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Abstract: The research is devoted to developing the production of crumb rubber-modified bitumen
with improved stability. It has been established that the most suitable semi-empirical coefficient for
determining the compatible plasticizer to crumb rubber is based on the ratio of paraffin-naphthenic
compounds to resinous-asphaltene compounds. With the help of differential scanning calorimetry,
temperature regimes of crumb rubber destruction and preparation of rubber-containing components
(210 ◦C) were studied and determined. It was established that determining the dynamic viscosity
of hydrocarbon concentrates with crumb rubber on a rotary viscometer is not applicable due to
elastic components, making it difficult to measure and obtain reliable data. The most suitable
method is the shear viscosity method. Using fluorescent microscopy, it was established that the
formation of a branched structure of crumb rubber is achieved in the waste industrial oil, indicating
devulcanization processes. It was found that hydrocarbon plasticizer with high naphthenic oil content
is the most compatible with crumb rubber. Synthetic wax was found to be of greater interest as a
devulcanizing/stabilizing agent, and its application in an amount of 3% allows the formation of a
stable CRMB structure and stabilizes the devulcanization process.

Keywords: crumb rubber; bitumen; crumb rubber modified bitumen; structure; compatibility;
stability

1. Introduction

The task of improving the safety and durability of road surfaces remains both scien-
tifically and practically relevant. An independent way of modifying petroleum bitumen
is by injecting crumb rubber obtained from the complex processing of end-of-life tyres
and other rubber products [1–3]. This method contains the obvious advantages [4,5] and
negative experience of operating asphalt concrete modified with crumb rubber [6,7]. Sev-
eral promising methods have been developed to eliminate the disadvantages of bitumen
modification with crumb rubber, which usually consists of the destruction of the rubber
surface due to strong shear effects [8–10], the impact of ionizing radiation [11] or devul-
canizer treatment [12–15]. However, for these methods, the problem of dispersion in the
bitumen remains due to a significant increase in the surface area of the rubber modifier
and/or a change in the wettability of the crumb rubber surface. This leads to a lack of
homogeneous distribution of crumb rubber and the formation of aggregates consisting of
non-wetted particles—an elastic after effect which causes intensive cracking, especially
in the low-temperature operation period [16,17]. In this regard, the world community is
developing other ways of modifying bitumen with crumb rubber.

Based on a review of scientific and technical literature, it was found that to achieve a
uniform devulcanization of rubber and improve the properties of crumb rubber modified
bitumen (CRMB), crumb rubber with a specific morphology must be selected. Thus, the

Materials 2023, 16, 5357. https://doi.org/10.3390/ma16155357 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16155357
https://doi.org/10.3390/ma16155357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-4268-7897
https://doi.org/10.3390/ma16155357
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16155357?type=check_update&version=1


Materials 2023, 16, 5357 2 of 18

maximum to a minimum particle size of crumb rubber should be the smallest, and the
crumb rubber should not exceed 1–3 mm [3]. The necessity of pre-treatment crumb rub-
ber in plasticizers, which should be characterized by a high ratio of paraffin-naphthenic
compounds, asphaltenes and generally lower viscosity, has been established [18,19]. The
common problem is ensuring effective dispersion and uniform volume distribution of modi-
fiers in the hydrocarbon carrier and in the bitumen binder matrix to be modified [20,21].

Analysis of the data and hypotheses presented by the authors of various
publications [9,20,22–26] shows that there is currently no unified scientific knowledge
about the physical and chemical mechanisms leading to producing rubber-bitumen binders
with high-performance properties. In most cases, the authors describe the process of thermo-
mechanical plasticization of crumb rubber as follows: during the joint thermo-mechanical
treatment, the crumb rubber swells in the oil fractions of bitumen, which weakens the
inter-molecular bonds in the rubber. Because of continuing heat and mechanical influences,
these weakened bonds are broken, i.e., the destruction/devulcanization of rubber with the
formation of rubber substance, which diffuses into the bitumen and structures it [27,28].
The mechanism of thermo-mechanical plasticization of crumb rubber is shown schemat-
ically in Figure 1. The structuring function of the rubber substance explains the effects
of increasing the deformation stability of rubber-bitumen binder and asphalt concrete on
its basis.
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However, it should be noted that the lack of knowledge about the features of the
structure formation process during rubber devulcanization and modification of bitumen
leads to variability of the research results and ambiguity of the recommended technological
parameters. So, if not stabilized and stopped the devulcanization process, the crumb rubber
continues swelling in bitumen, which will destroy the crumb rubber. And pre-formed
rubber structuring centers will be destroyed. And the incoherent particles of crumbs
rubber will be chipping on the road's surface and leading to the destruction of the road.
No scientifically grounded criteria exist for obtaining effective, stable dispersion systems
containing crumb rubber. The lack of knowledge about the interaction process of liquid
hydrocarbon carriers and devulcanized crumb rubber does not allow effective control of
the dissolution process to obtain dispersion systems with given parameters of properties
and their stability.

