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Abstract: Bituminous coal reservoirs exhibit pronounced heterogeneity, which significantly impedes
the production capacity of coalbed methane. Therefore, obtaining a thorough comprehension of
the pore characteristics of bituminous coal reservoirs is essential for understanding the dynamic
interaction between gas and coal, as well as ensuring the safety and efficiency of coal mine production.
In this study, we conducted a comprehensive analysis of the pore structure and surface roughness of
six bituminous coal samples (1.19% < Ro,max < 2.55%) using various atomic force microscopy (AFM)
techniques. Firstly, we compared the microscopic morphology obtained through low-pressure nitro-
gen gas adsorption (LP-N2-GA) and AFM. It was observed that LP-N2-GA provides a comprehensive
depiction of various pore structures, whereas AFM only allows the observation of V-shaped and
wedge-shaped pores. Subsequently, the pore structure analysis of the coal samples was performed
using Threshold and Chen’s algorithms at×200 and×4000 magnifications. Our findings indicate that
Chen’s algorithm enables the observation of a greater number of pores compared to the Threshold
algorithm. Moreover, the porosity obtained through the 3D algorithm is more accurate and closely
aligns with the results from LP-N2-GA analysis. Regarding the effect of magnification, it was found
that ×4000 magnification yielded a higher number of pores compared to ×200 magnification. The
roughness values (Rq and Ra) obtained at ×200 magnification were 5–14 times greater than those at
×4000 magnification. Interestingly, despite the differences in magnification, the difference in porosity
between ×200 and ×4000 was not significant. Furthermore, when comparing the results with the
HP-CH4-GA experiment, it was observed that an increase in Ra and Rq values positively influenced
gas adsorption, while an increase in Rsk and Rku values had an unfavorable effect on gas adsorption.
This suggests that surface roughness plays a crucial role in gas adsorption behavior. Overall, the
findings highlight the significant influence of different methods on the evaluation of pore structure.
The 3D algorithm and ×4000 magnification provide a more accurate description of the pore structure.
Additionally, the variation in 3D surface roughness was found to be related to coal rank and had a
notable effect on gas adsorption.

Keywords: bituminous; pore structure; three dimensions; roughness; AFM; coal-bed methane
(coal gas)

1. Introduction

Coalbed methane (CBM) exploitation is primarily concentrated in anthracite reser-
voirs, with fewer occurrences in bituminous coal reservoirs [1–3]. This discrepancy can
be attributed to the fact that bituminous coal is softer, contains more cleats, and exhibits
stronger heterogeneity compared to anthracite, thereby impeding CBM production [4,5].
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The pores within coal serve as the primary spaces for gas adsorption, constituting approx-
imately 90% of the total gas content within coal pores [6]. Consequently, the desorption
and migration behavior of gas in coal are closely linked to the coal pore structure [7,8].
Changes in the characteristics of bituminous coal pores are associated with the second
stage of coalification. Therefore, accurately describing the changes in bituminous coal pore
characteristics and analyzing the impact of alterations in coal macromolecular structure on
these characteristics are essential prerequisites for efficient CBM extraction and safe coal
mine production.

Due to the limitations imposed by research conditions and the inherent complexity of
coal pores, accurately characterizing coal pore structure has proven to be challenging. How-
ever, advancements in technology have facilitated progress in this field. Techniques such
as low-pressure gas adsorption (LP-CO2/N2-GA), He gas adsorption, scanning electron
microscopy (SEM), and computed tomography (CT) have emerged as valuable tools for
this purpose [9–11]. Among these technologies, atomic force microscopy (AFM) has been
particularly impactful. It has improved the resolution down to 0.1 nm in scanning electron
microscopy, allowing for direct imitation of the surface morphology and nanopores without
inflicting damage to the samples [12,13]. Furthermore, AFM provides a three-dimensional
(3D) image of the reservoir surface [14,15]. Liu et al. [16] found that LP-N2-GA generated
a higher percentage of nanopores with a diameter < 4 nm compared to AFM, for both
coal and shale samples. However, the results obtained from AFM were deemed more
accurate. Combining AFM and SEM observations at the nanoscale, as demonstrated by
Li et al. [17], has proven effective in revealing pore structure and mechanical properties in
both 2D and 3D dimensions. AFM not only enables the measurement of pore parameters
but also provides insights into the surface roughness of coal pores. Since coal pores possess
a 3D structure, surface roughness plays a significant role in the adsorption capacity of
coal. Nevertheless, there is little research on the relationship between coal surface rough-
ness and coal rank, as well as the correlation between coal surface roughness and coal
adsorption capacity.

Despite its utility, AFM technology is not exempt from certain limitations. The accuracy
of pore analysis results is directly influenced by the segmentation of AFM images. The
“grains” module of the Gwyddion software (Version 2.62) was used to segment particles in
AFM images, which include the Edge Detection algorithm, Otsu’s algorithm, Segmentation
algorithm, Threshold algorithm, and Watershed algorithm. Notably, the most commonly
utilized algorithms, Threshold and Watershed, yield differing results in the context of pore
structure analysis. Zhao et al. [15] found the Threshold algorithm to be well-suited for
the characterization of pores ranging from 10 to 500 nm, while the Watershed algorithm
was better optimized for pores between 1 and 200 nm. Chen et al. [18] found that because
the number of AFM scanning data points in an area of any size is 512 × 512, the few data
points in the region will affect the accuracy of the software, and they reconstructed the AFM
three-dimensional topography to improve the accuracy of pore parameters and surface
roughness. Beyond image segmentation, it should be noted that image magnification can
also influence the resulting measurements [19]. Nowadays, the impact of magnification on
AFM images has not been thoroughly investigated.

