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Abstract: The deformation-induced surface roughening of an Al-Mg alloy is analyzed using a
combination of experiments and modeling. A mesoscale oligocrystal of AA5052-O, obtained by
recrystallization annealing and subsequent thickness reduction by machining, that contains approx.
40 grains is subjected to uniaxial tension. The specimen contains one layer of grains through the
thickness. A laser confocal microscope is used to measure the surface topography of the deformed
specimen. A finite element model with realistic (non-columnar) shapes of the grains based on a pair
of Electron Back-Scatter Diffraction (EBSD) scans of a given specimen is constructed using a custom-
developed shape interpolation procedure. A Crystal Plasticity Finite Element (CPFE) framework
is then applied to the voxel model of the tension test of the oligocrystal. The unknown material
parameters are determined inversely using an efficient, custom-built optimizer. Predictions of the
deformed shape of the specimen, surface topography, evolution of the average roughness with
straining and texture evolution are compared to experiments. The model reproduces the averaged
features of the problem, while missing some local details. As an additional verification of the CPFE
model, the statistics of surface roughening are analyzed by simulating uniaxial tension of an AA5052-
O polycrystal and comparing it to experiments. The averaged predictions are found to be in good
agreement with the experimentally observed trends. Finally, using the same polycrystalline specimen,
texture–morphology relations are discovered, using a symbolic Monte Carlo approach. Simple
relations between the Schmid factor and roughness can be inferred purely from the experiments.
Novelties of this work include: realistic 3D shapes of the grains; efficient and accurate identification
of material parameters instead of manual tuning; a fully analytical Jacobian for the crystal plasticity
model with quadratic convergence; novel texture–morphology relations for polycrystal.

Keywords: surface roughening; oligocrystal; polycrystal; crystal plasticity; aluminum

1. Introduction

Deformation-induced surface roughening of a polycrystal is a phenomenon that origi-
nates, at least at the mesoscale, from the different crystallographic orientation of the grains.
It manifests itself as a gradual change in the surface topography with plastic deformation,
resulting in a surface with undulations of increasing amplitude. The resulting irregular,
roughened surface can affect both the appearance and performance of a formed part. Dur-
ing forming, the undulations can act as stress risers, triggering an earlier localization of
deformation in comparison to the same solid but with a smooth surface, hence limiting
the capacity of the solid to stretch in the global sense (e.g., [1]). Furthermore, they can
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increase the friction between two solids [2] and contribute to, and accelerate, galling and
die wear. During service, these surface undulations can impair the fatigue life, acting as
nucleation sites for extrusions/intrusions, etc. But even if premature failure is not an issue,
the non-smooth surface can cause aesthetic concerns whether in the bare or coated form.

The origins of this phenomenon rest in the strong intrinsic anisotropy of the grains and
the presence of preferred crystallographic texture in the as-received material. Therefore,
under a macroscopically imposed strain, each grain deforms by activating its own slip
systems, which are different from those of differently oriented neighboring grains. At
the same time, each grain is forced to accommodate the deformation of its neighbors so
that the solid remains a continuum, in the macroscopic sense. However, at a free surface
these constraints are much less than in the bulk, leading to more significant differences
in individual grain deformation. These differences are macroscopically seen as surface
undulations, i.e., deformation-induced surface roughening.

The general aspects of deformation-induced surface roughening have been studied by
a number of authors [3–7]. The main result observed in these papers is that the roughness
amplitude is linearly proportional to the applied macroscopic, or global, strain. Further-
more, it was also determined that small-scale strain localization at the surface plays a
significant role in the overall roughness value. It was also concluded that grain reorien-
tation (the most important source of surface roughening) correlates with the number of
active slip systems: highest roughness values were observed in hexagonally close-packed
(HCP) metals and lowest in body-centered cubic (BCC) ones. In addition, it was found that
the amount of roughness can be significantly affected by microstructural factors, such as
the average grain size [8–10], as well as grain shape and crystallographic texture [11–13].

Research on surface roughening has been performed for many metals, including pure
aluminum and aluminum alloys [14–22], titanium [23], steel [22,24,25], copper [26–28],
nickel [29], tantalum [30], magnesium [31,32] and others. The most common testing tech-
nique is the uniaxial tension test [5,16,22]. Evolution of roughness during equibiaxial and
plane-strain tension using a Marciniak test has been studied, as well [24,33]. Roughen-
ing during forming, for example, cup drawing [26,27], bending [32] or drawing through
dies [21], has also been investigated.

In order to model the physics of deformation at the mesoscale and above, crystal
plasticity models are most commonly used [3,18–20,23,34,35]. Most of these studies involve
a synthetic, i.e., artificial, grain morphology, generated using procedures such as Voronoi
tessellation [36,37]. Only a few surface roughening studies have attempted to reconstruct
the exact arrangement of gains in a given specimen. In [20,29,30,38], oligocrystal specimens
that had one layer of grains through the thickness were considered; in these works, the
grain shapes were, or were assumed to be, columnar, i.e., the 3D grains were obtained by
extruding through the thickness the 2D grain shapes seen in one of the outer faces.

In the present study, we also work with an oligocrystal containing one layer of grains.
We observed that in our specimens most of the grains were strongly non-columnar. To
tackle this, a reconstruction procedure that is based on a morphing approach was developed
earlier [39]. This made it possible to incorporate into this work realistic (i.e., non-columnar)
shapes of the grains, based on 2D scans obtained from the top and bottom faces, in contrast
to the previous efforts described above. Since the mesoscale oligocrystal specimen described
in the following sections contains only a few grains, we suggest that having realistic
geometries of the grains (in contrast to artificial/simplified geometries) is beneficial for
capturing the physics of the deformation accurately. In addition, modeling the behavior of
a realistic texture as accurately as possible and comparing it to experiments is one of the
main objectives of the current study, as it allows us to assess the predictive capabilities of
the Crystal Plasticity Finite Element (CPFE) model we used.