This research is devoted to developing a scientifically justified technological solution
for producing CRMB with improved performance properties. Implementing the scientifi-
cally substantiated technological solution will increase the durability of asphalt concrete,
reduce the cost of road construction, and increase its service life.

The phase compositions of crumb rubber and hydrocarbon plasticizers are complex,
and molecules in different phase states exhibit other mixing behaviour. Therefore, to predict
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the compatibility of the hydrocarbon plasticizers and to be able to optimise the experiment,
let us consider existing semi-empirical compatibility parameters.

1. The Traxler dispersion coefficient [29] considers the ratio between the sum of resins and
aromatic hydrocarbons and the sum of asphaltenes and paraffin-naphthenic hydrocarbons:

CD =
Ar + R

PN + As
, (1)

where CD—is the Traxler dispersion coefficient; Ar—is the number of aromatic hydrocar-
bons; R—the number of resins; PN—the number of paraffin-naphthenic hydrocarbons;
As—the number of asphaltenes.

The higher the Traxler dispersion coefficient value, the more aromatic fractions and
resins in the plasticizer have a high affinity to the crumb rubber. They can dissolve the
polymer molecules of the rubber [30].

2. The mass ratio of paraffin-naphthenic compounds to asphaltenes (PN/As) indirectly
characterizes the system's viscosity, which affects the rate of swelling and dispersion of
rubber molecules. The higher the PN/As ratio, the better solubility and lower viscosity of
the plasticizer and the faster swelling and dispersing processes of rubber molecules [31].

3. The Hildebrand solubility parameter [32] is used to predict the solubility of a
polymer (modifier) in various organic solvents. This parameter characterizes the intensity
of intermolecular interactions in the substance. It is numerically equal to the energy
expended in removing the molecules to an infinitely large distance (at which the interaction
forces can be neglected). The solubility parameter is calculated using the following formula:

δP =

√
E
V

, (2)

where δP—is the solubility parameter of the plasticizer; E—the evaporation energy; V—the
volume of the substance. These concepts are extended to organic solvents and polymers,
with estimates given per repeating link of the polymer. The difficulty here is that δ can only
be determined experimentally for low molecular weight liquids that evaporate without
decomposition. For polymers and plasticizers with complex hydrocarbon compositions
that cannot be vaporized without decomposition, δ values are determined by indirect
methods or calculation. To determine the Hildebrand solubility parameter for organic
plasticizers using the indirect method, the same volume of liquid was taken to determine
the calculated parameters.

Troughton’s equation is applicable to determine the evaporation energy of
organic substances:

E = kTB, (3)

where k—a constant equal to 89.2 J/(mol*K); TB—the boiling point.
Thus, to determine the compatibility of the plasticizer and modifier, the following

condition must be fulfilled:

δP =

√
E
V

=

√
kTF
V

≈ δM =

√
E
V

=

√
kTBO

V
, (4)

where δP, δM—solubility parameters of plasticizer and modifier respectively; E—evaporation
energy; V—substance volume; k—a constant equal to 89.2 J/(mol*K); TB—boiling tempera-
ture; TF—flashing temperature of plasticizer; TBO—burnout temperature of modifier.

Thus, the formation of stable dispersion systems containing crumb rubber (modifier)
with the considered hydrocarbon plasticizers will become possible only when the parameter
∆δ = δP − δM tends to 0.