In this study, our objective was to gain a comprehensive understanding of the pore
structure and heterogeneity of bituminous coal, and elucidate their influence on gas ad-
sorption. To achieve this, we employed low-temperature CO2/N2 gas adsorption (LT-
CO2/N2-GA) and AFM techniques to evaluate the nanopores present in six coal samples
with varying ranks (Ro,max = 1.19~1.98%). Furthermore, we conducted a detailed analysis
of the discrepancies in AFM pore structure calculations resulting from different algorithms
and magnification levels (×200 and ×4000). The findings contribute to a better understand-
ing of the complex relationship between coal rank and its physical properties, offering
crucial knowledge for the advancement of bituminous coal bed methane exploration and
utilization strategies.
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2. Materials and Algorithms
2.1. Experimental Methods

The coal samples were obtained from distinct mining areas, including Liangshui-
jing Mine in the Shenmu mining area (LSJ), Duerping Mine in the Xishan mining area
(DEP), Tunlan Mine in the Xishan mining area (TL), Dafosi Mine in the Huanglong mining
area (DFS), Changping Mine in the Jincheng mining area (CP), and Gaohe Mine in the
Jincheng mining area (GH). By exploring the geological characteristics of the sampling
points and selectively collecting block samples from newly developed coal heading faces.
All sample quantities, observations, and descriptions adhered to the respective national
standards [20,21]. The proximate analysis and determination of vitrinite reflectance (Ro,max)
followed the guidelines stipulated by the respective national standards [22,23]. Low-
pressure N2 gas adsorption (LP-N2-GA) experiments were conducted using an automated
gas sorption analyzer (Autosorb iQ-MP, Quantachrome Instruments, Boynton Beach, FL,
USA), in strict accordance with the national standards [24,25].

2.2. Image Scanning and Preprocessing
2.2.1. Image Scanning

AFM experiments required the argon ion polishing of samples to attain a smooth coal
surface. Owing to the brittle nature of the coal sample, it was imperative to secure it in
polyester resin. The sample size did not exceed dimensions of 10 mm× 10 mm× 3 mm (see
Figure 1). The AFM instrument employed in this experiment was the Bruker Dimension
Icon, offering a maximum scanning range of 90 µm × 90 µm × 10 µm and a resolution of
0.15 nm in the lateral direction and 0.04 nm in the vertical direction under the Contact Mode.
The 3D AFM used to observe the surface morphology and pore structure is a Dimension
Icon AFM (Bruker, Santa Barbara, CA, USA) in the PeakForce QNM (Quantitative Nanoscale
Mechanical Mapping) mode. The probe tip had a radius of curvature of 10 nm, and a
console rigidity of 5.715 N/m. The images were captured across a magnification range of
×200 to ×4000 nm. The images were acquired over a magnification range from ×200 to
×4000 nm. The experimental procedures are as follows: (1) object sample and select the
area that contains the pore structure; (2) the images are first obtained at magnification ×200
(Figure 2a), then at magnification ×4000 (Figure 2b).
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Figure 1. Coal samples.

2.2.2. Image Denoising

Image denoising aims to minimize errors in atomic force microscopy (AFM) operations.
Such errors might include the skew of the sample substrate due to manual handling,
the bowl-shaped deformation of the scanning surface prompted by the motion of the
AFM probe, and the noise interference occurring during the AFM scanning process. The
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experimental procedure may introduce abnormal height values in the raw AFM data, and
the AFM probe’s scanning movement may cause bowl-shaped deformations in the original
data. To correct the aberrant high-value areas and bowl deformations, the Nanoscope
Analysis software (Verision 1.40r1) was utilized.
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Figure 2. The experimental procedures of the sample: (a) image at magnification ×200; (b) image at
magnification ×4000.

2.2.3. Image Segmentation

Image segmentation determines a reasonable segmentation threshold to obtain the
pore function, so as to filter out the pores in the image. It is the key to pore structure
analysis, and its segmentation results directly affect accuracy.

g(x, y) =
{

1 f (x, y) > T
0 f (x, y) ≤ T

(1)

where T is the threshold, f (x, y) is the original image, and g (x, y) is the generated binary
image.

(1) Threshold algorithm

Commonly used 2D segmentation algorithms mainly include the Huang, MaxEntropy,
Otsu, and Yen algorithms [26–29]. The comparison of different algorithms shows that the
Yen algorithm is the most accurate [19]:

TC(T∗) = max
T∈G

TC(T) (2)

where TC(T) is the total amount of correlation contributed by the pores and coal matrix
and is defined as follows:

TC(T) = 2 ln(
T

∑
i=0

pi ×
m−1

∑
i=T+1

pi)− ln(
T

∑
i=0

p2
i ×

m−1

∑
i=T+1

p2
i ) (3)

pi =
f (i)

M× N
(4)

where M × N pixels is the size of f (x, y) images that are represented by m gray levels.
Let G ∈ {0, 1, . . ., (m − l)} denote the set of gray levels and f (i), i ∈ G be the number of
gray-level frequencies of the image f (x, y).

