of Squares
Contribution (%) df Mean

Square F-Value p-Value Notes

Model 840.725 91.064 9 93.414 11.323 <0.001 S
x1 162.321 17.582 1 162.321 19.676 0.001 S
x2 5.841 0.633 1 5.841 0.708 0.420
x3 24.094 2.610 1 24.094 2.921 0.118

x1x2 2.420 0.262 1 2.420 0.293 0.600
x1x3 165.620 17.939 1 165.620 20.076 0.001 S
x2x3 2.420 0.262 1 2.420 0.293 0.600
x1

2 455.825 49.373 1 455.825 55.254 <0.001 S
x2

2 2.348 0.254 1 2.348 0.285 0.605
x3

2 1.276 0.138 1 1.276 0.155 0.702
Residual 82.497 8.936 10 8.250

Lack of fit 78.284 8.479 5 15.657 18.580 0.003 S
Pure error 4.213 0.456 5 0.843

Total 923.222 100.000 19 48.591

The ANOVA of the mathematical model for the hardness of the back-side in the
second zone is shown in Table 9. The model is significant with an F-value of 13.27 and a
p-value < 0.0002, and the lack of fit is very significant with a p-value < 0.00002. Only four
factors are significant: the quadratic effect of the power x1

2 followed by the power itself,
the linear-by-linear interaction effect between the power and the feed rate, and the feed
rate itself.

Table 9. Analysis of variance for the mathematical model of the hardness of the back-side in the
second zone y8.

Source Sum of
Squares

Sum of Squares
Contribution (%) df Mean

Square F-Value p-Value Notes

Model 995.989 92.275 9 110.665 13.273 <0.001 S
x1 360.856 33.432 1 360.856 43.280 <0.001 S
x2 0.108 0.010 1 0.108 0.013 0.912
x3 67.118 6.218 1 67.118 8.050 0.018 S

x1x2 1.201 0.111 1 1.201 0.144 0.712
x1x3 150.511 13.944 1 150.511 18.052 0.002 S
x2x3 2.761 0.256 1 2.761 0.331 0.578
x1

2 395.712 36.662 1 395.712 47.461 <0.001 S
x2

2 2.716 0.252 1 2.716 0.326 0.581
x3

2 0.194 0.018 1 0.194 0.023 0.882
Residual 83.376 7.725 10 8.338

Lack of fit 82.843 7.675 5 16.569 155.330 <0.001 S
Pure error 0.533 0.049 5 0.107

Total 1079.366 100.000 19 56.809

Similar conclusions could be formulated for the mathematical model of the hard-
ness of the back-side in the third zone, as shown in Table 10. The model is significant
with an F-value of 14.21 and a p-value < 0.0002, and the lack of fit is significant with a
p-value < 0.0007. Moreover, only four factors are significant: the quadratic effect of the
power x1

2 followed by the power itself, the linear-by-linear interaction effect between the
power and the feed rate, followed by the feed rate itself.
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Table 10. Analysis of variance for the mathematical model of the hardness of the back-side in the
third zone y9.

Source Sum of
Squares

Sum of Squares
Contribution (%) df Mean

Square F-Value p-Value Notes

Model 1053.639 92.749 9 117.071 14.213 <0.001 S
x1 397.146 34.960 1 397.146 48.215 <0.001 S
x2 0.495 0.044 1 0.495 0.060 0.811
x3 75.893 6.681 1 75.893 9.214 0.013 S

x1x2 0.845 0.074 1 0.845 0.103 0.755
x1x3 111.005 9.771 1 111.005 13.477 0.004 S
x2x3 1.620 0.143 1 1.620 0.197 0.667
x1

2 444.042 39.088 1 444.042 53.909 <0.001 S
x2

2 3.038 0.267 1 3.038 0.369 0.557
x3

2 1.010 0.089 1 1.010 0.123 0.733
Residual 82.369 7.251 10 8.237

Lack of fit 80.161 7.056 5 16.032 36.299 0.001 S
Pure error 2.208 0.194 5 0.442

Total 1136.008 100.000 19 59.790

The lack of fit in the presented models indicates the need to use the higher-order
models; however, in the present work, only quadratic models will be used. The higher-
order models can be applied, e.g., in polynomials, neural networks and kriging.