In the following sections, we describe the details of the oligocrystal specimen prepa-
ration, experimental setup, formulation and calibration of the CPFE model and the Finite
Element (FE) mesh generation. Subsequently, we analyze and compare with experimental
data the following features: the deformed shape of the oligocrystal specimen; the surface
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topographies at the top and bottom faces; derivatives of the elevation; the evolution of
average roughness value with straining; the texture and Schmid factor after deformation;
and the reorientation of several soft and hard grains of the specimen. In addition, we further
validate our CPFE model using data from a polycrystal experiment. Specifically, we con-
struct two artificial Representative Volume Elements (RVEs) of the same crystallographic
texture and grain size distribution as the actual specimen and simulate the evolution of the
average roughness value. Subsequently, we use the same experimental data for discovering
relations between the local texture and the elevation of a given grain. These relations
provide an alternative interpretation of the surface roughening phenomenon based on the
difference in hardness of neighboring grains and, more specifically, on the difference in
their Schmid factors. We point out that our study is at the mesoscale. One could argue that
roughening originates at the atomic [40] or dislocation length scales [41]. For example, at
the dislocation length-scale, the annihilations of dislocations on the sample surface leave
surface steps whose magnitude is proportional to a Burgers vector magnitude, thus making
an initially smooth free surface rough. In this way, even a single crystal can roughen. This
is beyond the scope of this work; as will be shown, while our experiments reveal significant
surface roughening, the resolution of our surface measurements is not sufficient to also
capture dislocation-scale contributions.

In comparison to the state of the art, the present work considers realistic 3D shapes
of the grains: since we model the behavior of an actual, non-columnar oligocrystal, it is
crucial to work with 3D grain morphologies, instead of extruding a surface scan through
the thickness. This accurate volumetric reconstruction is accomplished here by a procedure
described and verified in [39]. Also, the adopted crystal plasticity model uses a fully
analytical Jacobian, guaranteeing quadratic convergence, and integrates a dislocation
density-based hardening law, which was verified to work well for a number of metals
(e.g., [42–44]). The model is evaluated here for the first time for the prediction of roughness
development with plastic strain. The identification of the material parameters is carried
out efficiently and accurately [45], with the cost function explicitly defined and minimized,
instead of a tedious manual parameter tuning. Finally, novel texture–morphology relations
are obtained here for the polycrystal case.

2. Experiments
2.1. Opening Remarks

The goals of this work are to study the roughening behavior of an aluminum alloy
and to assess the performance of an advanced computational model by comparing its
predictions to experiments. It is desired to study the simplest possible problem, and to have
a model of as high a fidelity as possible, to be able to highlight its successes and pinpoint its
limitations. Therefore, it was decided to study the (macroscopically) uniaxial tension on a
flat specimen. This geometry enables easy observations of surface roughening. In selecting
the most suitable specimen, a polycrystal could be considered. Considering that such a
specimen is used not only for texture measurements but also for subsequent testing and
surface topography analysis, some type of non-destructive, 3D scanning would need to be
performed to obtain its exact grain arrangement and texture, which is a challenging task. In
addition, the resulting model would contain a significant number of finite elements, making
it computationally very expensive. Instead, an oligocrystal specimen that contains relatively
few grains arranged in a single layer was selected, avoiding both of these problems.

2.2. Specimen Preparation

The material of this study is the commercially available aluminum alloy AA5052-O,
which contains 95.7–97.7 wt. % aluminum and 2.2–2.8 wt. % magnesium [46]. The as-
received sheet shows a typical rolling texture, see Appendix A. The average grain diameter
of the polycrystalline AA5052-O was calculated using the ASTM standard E112-13 [47] and
found to be 10.3 µm. In order to obtain the desired mesoscale oligocrystal specimen, the
following procedure was carried out:
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1. An AA5052-O sheet of 0.5 mm thickness is prestrained in uniaxial tension to 10%
nominal strain.

2. The plate is heat-treated at 450 ◦C for 1 h.
3. Tensile specimens of the geometry shown in Figure 1 are cut from the plate.
4. The tensile specimen thickness is reduced from 0.5 mm to 0.134 mm by polishing.
5. The top and bottom faces of the tensile specimen are polished, in preparation for the

tensile experiment.
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Figure 1. Geometry of the oligocrystal specimen. (Top) Photo showing the relative size of the
dogbone specimen in comparison to four rice grains on the top. (Bottom) Engineering drawing of
the dogbone specimen (dimensions in mm). The thickness is 134 µm.

The 4th step was deemed necessary as it was not possible to find a combination of
prestraining and heat-treating such that only one layer of grains would appear in the final
specimen of 0.5 mm thickness. Therefore, a cycle of scans (see below) and polishing were
performed in sequence, until the same grains appeared on both faces. Of course, this
process is limited by the increasing fragility of the resulting specimen with every grinding
iteration, and so it was interrupted when an acceptable compromise between identical
grains and specimen fragility was found. A challenge in these experiments is that if a
“soft” grain happens to be in the neighborhood of the specimen shoulders, then during
tensile testing only that grain will deform, leaving the rest of the specimen almost intact.
Hence, multiple iterations of the process described here were performed, until a number of
specimens that provided useful results were identified.

2.3. Experimental Setup

The resultant oligocrystal specimen contains relatively few grains: 38 are those that
can be seen on both top and bottom faces of the specimen. For the purposes of this work, it
is very important that these grains form one thin layer. This allows us to reconstruct the
volumetric grain morphology based only on the planar morphologies visible at the top
and bottom faces, i.e., no 3D scanning is needed. A specialized procedure for performing
such a reconstruction was developed earlier and its accuracy was verified [39]. To allow
scanning of the texture, the specimen was prepared using the following sequence—#1200
Emery polishing, 3 µm diamond grinding, acetone washing, electrolytic polishing (60%
HClO4:ethanol = 4:45 volume ratio). The actual texture scanning at the top and bottom faces
was performed using a HITACHI S-3700N Scanning Electron Microscope (SEM, Tokyo,
Japan) with a Nordlys NL 04-2201-03 Electron Back-Scatter Diffraction (EBSD, Abingdon,
UK) system. The observation magnification of the SEM is 30×, and the step size is 10 µm.
A clean-up process was performed once to reduce the noise. The shapes and orientations
of grains obtained from these scans are shown in Figure 2, and the corresponding Euler
angles are provided in Table 1. It can be seen that most of the grains form one layer through
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the thickness, except for relatively few grains that appear either only at the top or only at
the bottom and do not go through.
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Table 1. Initial grain orientations in the oligocrystal. Bunge Euler angles (ϕ1, Φ, ϕ2) in degrees
are listed.