(2) Chen’s algorithm

As reported by Chen et al. [18], according to the characteristics of the 3D image, when
projecting the 3D sample surface in the xOy plane coordinate system, the xOy plane is used
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to cut the sample surface from bottom to top, the pore volume is the volume enclosed by
the xOy plane, and the sample surface below the plane, which is defined by

V(h) =


s

D
h− g(x, y)dσ D ∈

{
(X, Y)

∣∣∣g(x, y) < h, x < a
2 , y < b

2

}
h ≤ T

V(T) + A(h− T) h > T
(5)

where V is the pore volume, m3; A is the projected area, m2; h is height, m; a and b are the
projected width and length, respectively, m.

2.3. 3D Roughness

Two-dimensional (2D) roughness metrics cannot comprehensively and accurately
portray the morphology of coal surfaces, prompting researchers to shift from traditional 2D
roughness analysis to a more exhaustive assessment using three-dimensional (3D) surface
roughness parameters [30,31]. The 3D roughness parameter significantly deviates from
the conventional 2D roughness single curve analysis, offering a more accurate reflection of
the overall surface topography of the coal. Consequently, AFM’s 3D roughness analysis
can precisely quantify the microstructure characteristics of the surface topography across
different grades of metamorphic coal.

AFM images were imported into Nanoscope Analysis to calculate the average rough-
ness (Ra), the root mean square roughness (Rq), kurtosis (Rku), and skewness (Rsk).

Ra represents the average distance of the surface deviation from the datum; the
calculation formula for Ra is as follows:

Ra =
1

MN

N

∑
i=1

M

∑
j=1
|Z(Xi, Yj)| (6)

where M, N are the number of data points on the X, Y (dimensionless), and Z (nm) is the
height of each data point.

Rq represents the root mean square of the surface deviation from the datum; the
calculation formula for Rq is as follows:

Rq =

√√√√ 1
MN

N

∑
i=1

M

∑
j=1

Ẑ2(Xi, Yj) (7)

Rsk represents the degree of asymmetry of the surface height distribution; the calcula-
tion formula for Rsk is as follows [32]:

Rsk =
1

R3
q

1
N

N

∑
j=1

Z3
j (8)

A positive Rsk value indicates that the distribution is to the right and that there are
more areas where the sample surface height is lower than the average; a negative value
indicates that the distribution is to the left and that there are more areas where the sample
surface height is higher than the average (Figure 3a).

Rku represents the probability that the surface height value is concentrated on the
average height value; the calculation formula for Rku is as follows [33]:

Rku =
1

Rq4
1
N

N

∑
j=1

Zj (9)

A positive Rku value means that the waveform reaches its peak, in which the sample
surface height is concentrated at the average value; a negative value means that the
waveform is flat, so the surface height of the sample is distributed (Figure 3b).
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2.4. Theoretical Models
2.4.1. Porosity

Porosity is the ratio of the pore volume of coal to the total volume. The total volume
of coal is the sum of the skeleton volume and the pore volume. The calculation formula for
porosity (%) is as follows:

φ =
VP

VP + VM
(10)

VM = SR ·
N

∑
j=1

(Zj − Zmin) (11)

where Φ is the porosity (%), VP is the pore volume (nm3) measured by the Watershed algo-
rithm in Gwyddion, VM is the coal skeleton volume (nm3), SR is the real area represented
by a single pixel (nm2), N is the number of pixels in the image, and Zmin is the minimum
height of all data points on the image (nm).

2.4.2. Adsorption Experiments

The isothermal sorption curves of CH4 on different coal samples were fitted by Lang-
muir, Freundlich, and Spis isotherm models [34].

(1) The Langmuir adsorption model is as follows:

q =
qmbP

1 + bP
(12)

where q is the adsorption amount at pressure P and temperature T; qm is the maximum
adsorption ability; and b is the Langmuir constant.

(2) The Freundlich adsorption model is as follows:

V = KbPm (13)

where Kb and m are fitting constants, which are related to the size of the adsorbing space
and the temperature, respectively.

(3) The Sips adsorption model is as follows:

q =
qm(KsP)1/n

1 + (KsP)1/n (14)

where Ks indicates the sips isotherm constant.
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The adsorption effective capacity was defined using the following equation [35]:

qe =
(Ci − Ce)V

M
(15)

where Ci and Ce are the initial and final equilibrium concentrations.

3. Results

Table 1 presents the results of the proximate analysis and vitrinite reflectance for
the coal samples. The samples include two high-volatile bituminous coals (LSJ, DFS),
two medium-volatile bituminous coals (TL, GH), and two low-volatile bituminous coals
(DEP, CP).

Table 1. Proximate analysis and vitrinite reflectance results.

Sample ID Proximate Analysis (%) Ro,max (%) Classify

Mad Ad Vdaf

DFS 3.76 7.14 33.70 1.19 High volatile bituminous coal (HVB)
LSJ 4.78 10.98 32.30 1.29 High volatile bituminous coal
GH 0.62 7.88 23.77 1.37 Middle volatile bituminous coal (MVB)
TL 0.66 7.72 23.76 1.58 Middle volatile bituminous coal

DEP 1.08 6.49 16.00 1.89 Low volatile bituminous coal (LVB)
CP 0.75 10.12 13.82 1.97 Low volatile bituminous coal

Mad = moisture content; Ad = ash content; Vdaf = volatile content; Ro,max = maximum oil vitrinite reflectance.