The identified models are nonlinear, indicating room for improvement or even process
optimization. Table 11 presents the essential statistical characteristics of the identified full
quadratic models (1). The significance level was assumed as 0.05.

Table 11. Statistical characteristics of regression models for responses of the process.

No. Model
Statistics

Multiple R R2 Adjusted R2 p-Value PRESS

1 The maximal deflection, y1 0.909 0.826 0.669 0.008 4,540,000
2 Hardening depth of teeth, y2 0.964 0.928 0.864 <0.001 12.891
3 The hardening depth on the back side, y3 0.956 0.913 0.836 <0.001 8.402
4 The hardness of the teeth in the first zone, y4 0.956 0.913 0.836 <0.001 52.643
5 The hardness of the teeth in the second zone, y5 0.950 0.902 0.813 <0.001 72.291
6 The hardness of the teeth in the third zone, y6 0.948 0.898 0.807 <0.001 31.142
7 The hardness of the back-side in the first zone, y7 0.954 0.911 0.830 <0.001 600.672
8 The hardness of the back-side in the first zone, y8 0.961 0.923 0.853 <0.001 630.241
9 The hardness of the back-side in the first zone, y9 0.963 0.928 0.862 <0.001 614.364

The analysis shows that the identified models are strong and significant but with
moderate predictive ability, as shown by the PRESS statistics. The backward elimination of
the insignificant terms is performed to increase the predictive properties of the identified
models. The reduced models will be used in the optimization process; models presented in
Table 12 were shown with an accuracy of two significant digits. The values of the PRESS
statistics are significantly smaller than for the full models, with a tiny drop in R2 values.

Table 12. The reduced models of responses.

No. Model Equation R2 PRESS

1 The maximal deflection, y1 y1 = 1107.86 + 283.98x1 − 233.62x3 + 157.55x2
1 − 248.75x1x3 0.771 1,520,000

2 Hardening depth of teeth, y2 y2 = 4.45 + 1.38x1 − 0.45x2 − 0.79x3 + 0.42x2
1 + 0.30x2

2 + 0.33x2
3

−0.53x1x2 − 0.84x1x3 + 0.49x2x3
0.928 12.891

3 The hardening depth on the back
side, y3

y3 = 1.66 + 1.25x1 + 0.06x2 − 0.64x3 + 0.28x2
1 + 0.17x2

2 + 0.26x2
3

−0.29x1x2 − 0.52x1x3 + 0.27x2x3
0.913 8.402
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Table 12. Cont.

No. Model Equation R2 PRESS

4 The hardness of the teeth in the
first zone, y4

y4 = 55.27− 2.55x1 + 1.18x3 − 1.31x2
1 0.863 43.793

5 The hardness of the teeth in the
second zone, y5

y5 = 57.59− 1.89x1 + 0.68x2 + 1.16x3 − 0.94x2
1 0.801 41.591

6 The hardness of the teeth in the
third zone, y6

y6 = 58.41− 1.09x1 + 0.43x2 + 0.85x3− 0.38x2
1 − 0.38x2

3 + 0.52x1x2 0.862 17.054

7 The hardness of the back-side in
the first zone, y7

y7 = 54.05 + 3.45x1 − 5.69x2
1 + 4.55x1x3 0.874 307.236

8 The hardness of the back-side in
the second zone, y8

y8 = 55.25 + 5.14x1 − 2.22x3 − 5.29x2
1 + 4.34x1x3 0.921 273.008

9 The hardness of the back-side in
the third zone, y9

y9 = 56.08 + 5.39x1 − 2.36x3 − 5.62x2
1 + 3.725x1x3 0.922 273.822

It is essential to emphasize that the reduced models change the background for opti-
mization. Supposedly, we will consider the model for the maximal deflection y1. In that
case, the canonical analysis shows that for the full quadratic model, the stationary point
xs = [−0.196 0.764 1.053]T is a saddle point because the eigenvalues of matrix
B {−31.45, 36.93, 269.55} are mixed in sign. The reduced model, according to Table 12, has a
stationary point xs = [−1.032 0 −0.377]T which is also a saddle point, but from the ridge
system because the eigenvalues are now {−63.10, 0, 2246.76}. Figure 8 shows contour plots
of the response surface slices at x3 = 0.5 for the full quadratic model (left) and the reduced
model (right).
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The change in the type of the response surface affects the optimization process, espe-
cially in the single-objective case. For the multiobjective case, the desirability approach
allows taking into account various forms of response surfaces. However, the proper-
ties of the ridge systems will also be present in the objective function, as shown in the
next Section.
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4. Multiobjective Optimization Problem Formulation and Its Solution