Grain Number ϕ1 Φ ϕ2

1 343.1 36.2 58.7
2 170.4 7.5 78.5
3 155 30.6 3.6
4 122.1 37.9 0.5
5 37.9 23.7 84.3
6 342.9 20.6 81.4
7 33.1 23.1 56.9
8 44.3 43.6 37.9
9 192 38 80.8
10 235.8 38.7 38.9
11 227.7 32.4 36.1
12 322.2 30.7 46.8
13 82.8 25.7 30.8
14 247.4 26.5 14.3
15 328.5 41.5 54.4
16 215.5 11.4 23.8
17 354.9 42.7 5.6
18 169.4 19.3 83.3
19 258.1 51 45.5
20 340.4 36.1 17.9
21 233.7 48.4 58.1
22 209.9 41.4 7.1
23 38.5 25.7 15
24 185.8 16.9 60.4
25 37.7 14.8 40.8
26 202.9 29.6 76.9
27 7.3 33.8 83.9
28 89.1 14.4 53.3
29 302.1 19.6 76.5
30 352 10.7 54
31 283.2 24.4 9
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Table 1. Cont.

Grain Number ϕ1 Φ ϕ2

32 314.7 33.3 36.4
33 229.9 28.8 84.7
34 181 43.6 53.4
35 77.8 51 53.2
36 337.2 15.8 48.8
37 154.4 10.2 7.2
38 263.7 6.1 6.9

The oligocrystal specimen was then plastically deformed in uniaxial tension. A
Zwick/Roell Universal Testing Machine (Ulm, Germany) of 5 kN force capacity and
equipped with a laser extensometer laserXtens was used. The specimens were tested
under displacement control, at a nominal strain rate of 5 × 10−4 s−1. The resultant nominal
strain in the gauge region of the specimen is ~10%. This value of strain induces a vivid,
observable change in the surface topography. At the same time, this strain is small enough
to avoid necking or fracture.

The surface topography was obtained with a KEYENCE VK-X100 laser confocal
microscope (Osaka, Japan). The lateral resolution of the microscope is 0.01 µm and the
vertical resolution is 0.005 µm [48]. This allows scanning of the entire gauge region of the
deformed specimen. The data obtained are an array of points that can be visualized as a 3D
or contour plot for further comparison and analysis.

3. Modeling
3.1. Crystal Plasticity Finite Element (CPFE) Model Overview

In order to capture the physics of crystal plasticity, we used the crystal plasticity-
based constitutive law originally developed in [49], and later advanced with dislocation–
density-based hardening [50]. This model represents purely mechanical effects, e.g., not
deformation-induced heating [51] or other effects, which is an acceptable assumption for
this aluminum alloy. For completeness, in this section we summarize this model.

The total deformation gradient F can be decomposed into elastic (F*) and plastic (Fp)
components:

F = F*Fp (1)

The elastic component F* is related to stress by Hooke’s law:

T* = CE* or T* = F*−1 [ (detF*)σ ] F*−T with E* =
1
2

(
F*TF*− I

)
(2)

where T* and E* are the Piola–Kirchhoff stress tensor and Green–Lagrange finite strain
tensor, respectively (that form work-conjugate stress and strain measures), C is the 4th-order
elasticity tensor and σ is the Cauchy stress tensor.

The evolution of plastic components of the deformation gradient due to slip is
given by:

.
F

p
= LpFp (3)

where Lp is the plastic velocity gradient, that can be represented as:

Lp = ∑
α

.
γ

α bα
0 ⊗ nα

0 (4)
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In this equation, the vectors bα
0 and nα

0 indicate the slip-direction and the slip-plane
normal, for a given slip system α. The term

.
γ

α is the shearing rate of slip system α, that can
be expressed with the following power-law relationship:

.
γ

α
=

.
γ0

(
|τα|
τα

c

)1/m
sign(τα) (5)

where
.
γ0 = 0.001 s−1 is a reference slip rate and m = 0.05 is the power-law exponent. A

detailed study of this exponent was conducted in [52]. Based on those findings, and in
the absence of an experimental study of strain-rate sensitivity for the material at hand
(e.g., [53,54]), the value of 0.05 was selected, ensuring proper selection of active slip systems
for accommodating the imposed plastic strain but not affecting strain-rate sensitivity.

In Equation (5), τα is the resolved shear stress and τα
c is the characteristic resistance

shear stress. The latter is often assumed to be composed of 4 different contributions:

τα
c = τo, f + τo,HP + τα

f or + τsub = τo + τα
f or + τsub (6)

The four terms in Equation (6) represent different physical aspects: τo, f is a friction
term also called Peierls initial slip resistance, τo,HP is a barrier-effect term and τα

f or and τsub
are the contributions from interaction of dislocations. While the first two terms are fixed,
the latter two evolve with the forest and substructure dislocation density evolution. Notice
that from the four mechanisms that affect τα

c , only one is slip system dependent. The term
τo,HP is expressed using the Hall–Petch relationship [55,56]:

τo,HP = µ H

√
b

dg
(7)

where µ is the shear modulus (26.1 Gpa), H = 0.136 is the Hall–Petch parameter, b is
the Burgers vector (0.286 nm) and dg = 10.3 µm is the average grain diameter of the
polycrystalline AA5052-O, see Section 2.2. With these inputs, Equation (7) evaluates to
18.7 Mpa for this material. However, since the material is not experimentally characterized
in terms of a variable grain size, the Hall–Petch term is omitted in this work. Instead, the
Peierls initial slip resistance is increased accordingly, to represent the total non-evolving
initial value of slip resistance as τo = τo, f + τo,HP, see the 2nd equality in Equation (6). The
terms τα

f or and τsub are obtained from the following relations:

τα
f or = χ µ b

√
ρα

f or (8)

τsub = ksub µ
√

ρsub log
(

1
b
√

ρsub

)
(9)

where ρα
f or and ρsub are the corresponding dislocation densities, χ = 0.9 is a dislocation

interaction parameter and ksub = 0.086 is a parameter that ensures that Equation (5) recovers
the Taylor law at low dislocation densities.

The last two equations contain non-proportional relationships between two of the
components of the characteristic resistance shear stress and the forest and substructure
dislocation densities. The forest density ρα

f or evolves in the following way:

∂ρα
f or

∂γα
= k1

√
ρα

f or − k2 ρα
f or (10)
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where k1 is a coefficient for the rate of dislocation storage (also called trapping-rate coeffi-
cient, see Table 2) and k2 is the coefficient for the rate of dynamic recovery. In turn, these
two coefficients follow the relation:

k2

k1
=

χ b
g

[
1− k T

D b3 ln
( .