3.1. Characterization of Pore Structure by the LT-CO2-GA Experiment

According to the method proposed by Hudot [36], the pores of coal are divided into
micropores (<2 nm), mesopores (2–50 nm), and macropores (>50 nm). Table 2 presents
the micropore structure parameters derived from the NLDFT model, including specific
surface area, pore volume, and minimum pore size within the range of 0.012–0.026 cm3/g,
32.027–69.924 m2/g, and 0.6–0.9 nm, respectively. Notably, it is evident that low-volatile
bituminous (LVB) coal exhibits the highest pore volume (PV) and specific surface area (SSA),
followed by medium-volatile bituminous (MVB) and high-volatile bituminous (HVB) coal.
Furthermore, V and SSA demonstrate a polynomial relationship with increasing coal rank.

Table 2. Micropore structure parameters of six samples.

Sample ID SSA (m3/g) PVmin (cm3/g)

DFS 43.354 0.019
LSJ 32.027 0.012
GH 52.813 0.014
TL 58.049 0.019

DEP 64.891 0.023
CP 69.924 0.026

PVmin = pore volume of micropore.

Figure 4 illustrates the isothermal adsorption curves of CO2 for all the samples. At
the same pressure, the adsorption isotherm is relationship with the pore structure of coal.
As the degree of metamorphism increases, the overall CO2 adsorption exhibits an initial
decrease followed by an increase. The coal sample LSJ, characterized by a moderate degree
of metamorphism, exhibits the lowest adsorption capacity, while DEP and CP coal samples
demonstrate higher adsorption capacities.
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Figure 4. Adsorption–desorption curve obtained by LT-CO2-GA.

3.2. Characterization of Pore Structure by the LT-N2-GA Experiment

The pore structure parameters obtained from the LT-N2-GA experiment are presented
in Table 3. The SSA and V of the mesopores were determined using the BJH model. The
mesopore SSA for all the samples fell within the range of 0.494–1.056 m2/g, with the CP
coal sample exhibiting approximately twice the mesopore SSA compared to LSJ. The pore
volume of BJH mesopores ranged from 2.005 × 10−3 to 4.231 × 10−3 cm3/g.

Table 3. Mesopore and macropore structure parameters of six samples.

Sample ID SSA (m3/g) PVmin (cm3/g) PVmes (10−3 ∗ cm3/g) PVmac (cm3/g)

DFS 0.675 0 2.359 0.030
LSJ 0.494 0 2.005 0.029
GH 0.702 0 2.436 0.029
TL 0.754 0 3.250 0.036

DEP 0.921 0 3.997 0.026
CP 1.056 0 4.231 0.020

PVmes = pore volume of mesopore; PVmac = pore volume of macropore.

The coal sample adsorption isotherms are shown in Figure 5. IUPAC classification
distinguishes five hysteresis loops, namely, Type H1, H2, H3, H4, and H5. The pore shapes
include slit shape, ink-bottle shape, cylinder shape, etc. The adsorption isotherms of the
coal samples are shown in Figure 5 [37], which are classified as Type H2 and Type H3.

Type H2: The adsorption curves of DFS, LSJ, and GH exhibit wide-ranging adsorption
loops that closely resemble Type H2 behavior. At relative pressures (P/P0) below 0.8, the
adsorption and desorption curves coincide closely. However, as the pressure surpasses 0.44,
distinct adsorption loops become apparent. At a relative pressure of 0.83, the adsorption
capacity experiences a sudden increase, resulting in a steep curve shape with a pronounced
concave appearance. When the relative pressure is close to 1, the sample is close to
adsorption saturation. Then, as the relative pressure decreases, the desorption of N2
commences. Notably, when the relative pressure exceeds 0.75, the desorption capacity
exhibits a steady decline. Within the relative pressure range of 0.75–0.45, the desorption
curve displays a distinct inflection point characterized by a rapid decrease in desorption
quantity, followed by a stabilization phase. The predominant pore types observed in the
samples are primarily open-necked holes or ink-bottle-shaped cavities.

Type H3: The adsorption curves of TL, DEP, and CP exhibit a narrow range of ad-
sorption loops, resembling Type H3 behavior. At relative pressures (P/P0) below 0.8, the
isothermal adsorption curves exhibit a gradual rise, characterized by an upper convex
shape, signifying the transition from monolayer to multilayer adsorption. Subsequently,
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when the relative pressure surpasses 0.8, there is a rapid increase in gas adsorption capacity
due to capillary condensation. In contrast, the desorption curves lack prominent inflection
points but exhibit a steep decline in desorption quantity at higher relative pressures (above
0.85), forming a distinct concave shape. Following this, the amount of desorption decreases
gradually in an approximately linear fashion. The predominant pore type observed in
these samples consists of open slot-shaped pores, composed of non-rigid aggregates of
plate-like particles.
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3.3. Characterization of Pore Structure by AFM

Here we only list ×4000 nm image surface of samples for exhibition (Figure 6). In
highly volatile bituminous coal (LSJ, DFS), linear parallel cracks develop, and their exten-
sion distance is relatively long. The surface is a banded structure with different widths. In
middle-rank bituminous coal, GH and TL, the width of microcracks on its surface increases,
and micro-cracks coexist with pores. In anthracite coal, DEP and CP, the surfaces present a
fibrous structure, the structure tends to be compact, and the morphology becomes flat.