The design variable vector x is as follows x = [x1 x2 x3]T, where x1 is the power, x2 is
the distance between the coil and the part, and x3 is the feed rate. Then, the multiobjective
optimization problem can be formulated using the desirability function D as given below:

xopt = argmax
x∈S

D(x)

s.t. xTx ≤ α2.
(2)

The sphere S denotes the set of the acceptable solution, and this set is given by the
constraint described by the radius α of the central composite plan of the experiments.

In the paper, the following form of the desirability function is used [11]:

D(x) =
(

m
∏
i=1

di(x)
wi

)1/∑m
i=1 wi

or

D(x) =
(

m
∏
i=1

di(x)
)1/m

,
(3)

where di is the desirability function related to the optimization’s i-th criterion, wi denotes
the weight of the i-th criterion, and m is the number of responses.

Two types of the desirability function are applied: the smaller—the better (STB) and
the nominal—the better (NTB) [11] as follows:

STB :

di =


1.0, ŷi ≤ Li(

ŷi−Ui
Li−Ui

)s
,

0, ŷi ≥ Ui

Li < ŷi < Ui
(4)

and
NTB :

di =


0, (ŷi < Li) ∨ (ŷi > Ui)(

ŷi−Li
Ti−Li

)s
, Li ≤ ŷi ≤ Ti(

ŷi−Ui
Ti−Ui

)s
, Ti < ŷi ≤ Ui.

(5)

where for the STB function, L denotes the acceptable target for the response ŷi, and U is an
acceptable upper limit of the response, s is the exponent which sets the sharpness of the
desirability function. For the NTB function, T denotes the target for the response ŷi, and L
and U are acceptable lower and upper limits of the response, respectively.

The responses ŷi in the presented formulation are obtained using the identified RSM
models. Table 13 shows the parameters of the identified models’ desirability functions.

Table 13. Parameters of the desirability functions for the identified response models.

No. Response
^
yi

Type Li Ti Ui s wi

1. f max STB 1.0 mm - 1.4 mm 2 1
2. ht NTB 3.9 mm 4.1 mm 10.0 mm 2 0.8
3. hb NTB 1.0 mm 1.4 mm 10.0 mm 2 0.8
4. HRCt1 NTB 55 HRC 57.5 HRC 60 HRC 2 0.6
5. HRCt2 NTB 55 HRC 57.5 HRC 60 HRC 2 0.6
6. HRCt3 NTB 55 HRC 57.5 HRC 60 HRC 2 0.6
7. HRCb1 NTB 52 HRC 53.5 HRC 55 HRC 2 0.6
8. HRCb2 NTB 52 HRC 53.5 HRC 55 HRC 2 0.6
9. HRCb3 NTB 52 HRC 53.5 HRC 55 HRC 2 0.6

Table 13 shows that the most critical response is the first one—related to the deflection
of the rack bar.
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Using the first of Equation (3) with Equations (4) and (5) and Table 12, the desirability
function was calculated for the responses given in Table 1 obtained during the experimental
phase of the study.

The values of the desirability function for the plan of experiments results are given in
Figure 9.
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Figure 9 shows that only three out of twenty experiments gave non-zero desirability
values with a maximum of 0.421 for the seventh and 0.292 and 0.291 for the fourth and four-
teenth experiments, respectively. The results indicate that there is room for improvement
in the process.