ε
.
ε0

)]
(11)

where k = 1.38× 10−23 J K−1,
.
ε0 = 0.001 s−1, g, D and T = 298 K are the Boltzmann’s constant,

the reference strain rate, an activation barrier, the drag stress and the room temperature,
respectively. Also,

.
ε is the macroscopic (i.e., global) strain rate. The substructure density

increase is proportional to the rate of dynamic recovery of all active dislocations via:

∆ρsub = q b k2
√

ρsub ∑
α

ρα
f or |∆γα| (12)

where q is a fitting coefficient representing the fraction of α-type dislocations that do not
annihilate but form substructures.

The initial value of forest density ρα
f or is set to 1010 m−2, typical for annealed FCC metals.

The substructure density ρsub theoretically initiates from 0, but numerically starts from the
value of 0.1 m−2. Both densities subsequently evolve according to Equations (10) and (12).
It should be stated clearly that we do not have measurements of dislocation density to
compare these predictions to. However, they are comparable to predictions in other
works [57,58].

Table 2. Material parameters of AA5052-O alloy.

Parameter Symbol Value Unit Comment

Aluminum crystal elastic constants

C1111 107,300 Mpa [59]

C1122 60,900 Mpa [59]

2C2323 56,600 Mpa [59]

Initial slip resistance τ0, f 51.3 Mpa Optimization

Shear modulus µ 26,100 Mpa [58]

Burgers vector b 0.286 nm [58]

Trapping rate coefficient k1 6.376 × 107 m−1 Optimization

Activation barrier g 0.005283 - Optimization

Drag stress D 1535 Mpa Optimization

Dislocation recovery rate q 16 - [58]

3.2. Identification of Material Properties

The crystal plasticity framework described above is implemented in a user-material
subroutine (UMAT) that is called within Abaqus/Standard (implicit). The UMAT needs
access to texture information (Euler angles for each individual grain), as well as material
properties. Many of these properties, such as the elastic constants Cijkl , shear modulus
µ, Burgers vector b and dislocation recovery rate q are reported in the literature, for the
present or similar alloys (Table 2). However, four material constants that enter Equation (6)
need to be identified for our specific material (AA5052-O).

Apart from specialized methods [60], the identification of unknown material parame-
ters is often carried out manually by trial and error—until the response of the model (for
a chosen loading case) matches the corresponding experimental response. Since in our
case every trial is associated with running a CPFE simulation, this could be an acceptable
method for identifying one unknown parameter, however, it becomes very tedious and
inefficient when we deal with four parameters. Therefore, we automated the material
identification problem by considering it as an optimization problem. The corresponding
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objective function is a Python function assembled from several stages, as illustrated in
Figure 3. This function reads a vector x of the four unknown parameters as an input and
runs an FE simulation of uniaxial tension of a polycrystal block made out of 163 = 4096
C3D8 elements (continuum, linear, full integration, with selectively reduced integration on
the volumetric terms to avoid volumetric locking), where each element corresponds to a
single crystal. The size of this domain is statistically significant, so that the macroscopic pre-
dictions are not influenced appreciably [61]. The experimentally measured crystallographic
texture of the polycrystal (see Appendix A) is used in the FE simulation. Subsequently,
the objective function compares how well the corresponding nominal stress–strain curve
matches with the experimental response of the corresponding polycrystal and returns the
integral error (E =

∫ ε
0

∣∣σFE − σexp
∣∣dε) between these two curves. The optimization goal is

to minimize the value of E.
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Figure 3. A schematic of the procedure of formulating the objective function used in optimization
procedure, where x is the vector of input parameters and E is the scalar error value (output).

In order to solve this optimization task, we used “blackbox” [45]—an optimization
method specifically designed for black-box functions (ones that have input–output nature,
instead of being explicitly formulated) that are expensive to evaluate. The method was suc-
cessfully used previously for identification of post-necking hardening behavior of stainless
steel across a range of strain rates and temperatures in a fully coupled way [62]. Since the
method itself is also implemented as a Python module, it can be easily integrated into the
current problem. The values of the four material constants identified in this way are listed
in Table 2. The final matching obtained between the experiment (on as-received, polycrys-
talline AA5052-O) and the FE model prediction with the optimized material parameters
is shown in Figure 4. The total number of objective function evaluations (as described in
Figure 3) used is 150, i.e., after this number is reached, the current solution (i.e., the current
set of the four material constants) is taken as the optimum. This solution is verified by
running the optimization procedure a few times. Since the procedure involves random
numbers, each new run starts with different initial estimates. The same result is obtained
consistently, indicating that the optimization algorithm is not trapped in local minima.
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3.3. Mesh Construction

As was mentioned before, working with a thin oligocrystal specimen that has es-
sentially one layer of grains through the thickness allows us to not only to lower the
computational cost but also to obtain the exact arrangement of grains without the need
to perform an expensive 3D scan. In this way, the volumetric shape of each grain can be
accurately represented, as detailed below, based on its “footprints” at the top and bottom
faces of the specimen (Figure 5).
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Figure 5. Preparation steps that are applied in order to obtain clear images of top and bottom faces
(subsequently used in reconstruction procedure). Different colors indicate different grains.

A simple and robust procedure based on a morphing approach that allows such a
reconstruction has been developed [39]. The input to the procedure is a set (in our case,
a pair) of images that contain matching colors. Each color corresponds to a volumetric
phase, e.g., in this case it is a grain. The output is a set of intermediate images which, when
stacked on top of each other, form the desired 3D shape. The accuracy of the procedure was
successfully verified earlier through destructive testing, which revealed that the predicted
grain outlines at various depths from the outer faces were indeed close to the observed
ones [39].

As can be seen in Figure 2 and mentioned earlier in Section 2.3, some grains appear
only on the top or bottom face, i.e., they do not go all the way through the thickness.
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Since these grains cannot be omitted and their volumes would leave behind cavities, the
reconstruction procedure assumes that these areas are being occupied by the neighboring
grains. Furthermore, as can be seen in Figure 5, the EBSD scans of the top and bottom
faces of the specimen contain noise. This is seen as small fluctuations of Red–Green–Blue
(RGB) values within the same grain, black dots, fuzzy grain boundaries, etc. Since the
reconstruction procedure requires colors in the input images to be “clean”, all unwanted
noise is removed by the 2 steps illustrated in Figure 5 and explained below.