The existing methods of modifying bitumen are aimed at stabilizing its component
composition both in the initial period of structure formation and in the operational period.
The developed methods are quite effective but require the involvement of complex syn-
thetic substances. At the same time, the critical parameters of CRMB structure formation
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are not only the formation of the polymer net spread in the bitumen volume, with nodes of
rubber particles, but the thickness of the transition zone formed by rubber and bitumen
devulcanization products. The thickness of this transition layer will determine the stability
of the structure and the performance properties of the modified bitumen, both in the initial
period and during operation. The solution to this problem involves solving several issues,
including the devulcanization of crumb rubber. The general principle of the devulcan-
ization process is known; it consists of partial destruction of the rubber, resulting in local
destruction of its spatial structure. Rupture of the spatial mesh during devulcanization
occurs both at the sulfur attachment point and in the main molecular chains. The spatial
structure of the vulcanizate “loosens”. That is, the density of the spatial network decreases
due to the breakdown of some transverse bonds and some of the main molecular chains,
which leads to a soluble fraction with an average molecular weight of 6000–12,000. Devul-
canization can be initiated by mechanical, thermal, and chemical energy or a combination
thereof. An important factor here is the presence of an additional component that can
reduce the energy input for the spatial opening of the system. Another important issue is
the uncontrollability of the devulcanization process, which can lead to an unstable final
composite. Paraffin can act as an inhibitor and stabilizer of this process, which molecules,
when introduced at the final stage of preparation, will envelop the swollen particle of
crumb rubber, and form a transitional shell, which prevents its subsequent adsorption of
oils from the bitumen binder. And contribute to a more uniform distribution of crumb
rubber in the volume of the composite. In this way, a controlled devulcanization process
can be achieved.

Construction materials science actively attracts the results of fundamental research to
develop new science-based technological solutions. It obtains new knowledge by identi-
fying previously unknown facts of the joint influence of various controlling factors. The
accumulated experience of various methods and approaches to bitumen modification and
using crumb rubber in road construction indicates the need to find such a synergistic system
and optimise crumb rubber-modified binder formulation through compatibility analysis.
This is a new methodological approach to the development of technological solutions.

2. Materials and Methods
2.1. Raw Materials and Characterization

Crumb rubber (CR 0.5) is obtained by crushing and grinding waste rubber and techni-
cal products—pneumatic tires of passenger vehicles. With the gradual removal of textile,
synthetic and metal cords. Manufactured by LLC Chekhov Regeneration Plant, Chekhov,
Russia. Parameters of the physical properties of investigated crumb rubber are presented
in Table 1.

Table 1. Physical properties of crumb rubber CR 0.5.

Name of Parameter Actual Value

Mass fraction of rubber sifted through the sieve, %
with mesh No. 0.5

with mesh No. 0.63
98.18
100

Mass fraction of cord residue, % 0.77
Mass loss on drying, % 0.34

Mass fraction of ferrous metal particles, % traces
Mass fraction of mechanical impurities in base metal,

stones, glass, etc. absence

The presence of lumps of fluffed cord fiber absence

Hydrocarbon plasticizers were considered liquid hydrocarbon carriers:

1. Medium-viscous petroleum residual extract produced by LLC “LUKOIL-
Volgogradneftepererabotka”, Volgograd, Russia. The technology of the residual
extract production is the following: tar from the vacuum part (without oxygen access)
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of the atmospheric-vacuum column goes to propane deasphaltization, where it is
separated into asphalt and deasphaltizate. Then the deasphaltizate goes to selective
purification, where it is separated into a refinery, from which diesel fuel is produced,
and a petroleum residual extract. Physicochemical properties are presented in Table 2.

2. Waste industrial oil after use in the unit of the ammonia production shop. Waste
industrial oil was provided by the Azot Branch of URALCHEM, JSC, in Berezniki,
Perm Region, Russia. The physical and chemical properties are presented in Table 3.

Table 2. Physical and chemical properties of the petroleum residual extract.

Name of Parameter Actual Value

Kinematic viscosity at 50 ◦C, mm2/s 905.01
Kinematic viscosity at 100 ◦C, mm2/s 47.69

Flashpoint, ◦C 284.3

Table 3. Physical and chemical properties of waste industrial oil.

Name of Parameter Actual Value

Kinematic viscosity at 50 ◦C, mm2/s 21.88
Kinematic viscosity at 100 ◦C, mm2/s 5.33

Flashpoint, ◦C 220.5

The devulcanizing agents considered were:

1. Poly-transoctenamer rubber (TOR), which is produced based on cyclooctene and has
a high proportion of trans-double bonds, is produced in Germany;

2. Synthetic wax obtained by Fischer-Tropsch synthesis from natural gas in special
reactors produced in Russia.

For the preparation of CRMB oil road bitumen grade BND 50/70, produced by LLC
“LUKOIL-Nizhegorodnefteorgsintez” (Kstovo, Russia) was used. Bitumen was tested
for compliance with the requirements of Interstate Standard GOST 33133-2014 [33]. The
results of laboratory tests of the physical and mechanical properties of bitumen are shown
in Table 4.