Cracks with a width of 500 nm are called micro-cracks [38]. A micro-crack is formed
by the internal tension caused by physical and chemical changes in coal structure under the
influence of temperature and pressure in the process of coalification [39]. Some particles are
adsorbed in the cracks; the primary cracks give rise to secondary cracks. In the process of
coalification, the side chains and functional groups of organic molecules in coal constantly
break and fall off with the increase in temperature and pressure, resulting in a large number
of volatile products. But the evolution of coalification does not follow a straight line. When
Ro,max is about 1.3%, the second jump occurs, and a large amount of methane escapes
from coal. The high fluid pressure caused by a large amount of fluid generation that is
discharged over time is the main internal cause of crack generation. When Ro,max < 1.3%,
the crack in coal increases with the increase in gas content. When Ro,max = 1.3%, the gas
generation reaches its maximum, and the crack density in coal reaches its maximum at
this stage (DFS and LSJ have obvious cracks). When Ro,max > 1.3%, the internal tension
caused by devolatilizing decreases with the decrease in the amount of merperance, and
the newly generated cracks are less. Meanwhile, under the action of increasing in situ
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stress, the existing cracks gradually close and disappear (the cracks of GH, TL, DEP, and CP
become less and less). Therefore, when Ro,max > 1.3%, the density of cracks in coal decreases
with the increase in metamorphism. Therefore, with the increase in metamorphism degree
in bituminous coal, cracks in the coal gradually decrease. The crack is the foundation
of fracturing, so the development of cracks is conducive to the generation of fractures
after fracturing.
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4. Discussion
4.1. Comparing Different Algorithms and Magnification Results of AFM

Tables 4 and 5 present the statistical analysis of pore structure using different algo-
rithms. It is important to note that the choice of algorithm and magnification can have a
notable impact on coal pore volume and surface roughness. The Threshold and Chen’s
algorithms exhibit significant influence on the results, while variations in magnification
(×200 and ×4000) also yield different outcomes.
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Table 4. The pore parameters tested by AFM calculated by the Threshold algorithm for coal samples
(×4000/×200).

Sample ID Proportion of Pore Volume (%) Number of
Pores

Maximum
Pore Size (nm)

Minimum Pore
Size (nm)

Micropore
(0–2 nm)

Mesopore
(2–50 nm)

Macropore
(>50 nm)

DFS 26.89/23.09 51.25/52.62 21.86/24.29 1056/264 220.4/219.2 0.18/0.35
LSJ 23.24/26.51 30.63/29.36 46.13/44.13 792/196 287.3/288.6 0.20/0.39
GH 11.51/10.22 44.92/45.84 43.57/43.94 756/182 415.5/414.7 0.19/0.40
TL 14.23/13.43 46.83/45.78 38.94/40.79 687/188 368.1/370.1 0.18/0.37

DEP 32.47/35.64 43.18/42.39 24.35/21.27 521/132 400.5/401.3 0.19/0.39
CP 36.46/37.36 41.33/43.64 22.21/19.00 494/127 430.1/429.9 0.17/0.36

Table 5. The pore parameters tested by AFM calculated by Chen’s algorithm for coal samples
(×4000/×200).

Sample ID Proportion of Pore Volume (%) Number of
Pores

Maximum
Pore Size (nm)

Minimum Pore
Size (nm)

Micropore
(0–2 nm)

Mesopore
(2–50 nm)

Macropore
(>50 nm)

DFS 34.3/34.9 5.8/5.6 60/59.5 1220/288 234.5/235.3 0.12/0.28
LSJ 27.9/27.9 4.6/4.6 67.5/67.4 1019/254 294.2/293.7 0.14/0.30
GH 31.7/33.1 4.9/5.0 63.4/61.9 841/215 431.6/429.1 0.15/0.31
TL 34.7/35.1 6.3/6.5 59/58.5 726/192 375.3/378.4 0.14/0.30

DEP 45.5/45.5 7.1/7.1 47.4/47.4 687/167 418.7/416.6 0.13/0.29
CP 52.8/53.7 8.1/7.5 39.1/38.4 563/154 452.1/448.8 0.14/0.27

At an image magnification of ×200, the Threshold algorithm yields a range of pore
numbers between 127 and 264, while Chen’s algorithm results in a range of pore num-
bers spanning from 154 to 288. On the other hand, at an image magnification of ×4000,
the Threshold algorithm produces a pore number range of 494 to 1056, whereas Chen’s
algorithm generates a pore number range of 563 to 1220. Whether the analysis is based
on the Threshold algorithm or Chen’s algorithm, the smallest pore sizes characterized at
×4000 magnification are smaller than those observed at ×200 magnification. For instance,
using the Threshold algorithm, the smallest pore sizes for DFS are 0.18 nm and 0.35 nm
at ×4000 and ×200 magnifications, respectively. Similarly, with Chen’s algorithm, the
smallest pore sizes for DFS are 0.12 nm and 0.28 nm at ×4000 and ×200 magnifications,
respectively. However, there is not much variation observed in the maximum pore sizes
characterized between different magnifications. For example, with the Threshold algo-
rithm, the maximum pore sizes characterized are 220.4 nm and 219.2 nm at ×4000 and
×200 magnifications, respectively. Similarly, using Chen’s algorithm, the maximum pore
sizes are 234.5 nm and 235.3 nm at ×4000 and ×200 magnifications, respectively. The
porosity obtained by calculations based on different algorithms is shown in Figure 7.