The first step consists of two substeps. The first substep is to resize the EBSD images
(Figure 5, top) to the desired resolution depending on how many finite elements are ex-
pected (we picked 316 × 50 for our case). The second substep is to obtain binary (black and
white) images containing only the grain boundaries (Figure 5, middle). This was accom-
plished using the built-in function “EdgeDetect” within the Mathematica computational
environment. Since the binary images obtained in this way are still polluted by some
residual lines and dots, an additional image cleanup is carried out manually.

The second step is to assign each grain its unique color. A simple fill function of any
raster graphics editor (for example, MS Paint) can be used for that purpose. For further
mesh generation steps, it is very convenient to keep the information about grain numbers
within the image itself. In order to do this, the grain number is stored in a red RGB channel
(i.e., green and blue channel values can be chosen randomly). Finally, a script that removes
the grain boundaries is applied. The image obtained after these steps is clean, as shown
in Figure 5, bottom, and can now be used as an input to the reconstruction procedure
described in [39].

The result of applying the reconstruction procedure is a 3D voxel model of the spec-
imen of Figure 2, shown in Figure 6. As can be seen from the perspective view, the 3D
shapes of the grains are basically interpolated between their projections at the top and
bottom faces. The resolution of the voxel mesh is 316 × 50 × 6, which results in almost
100,000 finite elements (each voxel represents an element). Voxels ensure very good mesh
resolution, with the caveat that they do not allow for conformal grain boundaries; instead,
these look like a staircase [63]. Due to that, local grain-to-grain fields will be inaccurately
represented.
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3.4. Finite Element Model

This model was created in the commercial, non-linear, implicit code Abaqus/Standard.
The element type used is linear with full integration, or C3D8 in Abaqus’ terminology. For
the geometric modeling, part of the specimen shoulders, i.e., not only the gauge region, was
included. This is to enable the enforcement of boundary conditions; due to deformation-
induced roughening, in the plastically deforming regions the flat faces do not remain
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flat; on the other hand, the material at the shoulders was expected to remain elastic, so
this issue was minimized. The boundary conditions implemented are shown in Figure 6,
as well. Displacements were prescribed at both ends. In addition, a vertical edge and
its adjacent vertex were fixed (i.e., given zero displacements), in order to prevent rigid
body motion. As mentioned earlier, the crystal plasticity material model was introduced
to the simulation through a UMAT. The only difference from the values mentioned in
Section 3.1 and/or listed in Table 2 is the average grain size dg used in Equation (7). While
for the identification this was set to 10.3 µm, appropriate for the as-received polycrystal,
for the surface roughening simulations it was set to 395 µm, this time appropriate for the
oligocrystal in hand.

4. Comparison between Experiment and Model

The objective of this work is to assess the predictive capabilities of CPFE by first sim-
ulating a specific specimen as realistically as possible and then comparing the numerical
results to the experiment performed on that same specimen. In general, common formula-
tions of crystal plasticity models like the one used here, while providing good predictions
of the average/polycrystal mechanical response, may be deficient in predicting single or
oligocrystal responses [64].

4.1. Shape of Deformed Specimen

The first feature that can be extracted from the CPFE simulation is the overall shape
of the deformed specimen at the final (i.e., 10%) global nominal strain, shown in Figure 7.
In that figure, a deformation scale factor of 2 is used to illustrate the post-deformation
curvature of the surfaces and edges of the specimen, that initially were flat and straight,
respectively. The equivalent plastic strain field, computed from the norm of Equation (4),
is also shown in that figure, even though full-field strain measurement techniques (such
as digital image correlation) were not used in the experiment, therefore it is not possible
to perform a direct comparison. It is, however, interesting to note that the deformation of
this oligocrystal specimen is very inhomogeneous, with some areas having experienced
significant deformation and others not. This will be revisited in more detail later. It also
highlights the difficulty of performing these experiments, as, depending on the grain
arrangement and their orientation and proximity to the fillets, in many experiments the
deformation was concentrated in a single grain, and no significant roughening could be
observed outside of it, rendering them useless for this work.
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Figure 7. Prediction of the distribution of equivalent plastic strain (PEEQ) in the oligocrystal specimen.
The green arrows indicate the direction of tensile loading. A deformation scale factor of 2 is used in
order to exaggerate the deformed shape, for easier visualization.

Figure 8 shows the predicted 3D shape and out-of-plane displacement field of the
deformed specimen at 10% global nominal strain, with a deformation scale factor of 2
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for illustration purposes. We also show two cross-sectional cuts along the gauge area,
from which a mild corrugation effect can be observed: the thickness remains more or less
constant, while the mid-plane is wavy. While intuition perhaps suggests that the mid-plane
should remain flat and thickness should change from grain to grain, it turns out that in our
thin specimen, corrugation is more favorable from the equilibrium point of view.
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Figure 8. Prediction of the deformed shape of the oligocrystal specimen along with the distribution of
z-displacements (uz). The green arrows indicate the direction of tensile loading. Two cross-sectional
views are shown. A deformation scale factor of 2 is used in order to exaggerate the deformed shape,
for easier visualization.

4.2. Surface Topography

A quantitative comparison of the surface topography of the deformed specimen from
the CPFE model with the experimental results obtained using the laser confocal microscope
is given in Figure 9. (Comparison to Figure 1 indicates that Figure 9 shows almost the
entire gage section of the specimen.) The comparisons are provided for both the top and
bottom surfaces of the specimen. Included in that figure are the outlines of the grains.
The absolute difference between model and experiment is also shown in Figure 9. It can
be observed that numerous surface features observed experimentally are qualitatively
reproduced by the model. In some areas, e.g., those shown in blue in the difference plots,
the agreement is quantitative, as well. However, while in this way the absolute difference
between simulations and experiments tends to be low, the predicted and measured surface
morphologies do not agree perfectly at every location. As this study involves many
elaborate steps (both experimentally and numerically), there can be several reasons for such
discrepancies. One possible reason is the fact that several grains (mostly small, but a few
larger ones as well) appear only in one of the two faces and do not go all the way through
the thickness (Figure 2). Since such grains cannot be simply removed from the model
(which would result in cavities), the reconstruction procedure assumes that these areas are
being occupied by the neighboring grains. That affects the shapes of corresponding grains
and therefore it might have also affected the predicted local deformations and hence the
resulting surface topography. Another possible reason is that because the specimen is very
thin (134 µm) it may have been bent or twisted while being placed into the scanning area
for surface elevation measurements.