Table 4. Physical and chemical properties of bitumen BND 50/70.

Name of Parameter
Requirements

of Interstate Standard
GOST 33133 [33]

Actual Value

Penetration at 25 ◦C, 0.1 mm 51–70 55
Penetration at 0 ◦C, 0.1 mm ≥18 23

Softening point (Ring and ball), ◦C ≥51 53
Ductility at 0 ◦C, cm ≥3.5 3.5

Fraass breaking point, ◦C ≤−16 −22
Flashpoint, ◦C ≥230 248

Weight change after aging, % ≤0.6 0.27
Softening point change after aging, % ≤7 5.2

2.2. Method for Determination of Group Hydrocarbon Composition of Plasticizers

For the calculation of semi-empirical parameters, the group hydrocarbon composi-
tion of plasticizers was determined by liquid adsorption chromatography with gradient
displacement on the laboratory unit “Gradient M” by SUE INHP RB. Installation “Gra-
dient M” (Figure 2) is designed for the quantitative determination of the hydrocarbon
composition of heavy oil fractions—oils, vacuum gas oil, fuel oils, tar, cracking residuals,
oxidized and natural bitumen. The essence of the method consists of a stepwise gradient-
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displacement separation of high-boiling heavy oil products into seven groups, followed by
their registration with a thermal conductivity detector.
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The principle of operation of the “Gradient-M” unit is as follows:

- the separation of the analysed product in the chromatographic column by a mobile
phase flow consisting of a solvent mixture selected for a particular separation case;

- the transfer of the eluent in the form of a film on the transport chain;
- the removal of mobile phase components in the evaporator;
- the thermal oxidative degradation of separated components of the analysed substance

in the oxidation cell;
- the detection of the formed carbon dioxide by the thermal conductivity detector.

The separated components are fed to the conveyor chain through a needle that ends
the column. The eluent is removed from the chain as it moves through the evaporator.
The mixture components enter the oxidation cell, where they are transformed at high
temperatures in the presence of air oxygen and copper oxide into carbon dioxide, which is
detected in the catarometer. The catarometer compares the thermal conductivity of pure
air and air and carbon dioxide mixtures. This difference in thermal conductivity leads to
an unbalanced equilibrium detector bridge. The recording of the detector signals on the
monitor screen is a chromatogram, with each mixture group corresponding to a specific
peak, Figure 3. Three measurement samples were taken from each plasticizer. The standard
deviation for all samples was not more than 4%.

2.3. Differential Scanning Calorimetry of Crumb Rubber

The mixing temperature of the “hydrocarbon plasticizer—crumb rubber” dispersion
system was determined by thermal analysis using a LINSEIS DSC PT-1600 (Linseis GmbH,
Selb, Germany) —high high-temperature differential scanning calorimeter. The crumb rub-
ber sample was subjected to differential scanning calorimetry (DSC). A thermo-analytical
technique in which the difference in the amount of heat required to raise the temperature
of the sample and the standard is measured as a function of temperature. The main prop-
erty measured with DSC is the heat flux, the flow of energy into/from the sample as a
function of temperature or time, usually shown in units of mJ/s on the y-axis. In DSC,
thermal changes occurring in the rubber particles result in the absorption (endothermic
process) or release (exothermic process) of heat. Endothermic changes include evaporation,
phase changes such as melting, sublimation, transition between two different crystalline
structures, decomposition, etc.

In contrast, exothermic changes include crystallization, chemisorption, oxidation-
reduction, etc. Thus, any change of state can be detected by measuring the temperature
difference. Two samples were taken from crumb rubber for research. The standard devia-
tion was not more than 5%.
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2.4. Methods for the Preparation and Characterization of Dispersion Systems

The methodology for the “hydrocarbon plasticizer—crumb rubber” dispersion system
is as follows. The required plasticizer and crumb rubber amount is weighed in the first
step. The plasticizer is then poured into a container with a sealed lid into which a mixer
and a heat control sensor are immersed. The mixer is turned on at 100–300 rpm, and the
dispersion system is heated to 210 ◦C. Then at the second stage, when the set temperature
is reached in a container with a plasticizer at a stirring speed of 300 rpm, crumb rubber
is gradually introduced for 10–15 min. The container is hermetically sealed, and the
devulcanization process starts, lasting no longer than 6 h. Samples are taken every hour.
The methodology for the “hydrocarbon plasticizer—crumb rubber” dispersion system is
shown schematically in Figure 4.
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crumb rubber” dispersion systems.