The discrepancy between the results obtained from the Threshold and Chen’s algo-
rithms can be attributed primarily to variations in pore shape. The presence of numerous
ink-bottle-shaped pores, characterized by a small orifice and a larger throat, leads to smaller
pore size measurements with the Threshold algorithm compared to Chen’s algorithm. Re-
garding the disparities between ×200 and ×4000 images, they arise primarily from the
inherent heterogeneity of coal. The broader scope of the AFM image captures a more
pronounced manifestation of this heterogeneity. It is important to note that the abso-
lute deviation between ×200 and ×4000 images is irregular, indicating that the strength
of heterogeneity characteristics is contingent on the specific region selected within the
AFM image.
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Figure 7 presents the porosity values obtained using different methods. The porosity
distribution obtained from the Threshold algorithm ranges from 7.2% to 19.1%, while
Chen’s algorithm yields a porosity range of 7.4% to 21.1%. Conversely, the porosity
values determined through LT-N2-GA measurements fall within the range of 8.7% to
21.5%. Notably, the results obtained from Chen’s algorithm exhibit a closer resemblance to
the porosity values derived from LT-N2-GA measurements. Moreover, the difference in
porosity between ×200 and ×4000 nm magnifications is similar, suggesting that the effect
of magnification on porosity calculations can be considered negligible.

Table 6 provides the values of surface roughness for different magnifications. At
×200 magnification, the Rsk values range from −0.73 to 0.19, the Rku values range from
4.35 to 13.1, the Rq values range from 52.2 to 132, and the Ra values range from 30.7 to
107. On the other hand, at ×4000 magnification, the Rsk values range from −0.31 to 0.19,
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the Rku values range from 2.74 to 5.51, the Rq values range from 3.85 to 21.1, and the Ra
values range from 2.60 to 16.23. Notably, the Rq and Ra values at ×200 magnification are
5–14 times higher than those at ×4000 magnification, with the largest difference observed
in the LSJ sample. This can be attributed to the increased variation in height from the mean
line as magnification increases, indicating a rougher outer surface. The differences in Rsk
and Rku values between ×200 and ×4000 magnifications are relatively small. However,
the Rsk and Rku values at ×4000 magnification are generally higher, suggesting a greater
prominence of surface peaks at lower magnifications.

Table 6. The surface roughness of samples.

Sample Magnification Rsk Rku Rq (nm) Ra (nm)

DFS ×200 −0.73 9.79 68.5 42.4
×4000 −0.14 4.52 4.36 3.25

LSJ ×200 −0.69 9.61 52.2 30.7
×4000 −0.31 5.51 3.85 2.60

GH ×200 0.04 13.1 65.0 46.6
×4000 0.08 3.85 7.57 5.65

TL ×200 0.01 6.98 72.1 51.3
×4000 0.19 3.53 8.19 6.36

DEP ×200 −0.57 6.70 117 81.9
×4000 −0.31 4.25 18.0 13.0

CP ×200 −0.64 4.35 132 107
×4000 −0.25 2.74 24.0 17.8

4.2. Pore Structure Evolution on the Second Coalification Jump

In the LT-N2-GA images, high-volatile bituminous coals and middle-volatile bitumi-
nous coals exhibit a higher presence of cylindrical pores, while low-volatile bituminous
coal displays a significant proportion of wedge-shaped pores. On the other hand, the
AFM images reveal distinct characteristics for each coal type. In high-volatile bituminous
coal, linear parallel cracks are prevalent, extending over considerable distances, and the
surface exhibits a banded structure with varying widths. Middle-volatile bituminous coal
exhibits an increase in the width of microcracks on the surface, along with the coexistence
of microcracks and pores. Low-volatile bituminous coal displays a fibrous surface structure
that tends to be compact and flattened in morphology. By combining the LT-N2-GA and
AFM images, it becomes apparent that the pore structure of bituminous coal gradually
narrows as the degree of metamorphism increases. Furthermore, larger cracks diminish
while the presence of micro-cracks becomes more pronounced.

The pore volume, specific surface area (SSA), pore number, pore size, and porosity
can be effectively determined through LT-CO2-GA, LT-N2-GA, and AFM experiments.
These pore characteristics exhibit a close relationship with coal ranks. The SSA, PV, and
pore number demonstrate a rapid decline within the Ro,max = 1.19%~1.29%, followed by
a gradual increase within the Ro,max = 1.37%~1.97%. However, the observed values for
pore size and porosity differ slightly. The maximum pore size exhibits irregular changes,
while the minimum pore size increases between Ro,max = 1.19%~1.37% before gradually
decreasing. Conversely, the variation in porosity follows an opposite trend, wherein it
rapidly decreases within the Ro,max = 1.19%~1.37% and then increases.