The classical optimization technique, namely the sequential quadratic programming
(SQP) algorithm for constrained optimization problems, was applied in the first trial.
One hundred tests were carried out with a random selection of the starting point of the
optimization procedure. The results are presented in Figure 10.
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It is visible that only for four out of one-hundred trials, the best value of the desirability
function is non-zero with a maximum of 0.646. This poor result can be explained by
approximating the gradient of the objective function using difference quotients. However,
one must also consider that the desirability functions (4) and (5) are not differentiable in
the classical sense. In Table 14, the statistics for the SQP optimization process are presented.
The results show that the process is not robust; the optimal design variables vector in
uncoded values is xopt = [56.4% 1.6 mm 796 mm/min]T, which gives Dopt = 0.646. The
second best result is x = [56.4% 3.1 mm 793 mm/min]T which gives Dopt = 0.557. The
latter result is significant from the point of view of the industrial conditions of the process;
additional considerations will also be presented in this work.

Table 14. Statistics of the SQP optimization results for the desirability function values.

Statistics Value

Sample mean value, x 0.023
Sample standard deviation, σ 0.112

Sample median, M 0.000
Sample minimum, min(max(D)) 0.000
Sample maximum, max(max(D)) 0.646

Figure 11 shows slices of the desirability function hypersurface. The hypersurface of
desirability has the form of narrow ribs with a wavy ridge, making it very difficult to solve
the optimization problem using classical algorithms. In addition, for almost the entire set
of admissible solutions, the values of the desirability function are equal to zero, which also
justifies the inefficiency of the classic optimization algorithm SQP.
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Due to the presented features of the objective function, an evolutionary, floating-point
coded genetic algorithm (GA) was used in the work.

A genetic algorithm (GA) [21] is an intelligent evolutionary procedure used to find the
optimal solutions to problems based on natural genetics and natural selection principles.
The foundation of this algorithm is the biologically inspired set of operations such as
selection, combination or crossover, and mutation. In the present case, the individuals and
the objective function are defined and coded at the real-coded strings. Then, the iterative
process is carried up using the three operations, i.e., selection, crossover, and mutation.
The selection operation is to choose individuals that start from a population generated
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randomly according to a probability distribution. The roulette wheel selection method
is used to determine the selection of individuals. A crossover operation appears when
two strings randomly picked from the populations exchange their substrings to create
two new strings. The sum of individuals to apply the crossover operation is dominated
by crossover probability, which is the ratio of all selected strings to the total population
size. The mutation operation assures the diversity of the population. It is an occasional
random alternative in one or more string positions where the small random number mutes
the value. After successive iterative generations, the population evolves gradually toward
an optimal solution. Finally, the evolutionary process is completed till the termination
criterion is reached. This study proposed RSM with the desirability function to define the
relationship between parameters and responses. A practical method for combining RSM
and an evolutionary strategy in the form of a genetic algorithm (GA) is that RSM is utilized
to build a functional relationship between parameters and responses, and then GA is used
to optimize the given fitness function composed by the desirability approach.

The following parameters of the applied GA were listed based on the study to get
optimal solutions with the lowest computational effort:

• Population size = 20;
• Maximum number of generations = 100;
• Crossover probability = 0.8;
• Mutation probability = 0.9;
• Stop criterion: max number of generations and average change in fitness function

values (with tolerance 10−6) and the average change of constraints values (with
tolerance 10−3);

• The constraint: the first generation is chosen randomly according to the constraint.

The optimization process is conducted 100 times, and the best results after each trial
are collected in Figure 12.
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It is visible that for all 100 trials, the best value of the desirability function is non-
zero, with an overall maximum of 0.646. In a few cases, local minima were found, or the
optimization process was interrupted due to the lack of a significant change in the value of
the objective function. Most often, the optimization process requires five iterations of the
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algorithm, which is a relatively small value, in particular for methods of computational
intelligence, such as the genetic algorithm. In Table 15, the statistics for the evolutionary
optimization process are presented.

Table 15. Statistics of the evolutionary optimization results for the desirability function values.

Statistics Value

Sample mean value, x 0.641
Sample standard deviation, σ 0.019

Sample median, M 0.646
Sample minimum, min(max(D)) 0.531
Sample maximum, max(max(D)) 0.646

The results in Table 15 show that evolutionary optimization is a robust technique, espe-
cially for complex non-differentiable multidimensional fitness functions as the considered
desirability function for the induction hardening process of the rack bar.