The devulcanization process of crumb rubber, accompanied by an increase in its initial
volume (swelling), was studied by determining the dispersion system's hydrocarbon group
composition, dynamic viscosity, and shear viscosity during preparation. A Rheolab QC
rotary rheometer with a controlled shear rate based on the Searle principle of rotating
concentric cylinders was used to determine the dynamic viscosity. The determination of
dynamic viscosity was carried out using a coaxial cylinder measuring system. A DSR
dynamic shear rheometer based on the principle of adjustable shear strain was used to
determine shear viscosity to measure flow properties. The determination of shear viscosity
was carried out using a geometry (two discs) where the pad diameter was 25 mm. On the
rotational rheometer, the test temperature was 135 ◦C, and the shear rate was 30 s−1. On
a dynamic rheometer, the test temperature is similar—135 ◦C, G*/sin δ ≥ 1 kPa. At least
three samples are prepared and tested for each percentage of crumb rubber. The standard
deviation was not more than 4%.

The uniform distribution of the crumb rubber in the volume of the hydrocarbon plasti-
cizer was assessed by fluorescence microscopy on the MIKMED-2 Luminescence Microscope
instrument (LLC “Leningrad Optical-Mechanical Association”, Saint Petersburg, Russia).

2.5. Methods for the Preparation and Characterization of CRMB

The methodology for the preparation of CRMB is as follows. In the first stage, the
necessary amount of the “hydrocarbon plasticizer—crumb rubber” dispersion system and
bitumen base are weighed. The components are then poured into a container with a sealed
lid, where an anchor-type mixer and a heat control sensor are immersed. The mixer is
started at 100–300 rpm, and the system is preheated to 190 ◦C. Once 190 ◦C is reached,
the system components are stirred at a mixing speed of 300 rpm for one hour. In the
second step, the system's temperature is reduced to 175 ◦C and the devulcanizing agent is
gradually introduced at a stirring speed of 300 rpm over 2–3 min. The container is then
closed, and the system with the devulcanizing agent is stirred for 15 min at 175 ◦C and
a stirring speed of 300 rpm. At the end of the preparation of the rubber asphalt binder,
the container is removed from the heating plate, and the system is cooled down to room
temperature while periodically stirring the CRMB with a glass rod. The methodology for
the preparation of CRMB is shown schematically in Figure 5.
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After the CRMB samples were obtained, the dynamic viscosity was tested with a
rotary viscometer. If the dynamic viscosity was less than 3 Pa*s at a test temperature of
135 ◦C, the basic dependencies of the properties were established. If the viscosity was more
than 3 Pa*s, the sample was not used in further tests.

Determination of the influence of formulation and technological factors of rubber
modifier on structure parameters and properties of the modified bitumen binder—CRMB
(at least three samples are prepared and tested for each percentage of crumb rubber and
devulcanizing agent. Standard deviation was not more than 3%), will be carried out by
methods specified in the regulatory documents governing the quality of Intertate Standard
GOST R 58400.1-2019 [34] (in accordance with AASHTO M 320):

1. to establish the upper limit of the operating temperature range of CRMB (PG X grade)
will set the maximum temperature at which CRMB can retain the necessary properties
according to the methodology set out in Intertate Standard GOST R 58400.3-2019 [35]
(in accordance with AASHTO R 29);

2. the resistance to plastic deformation of CRMB, which contributes to resistance to
plastic rutting (in summer and spring-summer periods), will be established by de-
termining the shear stability G*/sin δ—an index of bitumen binder’s ability to resist
shear effects, determined by the ratio of the complex shear modulus G* to the sine
of the phase angle δ. Tests of Original Binder and Rolling Thin-Film Oven Residue
will be carried out according to the methodology set out in Intertate Standard GOST
R 58400.10-2019 [36] (in accordance with AASHTO T 315);

3. the uniformity of the crumb rubber distribution in the volume of the CRMB will be
assessed by fluorescence microscopy. Fluorescence microscopy is performed using
a MIKMED-2 Luminescence Microscope equipped with a high-pressure mercury
ultraviolet lamp. This method is a simple analytical technique for evaluating the
morphological characteristics of crumb rubber-modified systems. A small amount of
heated sample was loaded and thoroughly crushed between two slides. The slide with
the sample was then cooled to room temperature and viewed under a microscope
with a magnification of 500× in the MIKMED-2 Luminescence Microscope program.