One interesting fact that can be observed from Figure 9 is that the peaks and valleys
of the surface usually occur in the areas adjacent to grain boundaries and close to the free
edges of the specimen. This can be explained as follows. Because the specimen is thin,
most of the grains have planar shapes. If we performed a virtual tension test (holding the
ends to be coplanar) on an isolated grain (not considering its interaction with neighbors),
we would observe that the grain is naturally tilting one way or another due to slip. Once
we consider grain interactions, all grain boundaries start acting as kinematic constraints
that cause discontinuities in mechanical fields. It can be expected that extreme values of
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these fields (including displacements and therefore surface elevation) occur at the grain
boundaries, not within the grains. This reasoning further explains the mild corrugation
effect that can be seen in Figure 8.
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(marked as “sim”) and experiment (marked as “exp”) at 10% global nominal strain. The absolute
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As the direct strain fields from the experiment are not available, in order to estimate
the strain-related performance of the CPFE, the surface elevation derivatives ∂uz/∂x and
∂uz/∂y are shown in Figures 10 and 11, for the top and bottom faces [65]. Note that these
derivatives are related to the out-of-plane shear components of the strain tensor. As can
be seen from the absolute difference between model and experiment, both derivatives
generally match well everywhere except for a few regions.
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4.3. Average Surface Roughness

The average surface roughness can be defined in the following way:

SA =
1
A

∫
A

|z(x, y)− z|dA (13)

where A is the area of interest (i.e., the gage section of the specimen in Figure 1, also reported
in Figures 9–11) and z(x, y) (see Figure 8) and z are the current and average elevation of
the surface, respectively. Based on this definition, another result that can be discussed is
the evolution of SA with the macroscopically applied axial strain, see Figure 12. Experi-
mental values of SA were calculated by converting images of surface profiles (along with
corresponding color bars) into elevation data sets and subsequently applying Equation (13).
The dependence obtained is very close to linear, which is in accordance with the previous
studies [3,5,7]. As Figure 12 shows, this behavior is quantitatively reproduced very well by
the CPFE simulations.
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4.4. Texture Evolution during Testing

A further assessment of the ability of the CPFE model to represent reality is carried out
by comparing the predicted texture to the EBSD measurements of the specimen after the
test. During the simulation, the Euler angles are stored at each integration point of the mesh.
These Euler angles are visualized with the MTEX toolbox available in MATLAB. As a result,
the corresponding Inverse Pole Figure (IPF) color maps before and after deformation and
at the top and bottom faces (Figures 13 and 14, respectively) are obtained. Overall, a good
agreement between experiment and prediction is observed, with the simulations predicting
the texture evolution experienced by the specimen quite well. Of course, since the overall
strains are not very high, that evolution is not very strong. Some local disagreements
are primarily caused by the fact that the specimen prepared contains several small grains
that do not go through the thickness and are only present at one of the faces (as can be
seen in Figures 13 and 14). Such grains are not included in the CPFE model and their
volume is occupied by neighboring grains instead. In the simulation results, some areas
adjacent to grain boundaries contain local regions with random orientations. These random
orientations are due to numerical instabilities and are visible as noisy colors (e.g., in the
“Top, Final” and “Bottom, Final” images in Figures 13 and 14).
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Figure 13. Initial and final (at 10% global nominal strain) grain structure at the top face of the
specimen, extracted from simulation (marked as “sim”) and experiment (marked as “exp”).

As a further illustration of the physics of texture evolution, the reorientation (after 10%
global nominal strain) of a few “soft” and “hard” grains during deformation is shown in
Figure 15. Texture evolution for each grain is represented by a solid arrow in the IPF. Cubes
that illustrate the orientation of the unit cell of a given grain, as well as EBSD scans of the
entire specimen, are shown with respect to the same global coordinate system. Overall,
the applied global strain is not high enough to cause significant grain reorientation in a
large scale, but as expected some grains visibly reorient. As can be observed, soft grains
(i.e., those with colors that are close to the center of the IPF color map, here grains 9, 21 and
25) are more prone to reorientation [66], while hard grains (i.e., those with colors that are
further away from the center, here grains 23 and 27) do not reorient much [66]. In addition,
to further examine how the predicted texture matches the measured one, a reorientation
graph (after 10% global nominal strain) for the five softest grains in the specimen is shown
in Figure 16. In that figure, solid arrows correspond to experimental measurements and
dashed arrows to CPFE predictions. An overall agreement between measurements and
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simulation results is observed visually. To quantify the level of agreement, we introduce
the following metric for vectors (arrows) that represents the change in IPF colors:

∆ =

∣∣∣→a sim −
→
a exp

∣∣∣∣∣∣→a sim +
→
a exp

∣∣∣ (14)

where
→
a exp and

→
a sim are vectors representing the measured and predicted IPF color change

in Figure 16. When both vectors match perfectly, the value ∆ is zero. When both vectors are
of the same magnitude but orthogonal to each other (or when one of the vectors has zero
magnitude) the value of ∆ is one. Table 3 provides values of ∆ calculated for each of the
5 pairs of vectors, as well as their average value. In many cases, the values of ∆ are low,
indicating that the model captures the experiments well.
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Figure 16. Reorientation of 5 of the softest grains in the oligocrystal specimen (grain numbers
identified in Table 1), in terms of change in corresponding IPF (RD) colors. Solid arrows represent
experimental observations, dashed arrows represent model predictions.

Table 3. Level of agreement between predicted and measured reorientations.

Grain Number ∆ (Top) ∆ (Bottom)

9 0.12 0.20
10 0.49 0.26
16 0.13 0.11
21 0.36 0.43
25 0.42 0.42

Average 0.29

It is also possible to predict the Schmid factor fields (Figure 17). It can be noticed that
many distinct grains initially form unions that have very similar values of Schmid factor.
These unions separate fully or partially as each individual grain is reorienting in its unique
way. Eventually, the grain boundaries within these unions become visible. It can also be
seen that initially soft grains that correspond to high initial values of Schmid factor (i.e.,
closer to red) become harder (i.e., orange/green) as deformation progresses. This fact is in
accordance with previous observations of grain reorientations (Figures 15 and 16).

It is interesting to observe that the majority of the grains that have similar initial
orientations (similar initial EBSD colors) reorient in the same way. This implies that
their reorientation is not affected much by the fact that each of them has quite different
arrangements of neighboring grains. One possible explanation for this is that grains in
our oligocrystal specimen are more planar than volumetric (since they form a single layer),
which means they have more free surface area and therefore they are less restricted by the
deformation of neighboring grains.