The global optimal design variables vector in uncoded values is xopt = [56.4% 1.6 mm
796 mm/min]T, which gives Dopt = 0.646; this result agrees with the one obtained for the
SQP algorithm considering the rounding used. One of the results for local minima is also
close to the second-best result found with the SQP algorithm, namely x = [56.4% 3.0 mm
795 mm/min]T, which gives Dopt = 0.556. However, it should be noted that the GA found
more local minima, as can be seen in Figure 12, but similar results are shown to compare
the results of the two algorithms. Figure 13 shows a histogram of the optimal values of the
design variables obtained during 100 tests of the GA. It can be seen that the most significant
variation in optimal values occurs for the third component of the vector of design variables,
that is, the feed rate. For the first and second components of the vector of design variables,
the optimal values cluster with less variation than for the third component.
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5. Confirmation Experiments and Discussion

The best and global optimal point obtained during the evolutionary optimization
was found for the following values of the design variables: 56.4% of power, 1.6 mm of
the distance of the hardening coil, and 804 mm/min of the feed rate. The second design
variable was found close to its lower bound. Industrial conditions require a different
approach to evaluating the presented optimal solution, which can be regarded with high
probability as a global optimum. Preliminary tests have shown that the found optimal
solution cannot be applied due to increased heating of the tool, which is a coil located close
to the heated element, leading to its rapid wear, increasing the cost of the process. The
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original assumptions about the range of design variables included the possibility of fully
controlling design variables without taking into account additional factors that arise in
industrial conditions, especially in the conditions of mass production in an automatic cycle.
Therefore, it was decided to adopt the following quasi-optimal values of design variables
corresponding to the local minimum, x = [56.4% 3.1 mm 793 mm/min]T, which gives
Dopt = 0.557.

Finally, the confirmation experiment was conducted for the quasi-optimal setup, and
the results are displayed in Table 16. Industrial cost and time constraints necessitate small
sample sizes for experimentation to prove process optimization. Six experiments were
performed, and Table 16 contains the measured responses and the corresponding values
of the desirability function. In two out of six cases, the desirability function values are
equal to zero. In experiments 2 and 4, responses y9 (the hardness of the back side in the 3rd
zone) are higher than the upper limit. The best-obtained result is ~8.9% higher than the
calculated optimal desirability.

Table 16. Results of the confirmation experiment.

No. y1
[µm]

y2
[mm]

y3
[mm]

y4
[HRC]

y5
[HRC]

y6
[HRC]

y7
[HRC]

y8
[HRC]

y9
[HRC] D

1 605 4.190 2.010 57.3 57.1 57.5 54.3 54.1 54.4 0.606
2 815 4.522 2.063 56.9 57.1 57.5 53.4 55.3 56.2 0.000
3 773 4.410 2.420 57.8 56.5 57.4 54.3 54.6 54.1 0.508
4 681 4.544 2.092 56.8 56.8 57.1 53.3 54.9 55.5 0.000
5 656 4.368 1.904 56.6 56.7 56.9 53.4 54.7 54.1 0.514
6 635 4.590 2.070 58.1 57.3 58.1 53.8 54.2 52.6 0.605

Due to the small sample size of the data from the confirmatory experiment, statistical
testing of the results obtained requires special attention. This study used the non-parametric
Wilcoxon signed rank test with a significance level of 0.05. Table 17 presents the results
of several tests related to the obtained responses and desirability values. Xconf denotes
the sample of the confirmatory experiment for X characteristic. In Table 17, the alterna-
tive hypotheses are presented. M denotes the median of the sample. For tests 5-8, it is
assumed that the sample contains data from all appropriate measurement zones because
the requirements are the same for each.

Table 17. Results of the Wilcoxon test for data from the confirmatory experiment.

No. Hypothesis H1 p-Value Result

1 M(Dconf) 6= max(Dopt) 0.031 the data in the sample come from a continuous distribution with a median different
than the best optimal solution of 0.646

2 M((y1)conf) < L(y1) 0.016 the data in the sample come from a continuous distribution with a median less than
the lower bound for the maximal deflection response of 1000 µm

3 M((y2)conf) > L(y2) 0.016 the data in the sample come from a continuous distribution with a median greater
than the lower bound for the hardening depth of teeth of 3.9 mm

4 M((y3)conf) > L(y3) 0.016 the data in the sample come from a continuous distribution with a median greater
than the lower bound for the hardening depth of the back side of 1.0 mm