The observed phenomenon can be attributed to the changes in the macromolecular
structure during the second coalification jump. Low metamorphic coal exhibits an irregular
molecular structure, with long side chains and numerous functional groups, leading to the
formation of a relatively loose spatial structure with significant micropores SSA and PV. As
coal rank increases, the presence of oxygen-containing functional groups and alkyl side
chains decreases, while aromatic nuclei increase. This results in a compression of the coal
structure, leading to the lowest values of SSA and PV at this stage (Ro,max = 1.19%~1.29%).
With further coalification, a substantial number of aromatic layers are formed, enhancing
the ordering of macromolecules and causing the aromatics to be arranged more closely. This
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arrangement leads to the formation of new cracks, resulting in an increase in micropores
SSA and PV, and a decrease in pore size (Ro,max = 1.37%~1.97%). It is important to note that
the changes in porosity and micropore characteristics are not identical.

This discrepancy can be attributed to the stage between Ro,max = 1.29%~1.6%, where
the length of aliphatic chains decreases, leading to an increase in the aromatic system.
However, the dehydrogenation of aromatic groups prevents the formation of a well-defined
parallel structure in the enlarged aromatic system. As a result, the coal skeleton volume
increases, causing a lag in porosity changes compared to micropore changes. Nonetheless,
as the aromatic structure gradually arranges itself in a regular manner, the spacing between
layers decreases, resulting in increased SSA, PV, and porosity.

4.3. Surface Roughness Evolution on the Second Coalification Jump

Surface roughness changed with the degree of coalification, relationships between
surface roughness (Ra, Rq, Rsk, and Rku) and thermal maturity (Ro,max) of naturally matured
coals are shown in Figure 8.
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Figure 8. The relationship of surface roughness and Ro,max.

As illustrated in Figure 8a,b, the evolution trends of Ra and Rq are clearly similar. As
Ro,max = 1.19–1.39%, Ra and Rq decrease with increasing Ro,max, with minimum values at
Ro, max = 1.39%; as Ro,max = 1.39–1.80%, Ra and Rq increase with increasing Ro,max slowly,
and more rapidly when Ro,max = 1.8–2.5%. As illustrated in Figure 8c,d, no significant
correlation was observed between Rsk or Rku and Ro,max, suggesting that Ro,max does not
exert control over either Rsk or Rku. It is noteworthy that for GH and TL, the major surface
heights are below the average (Rsk < 0), while for other samples, more surface heights are
above the average (Rsk > 0). Additionally, all samples demonstrated Rku > 0, indicating a
concentration of all sample surface heights around the average value.
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The surface roughness of coal can be influenced by both its composition and nanopore
development. In coals with relatively low thermal maturity (Ro,max < 1.3%), the surface
roughness is primarily controlled by micro-composition and mineral composition. How-
ever, in coals with higher maturity (Ro,max > 1.3%), nanopore development plays a more
dominant role [40]. Thus, the observed variation in surface roughness of bituminous coal
with increasing coal rank aligns with the trend observed in nanopore development, wherein
it initially decreases and then increases.

4.4. Effect of the 3D Pore Structure on CH4 Adsorption Capacity

To investigate the relationship between the 3D pore structure and the adsorption capac-
ity of CH4, HP-CH4-GA was carried out on different samples. The Langmuir, Freundlich,
and Sips adsorption models were employed to simulate the adsorption isotherms, as illus-
trated in Figure 9. The isotherm model constants and nonlinear regression parameters are
summarized in Table 7. The adsorption isotherm data were analyzed using three different
models: Langmuir, Freundlich, and Sips. Among these models, the Sips model demon-
strated a strong fit to the experimental data, exhibiting a higher correlation coefficient
(R2 = 0.9958). According to Milan et al. [35], the Sips model is well-suited for capturing the
adsorption site interactions that occur on the heterogeneous surface of the adsorbent. In
contrast, the Langmuir model assumes monolayer adsorption on a homogeneous surface.
Given these considerations, the Sips model is considered more appropriate for accurately
characterizing the isothermal adsorption behavior of bituminous coal. The Qmax of CH4
was 5.30~25.12 cm3/g according to the Sips adsorption model.
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Figure 9. The adsorption isotherms simulated by Langmuir, Freundlich, and Sips models.

Table 7. The adsorption parameters of samples.

Isotherm
Models Parameters DFS LSJ GH TL DEP CP

Langmuir Qmax 10.600 5.800 18.450 18.450 26.110 26.110
PL 2.790 1.800 1.940 1.950 1.840 1.980
R2 0.979 0.978 0.977 0.980 0.976 0.979

Freundlich PL 2.640 1.720 1.850 1.840 1.750 1.890
R2 0.981 0.984 0.986 0.984 0.988 0.989

Sips Qmax 9.980 5.300 17.980 17.950 24.230 25.120
PL 2.620 1.690 1.820 1.820 1.730 1.860
R2 0.992 0.991 0.993 0.990 0.991 0.994

The adsorption effective capacities of the samples are presented in Figure 10. The
results indicate that the adsorption capacity of bituminous coal exhibits a trend of initially
decreasing and then increasing with increasing coal rank, and it also increases with higher