We can also observe that the CPFE model is able to capture the fact that orientations
are varying within the grains (visible as a change in color shades within corresponding
grains, e.g., see Figures 13 and 14), which is also seen in EBSD images.
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5. Analysis of Roughness Statistics
Modeling Surface Roughening in a Polycrystal

In order to further verify the CPFE model, we analyze its performance for the case of
polycrystal AA5052-O. In addition, the study of the polycrystal reveals statistical patterns
that are hard or impossible to conclude from oligocrystal results. A tensile specimen of
the same geometry as Figure 1 is analyzed, but with no heat treatment applied, i.e., in
the as-received, polycrystalline state (the pole figures of corresponding texture are shown
in Figure A1). To assist with data extraction, 19 sets of indentation marks were applied
to one of the faces of the specimen (Figure 18). These marks provide a useful reference
as they appear both in texture and surface elevation scans (after a 10% global nominal
prestrain), see Figure 18. Data from 10 of the 19 areas marked by the indentations are
shown in Figure 19.
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In order to model the roughening behavior of this polycrystalline specimen, two
Representative Volume Elements (RVEs) are constructed using the DREAM.3D package, a
digital representation environment for the analysis of 3D microstructures [67]. The average
grain size of equiaxed grains (dg = 10.3 µm) is provided as the only input to DREAM.3D.
The RVE models are created using Abaqus/Standard, as in the rest of this work. Each
RVE contains about 1300 grains, discretized into 35 × 35 × 35 ≈ 43,000 finite elements.
The element type is linear with full integration (C3D8). The meshes adopted are deemed
statistically sufficient, as will be verified below by comparing the results of the two RVE
models. Each RVE has the same initial texture as the polycrystal (Figure A1). Boundary
conditions for both RVEs are the same and are shown in Figure 20. It should be noted that
these boundary conditions provide shear-free surfaces, which is somewhat less restrictive
than being embedded in a polycrystal. The possible effect of this will be discussed below.
The crystal plasticity model described above is used in the simulations, using a UMAT.

By loading the two RVEs in tension, the roughness metric Sa is extracted from the
8 lateral sides (4 from each one). At the same time, Sa is calculated experimentally, for
each of the 19 areas of the tensile specimen. In order to make a fair comparison between
CPFE results and experiment, the initial roughness value of the specimen, S0, is subtracted.
Also, the result is divided by the average grain size dg, since the roughness is known to be
linearly proportional to dg. The value of dg = 10.3 µm is calculated using the ASTM standard
E112-13 [47], see Section 2.2. Normalized values of surface roughness (Sa − S0)/dg from
experimental data (19 marked areas) and two RVEs (8 lateral sides) at 10% global nominal
strain are shown in Figure 21a, b, respectively. As could be expected, there is quite a bit
of variation between different regions since each one contains a relatively limited number
of grains. The CPFE results show somewhat greater roughening than the experiments,
perhaps because of the shear-free boundaries adopted in the model. Nevertheless, the
average values of experiment and simulation are not that far off, which is seen in Figure 21c.
This study substantiates the conclusions drawn from the oligocrystal, i.e., that the present
constitutive framework is capable of capturing the roughening phenomena in an average
sense, despite non-perfect agreement with the experiments in some locations.
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Figure 20. Finite element meshes and boundary conditions (L is the side of the cube) for two
Representative Volume Elements (RVEs) that were used to model the roughening behavior of a
polycrystal. Different colors represent different grains.

Returning now to the experiments, since we have access to a considerable amount of
data that can be extracted from the 19 areas of the polycrystalline specimen, we attempt here
to find some mathematical relation between texture and the resulting surface morphology.
It should be noted that the motivation here is not a further validation of the CPFE modeling
framework; rather, this effort is intended to provide a new look at experimental observations
and to contribute to production of sheets with reduced propensity for roughening.

It is important that indentation marks appear both on EBSD scans and surface to-
pography maps (Figure 19), which ensures a correspondence between texture and surface
elevation before and after deformation. From each individual grain, we extract several
non-dimensional data sets:

1. Ratio of average elevation within the grain (δ = 1
Ai

∫
Ai

zdA, where Ai is the area of the
given grain) to the average surface roughness of the specimen (SA, see Equation (13)):

η =
δ

SA
(15)

2. Ratio of average roughness within the grain (Si =
1
Ai

∫
Ai
|z− z|dA) to the average

surface roughness of the specimen (SA):

< =
Si
SA

(16)

3. Average Schmid factor of the grain (SF) with respect to the loading axis.
4. Relative grain size:

γ =
r
r

(17)

where r is an effective radius of the given grain r =
√

Ai/π and r is the average
effective radius among all grains.

It is also important to consider the effect of the surrounding grains. Assuming that
the surrounding grains that are located along the loading axis have the greatest effect on
the deformation of a given grain, we construct around each grain a circular or elliptical
neighborhood, from which we extract ηn, <n and SFn correspondingly. Note that the
quantities with the subscript “n” are for neighbors, while the quantities with no subscript
are for a given grain. As an example, one chosen grain and its neighborhood (here, n = 11)
are shown in Figure 22. As a result, from each individual grain (about 1300 grains in
each RVE) we obtain 7 parameters (<, <n, η, ηn, SF, SFn, γ) and establish their ranges
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and distributions. Our assumption is that these parameters are sufficient for correlating
the surface roughness to (surface) texture features. Our goal then is to find some relation
between these parameters in the form:

η = f (<,<n, ηn, SF, SFn, γ) (18)

where f is an unknown function. In order to find f , we perform a symbolic Monte Carlo
search by generating a very large number of random symbolic expressions and then pick
the ones that show the best fit. We perform the search with the following parameters: unary
operations x2,

√
|x|, ln|x|, exp(x); binary operations +, −, ×, ÷; and constants 2 and 3.

That specific set of operations includes some of the most commonly used in mathematical
relations (minus trigonometry ones, which do not seem to be relevant here). Hence, we feel
that they should be sufficient to express the unknown formula that we are seeking. The
maximum number of math operations per expression is set to 10, to limit the complexity of
these formulas. That number was found by experimentation, and by visually inspecting
the resulting formulas. The total number of unique generated random relations is around
7 million, which was also found to be sufficient through experimentation.
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Several different shapes of neighborhood are investigated and are shown along with
the corresponding identified relations in Table 4. The strongest correlation is obtained
for neighborhoods that are elongated and aligned with the loading axis; specifically, for
an elliptical neighborhood with semi-axes 3r and r (as well as 2r and r). A comparison
between correlations obtained using elliptical and circular shapes of the neighborhood is
shown in Figure 23. The elliptical neighborhood is seen to offer a better correlation than
the circular one. The texture–morphology relation obtained for elongated neighborhoods
has the following form:

(η − ηn) ∝ (SFn − SF) (19)

or, in a form similar to Equation (18):

η = ηn + SFn − SF (20)

Given the great number of iterations (7 million), Equation (20) has statistical signifi-
cance. Indeed, the code was run multiple times and this equation was consistently found
to be the best.