5 M([y4; y5; y6])conf) > L(y4) <0.001 the data in the sample come from a continuous distribution with a median greater
than the lower bound for the hardness of the teeth in I, II and III zones of 55 HRC

6 M([y4; y5; y6])conf) < U(y4) <0.001 the data in the sample come from a continuous distribution with a median less than
the upper bound for the hardness of the teeth in the I, II and III zones of 60 HRC

7 M([y7; y8; y9])conf) > L(y7) <0.001
the data in the sample come from a continuous distribution with a median greater
than the lower bound for the hardness of the back side in the I, II and III zones of

52 HRC

8 M([y7; y8; y9])conf) < U(y7) 0.003 the data in the sample come from a continuous distribution with a median less than
the upper bound for the hardness of the back side in the I, II and III zones of 55 HRC
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The result for the first test shows that the obtained values of the desirability function
are not statistically equal to the calculated optimal value, which is mainly influenced by
the results of the second and fourth experiments, for which the values of the desirability
function are zero. The rest of the test results indicate that the process response requirements
are statistically met at a significance level of 0.05. Moreover, process quality improvement
is observed, mainly if the deflection response is analyzed as the most critical response.
Uncertainties of the process mean that it is impossible to talk about finding the optimal
parameters of the induction hardening operation, both in the sense of single-criteria and
multi-criteria optimization. However, it could be concluded that optimizing the desirability
function based on the RSM models increases the quality of the process. It can be noted
that if the confirmation sample had a larger size, the process capability analysis could have
helped in assessing its quality improvement.

6. Conclusions

This work addressed the constrained multi-response optimization of processing con-
ditions in induction hardening to decrease mechanical deformation during the hardening
operation and improve the process’s predefined geometrical and mechanical properties.
The RSM models were used to model the highly nonlinear relationships between inputs
(power, distance, feed rate) and technological responses. The GA was applied to determine
the quasi-optimal values of performances measured and technological inputs.

The following important conclusions can be drawn. The induction hardening process
can be significantly improved. The quadratic models of responses of the process were
significant according to the quality measures of the least-square approximation. The devel-
oped RSM models act effectively in the optimization process. The models proposed can be
used in industrial applications to predict technological responses with acceptable accuracy.

The optimization problem, in which maximal deflection, depths of the hardening
and hardness of teeth and the back side of the rack bar are objectives, and the desirability
function is defined using them, is practical and realistic in the induction hardening process
optimization compared to a single objective or simultaneously optimizing nine responses
in the Pareto sense. However, other formulations are possible, such as one in which some
criteria act as constraints; this may provide directions for further research. Industrial
conditions, on the other hand, favor the use of desirability functions. Statistically significant
lack of fit of some response functions indicates directions for further research related to
using other empirical modeling tools, such as neural networks or kriging. However, this
forces larger training data sets, which are difficult to obtain in industrial conditions.

The optimization algorithms recommended the following quasi-optimal combina-
tion of process parameters: 56.4% power, 3.1 mm distance of the hardening coil, and
793 mm/min of the feed rate when the industrial conditions were considered. Industrial
conditions in the considered case forced the rejection of the possible global optimum of
the desirability function, and the quasi-optimal solution was recommended, related to the
local optimum, indicated approximately by both the classical optimization algorithm, such
as SQP and the genetic algorithm. Uncertainties in empirical modeling also indicate that
industrial conditions with limited experimental data (also with a lack of replication) make
it difficult to determine optimal solutions. However, the confirmation experiments show
that the quasi-optimal process is reliable and high-quality. The use of the nonparametric
Wilcoxon test allowed the evaluation of a confirmatory experiment that provided a small
sample of data, which is due to the industrial conditions of the research conducted. The
test results confirm a statistically significant improvement in process quality in terms of the
measures introduced.

The proposed hybrid approach in this paper can be considered an effective technique
in some academic research and industrial applications to identify the optimal parameters
in the induction hardening process and decrease production costs and time.

Industrial conditions should be carefully applied when solving optimization prob-
lems to meet multiple requirements. However, it can be concluded that the influence of
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treatment conditions on other responses of the technological process, such as total energy
consumption, tool wear, residual stresses, etc., has not been investigated. Therefore, more
goals should be considered during the formulation of optimization problems.
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