Materials 2023, 16, 5564 16 of 20

pressure. The order of adsorption capacity from highest to lowest is CP > DEP > TL > GH
> DFS > LSJ. The observed ordering of adsorption capacities aligns with the ordering of
the Qmax.
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Previous studies commonly suggest that the gas adsorption capacity of coal is in-
fluenced by micro- and mesopores [41–43]. However, the analysis of pore structure in
this study reveals that there is no evident linear relationship between porosity, micropore
volume, or specific surface area and coal reservoir adsorption capacity, particularly for
lignite and bituminous coal [44,45]. Notably, in this study, the micropore volume and
specific surface area of DFS (43.354, 0.019) and TL (48.049, 0.019) are comparable. How-
ever, the Qmax and effective adsorption capacity of TL (9.98, 91%) are higher than those
of DFS (17.95, 84%). Similarly, although the micropore volume and specific surface area
of GH (43.354, 0.019) are smaller than those of TL (48.049, 0.019), the Qmax and effective
adsorption capacity are comparable. These findings suggest that additional factors beyond
micropore volume and specific surface area contribute to the adsorption capacity of coal
reservoirs. Functional groups and surface roughness are recognized as factors that can
influence adsorption capacity. While there have been numerous studies investigating the
impact of functional groups on adsorption, the relationship between surface roughness and
coal adsorption capacity has received relatively less attention.

Generally, it has been observed that samples exhibiting a lower surface roughness
tend to have a smaller specific surface area and gas adsorption capacity, whereas samples
with a higher surface roughness exhibit a larger specific surface area. This increased surface
roughness provides more space for gas adsorption [46,47]. The relationship between 3D
surface roughness and Qmax for all samples is presented in Figure 11. The Rsk and Rku
values of the samples exhibit a positive correlation with Qmax, as they represent the degree
of fluctuation in the sample’s storage space, reflecting the combined surface area and
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volume characteristics. According to the definitions of Rsk and Rku, a greater fluctuation
in coal results in a higher gas storage capacity. Therefore, Rsk and Rku can be used as
indicators of gas adsorption capacity. Similarly, the values of Ra and Rq also show a
positive correlation with Qmax. Smaller values of Ra and Rq indicate a smoother coal
surface, which leads to reduced friction between the gas and coal surfaces. This reduction
in friction weakens the intermolecular forces between the gas and coal, resulting in stronger
gas adsorption capacity. These findings highlight the significant influence of Ra, Rq, Rsk,
and Rku values on the analysis of gas adsorption volume.
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5. Conclusions

1. Upon conducting a comparative analysis of AFM images across various algorithms
and scales, we posit that the pore calculation results derived from the 3D algorithm at
×4000 magnification are more accurate than those obtained through other algorithms.
These results exhibit greater resemblance to the LP-CO2/N2-GA findings. Chen’s
algorithm discerned a larger number of pores than the Threshold algorithm. For
example, in the case of DFS, the numbers were 1220 (×4000) versus 1056 (×4000).
Furthermore, Chen’s algorithm uncovered more micropores. The porosity determined
by the 3D algorithm outperformed that of the Threshold algorithm and was closer
to the LP-N2-GA results. When observed at a magnification of ×4000, more pores
were identified than at ×200 (DFS: 1056 vs. 264 using the Threshold algorithm).
However, the porosities observed at magnifications of ×200 and ×4000 nm were
similar, rendering the effect of magnification inconsequential.

2. AFM, employing Chen’s algorithm and a magnification of ×4000, can accurately
analyze the 3D pore structure of bituminous coal. Based on this, the range of pore
quantity in bituminous coal is found to be 563–1220, with the maximum value of CP
and the minimum of DF. The range of the maximum pore size is 234.5–234.5 nm, while
the range of the minimum pore size is 0.12–0.15 nm. These values show minimal
variation with respect to coal rank. The variation range of porosity is 7.4% to 21.1%,
with GH having the minimum value; Rsk ranges from −0.31 to 0.19, and Rku ranges
from 2.74 to 5.51, with weak regularity in their variations. The range of Rq is 3.85–3.85,
and Ra ranges from 2.60 to 17.8, with LSJ having the minimum value and CP having
the maximum value. Among the different adsorption models, the Sips model exhibits
the best fitting performance. The Qmax values for CH4 adsorption range from 5.30 to
25.12 cm3/g. The ordering of adsorption capacity from highest to lowest is CP > DEP
> TL > GH > DFS > LSJ, which aligns with the observed ordering of Qmax.

3. The second coalification transition exerts a significant impact on the coal’s pore
structure. Over time, the structure evolves from linear, parallel cracks and cylindrical
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pores to microcracks and wedge-shaped pores. Simultaneously, coal’s pore volume
and surface roughness initially decline before escalating, correlating with the coal
rank. Ra and Rq decrease linearly with the increase; the Rku value increases, and
the Rsk value is greater than 0 in the early stage and gradually becomes less than
0. This variation is predominantly attributed to the transformation of the coal’s
macromolecular structure.

4. Surface roughness significantly impacts the gas adsorption capacity of samples. A
more pronounced fluctuation in coal structure corresponds to a higher gas storage
capacity. As a result, Rsk and Rku serve as reliable indicators of gas adsorption
potential. Furthermore, smaller Ra and Rq values, indicative of a smoother coal surface,
result in diminished friction between the gas and coal surface, thereby enhancing
gas adsorption.
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