Since the Schmid factor characterizes the softness or hardness of a given grain, the
physical meaning of this relation can be understood as follows: the difference between the
elevation of a given grain and its neighborhood is proportional to the difference between
their corresponding Schmid factors. In other words, if a grain and its surroundings are
equally soft or equally hard, a large change in elevation should not be expected. In contrast,
a hard grain embedded into a soft neighborhood (as well as a soft grain embedded into a
hard neighborhood) will cause a more noticeable change in elevation. Also, as can be seen
from the scatter in Figure 23, the obtained relations are not applicable to individual grains,
but instead capture the overall trend. Since the effect of subsurface grains is not taken into
account in this analysis, that could be responsible for some of the scatter shown in Figure 23.
Furthermore, not taken into account in this analysis is the possible existence of clusters of
grains with similar crystallographic orientations, which can give rise to phenomena such
as ridging and roping [22].

In comparison to current understanding of surface roughening, this section statisti-
cally identifies a specific mathematical relation between non-dimensionalized texture and
morphology parameters, after checking a very large amount of candidate relations. It can
be said that, at least from a surface roughening point of view and considering only the
effects of the surface grains (e.g., not grain size, subsurface grains, etc.), it is advantageous
to have grains of similar orientations, rather than a randomly textured polycrystal. A
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similar analysis has been performed for the effect of properties of neighboring grains on
intra-granular misorientation development in a given grain with plastic strain [68]. It
was found that smaller intra-granular misorientation levels are associated with “softer”
neighborhoods and vice vers

Table 4. Relations constructed for different shapes of the neighborhood.

Shape Semi-Axes Relation
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Figure 23. Correlations shown for (a) circular (radius 3r) and (b) elliptical (semi-axes 3r and r)
neighborhoods. Red solid line corresponds to perfect correlation; blue dots are actual observa-
tions. The elliptical neighborhood offers better correlation (variance = 0.16) than the circular one
(variance = 0.49).
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6. Summary and Conclusions

In this work, we studied the deformation-induced surface roughening of an Al–Mg
oligocrystal (produced from polycrystalline AA5052-O) by examining the roughening
behavior of a mesoscale-size specimen that contains relatively few grains, most of them
arranged in a single layer. The specimen was deformed plastically under (macroscopically)
uniaxial tension. The initial and final textures of the specimen, as well as surface topogra-
phies at the top and bottom faces, were measured. The physics of plastic deformation
were captured with an appropriate CPFE model. Four unknown material parameters were
determined inversely using an efficient black-box optimization procedure. Differently
from other numerical studies on deformation-induced surface roughening, the FE model
created in this work had realistic (non-columnar) shapes of the grains. These shapes were
reconstructed from EBSD scans of top and bottom faces using a custom-developed shape
interpolation procedure that is based on a morphing approach. Using this FE model, we
were able to analyze a number of aspects such as the deformed shape of the specimen, sur-
face topographies at top and bottom faces, corresponding elevation derivatives, evolution
of the average roughness value with straining, texture and Schmid factor after deformation
and reorientation of several soft and hard grains. The results extracted from the model
match fairly well with experimental observations, certainly in an average sense, and with
only local deviations.

In order to further verify the CPFE model, we also analyzed statistical aspects of
surface roughening by simulating the behavior of a polycrystal. A tension test was per-
formed on a polycrystalline AA5052-O specimen. Two representative volume elements
(each containing around 1500 grains) with texture corresponding to the initial one were con-
structed and their deformation was simulated. A good match between average roughness
values from the model and from the experiment was observed. The polycrystal specimen
contained a number of indentation marks on its surface, so that it was possible to estab-
lish the correspondence between grain texture and morphology at these marked regions.
Subsequently, using an automated method based on a symbolic Monte Carlo approach we
were able to identify relations between the problem variables.

After analyzing the behavior of oligocrystal, several conclusions can be drawn. The
CPFE model is overall capable of capturing the deformation-induced roughening behavior
of this material. This is certainly true in an average sense, but also to some extent in
a local sense, with the exception of only a few regions of the specimen. Some limited
corrugation of the specimen—bending of the mid-plane with the thickness remaining
relatively constant—was observed and was also captured by our model. In addition, peaks
and valleys of surface topography were observed primarily at the grain boundaries, which
is due to the fact that grain boundaries act as kinematic constraints and therefore extreme
values of mechanical fields such as out-of-plane displacement also appear there. Finally,
grain reorientations seem to depend mostly on the initial orientations of these grains, and
not on arrangement/orientations of their neighbors, owing to the pancake-like shapes of
grains in our oligocrystal which are not very restrictive kinematically.

From the polycrystal analysis, we can conclude that a model with proper statistical
input such as initial texture and average grain size is enough to capture the roughening
behavior with good accuracy. In addition, it was shown that simple relations between the
Schmid factor and the non-dimensional surface elevation for individual grains and their
surface neighbors can be inferred purely from experimental data and also can be easily
explained from the physical point of view. On the other hand, the analysis presented here
does not take into account phenomena such as clustering of grains with similar orientations,
which has been shown to affect the roughening behavior of some materials, including
phenomena such as ridging and roping (e.g., [22]). Future work will advance the CPFE
model into a strain gradient plasticity (SG-CPFE) formulation [69] to evaluate whether the
SG-CPFE model will improve the local predictions of the mesoscopic mechanical response
and resulting roughness fields.
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Appendix A

The texture of the as-received polycrystalline AA5052-O is shown in Figure A1. In
the pole figures presented, we can observe patterns typical of a rolled texture, such as
two parallel features in the {111} pole figure. In addition, we can see the presence of cube
texture (pronounced poles at top, bottom, left, right) in the {100} pole figure, which is due
to recrystallization.
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Figure A1. Crystallographic texture of as-received polycrystalline AA5052-O, shown as a set of
pole figures.
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