At the same time, it is hoped that the research on this subject can provide additional
reference value to the productivity of CRMB. The flow chart of the research approach of
this study is shown in Figure 6.
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3. Results and Discussion

From the analysis of the chromatograms (Figure 3) and the peaks obtained, the group
compositions of the hydrocarbon plasticizers were determined, Table 5.

Table 5. Hydrocarbon group composition of the plasticizers tested.

Name of Hydrocarbon
Groups

Hydrocarbon Group Content in
Petroleum Residual Extract, %

Hydrocarbon Group Content
in Waste Industrial Oil, %

Oils containing:
paraffin-naphthenic 22.6 62.7
aromatic containing:

light aromatics 14.6 12.9
medium aromatics 13.9 4.0

heavy aromatics 24.6 3.2

resins containing:
resins I 5.3 3.2
resins II 10.6 7.0

asphaltenes 8.4 7.0

Based on the group hydrocarbon composition of the plasticizers (Table 5), semi-
empirical compatibility parameters were calculated for the plasticizers, which include
the Traxler dispersion coefficient (Formula (1)), the mass ratio of paraffin-naphthenic
compounds to asphaltenes and the Hildebrand solubility parameter (formula (4)). The
results of calculating the semi-empirical compatibility parameters for the plasticizers are
shown in Table 6.
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Table 6. Semi-empirical plasticizer compatibility parameters.

No. Calculated Semi-Empirical Parameters
for Plasticizers Petroleum Residual Extract Waste Industrial Oil

1 Traxler dispersion coefficient 2.2 0.4

2 The mass ratio of paraffin-naphthenic
compounds to asphaltenes 2.7 9.0

3

Hildebrand solubility parameter for
plasticizer, (J/cm3)0.5 25.7 24.2

Hildebrand solubility parameter for
modifier (crumb rubber) *, (J/cm3)0.5 16.8

∆δ, (J/cm3)0.5 8.9 7.4

* According to the crumb rubber manufacturer, more than 60% of the crumb rubber contains isoprene rubber, so
the solubility parameter for the crumb rubber modifier was calculated for isoprene rubber.

An analysis of the plasticizer compatibility data (Table 6) revealed inconsistencies in
the semi-empirical parameters, making it difficult to determine the optimum plasticizer
based on the calculated values. So, according to the Traxler dispersion coefficient, the
most compatible with crumb rubber is petroleum residual extract, whereas according to
semi-empirical parameter No. 2, the most compatible is waste industrial oil. According
to the Hildebrand solubility parameter, both plasticizers have approximately the same
predisposition for compatibility with crumb rubber. Thus, it was found that these semi-
empirical parameters need to be refined, but further experimental studies are required.

Thermal analysis for the crumb rubber was carried out to determine the temperature
of the “hydrocarbon plasticizer—crumb rubber” dispersion system. Differential Scanning
Calorimetry (DSC) results are shown in Figure 7.
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Figure 7. DSC curve for crumb rubber CR 0.5.

According to the DSC curve for the studied crumb rubber, it can be concluded that the
thermo-oxidation of the studied crumb rubber occurs in four stages:

(1) endothermic stage (with heat absorption) at 24–190 ◦C, associated with evaporation
of air moisture and other low molecular weight products;

(2) exothermic stage (with heat release) at 190–425 ◦C, identified with the main period of
thermal oxidation of the material, proceeding up to 378 ◦C, and the related evaporation
of the formed oxidation products, indicating the beginning of the destructive process
of rubber granules;
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(3) endothermic stage at 425–470 ◦C with peak at 442 ◦C characterizes degradation and
destruction of rubber granule;

(4) exothermic stage, above 470 ◦C, characterized by thermal oxidation of crumb degra-
dation products and phase changes of carbon black.

From the results (Figure 7), we can conclude that the degradation of crumb rubber is
initiated at 190 ◦C and proceeds up to 442 ◦C. However, proceeding from the technical safety
of the experiment, it is necessary to consider the flash point of hydrocarbon plasticizers,
which for the petroleum residual extract is equal to 284 ◦C, and for the waste industrial
oil—220 ◦C. Therefore, considering data on DSC for crumb rubber and flash point for
plasticizers, we chose the optimum temperature of preparation—210 ◦C.

For a choice of the regime of preparation “hydrocarbon plasticizer—crumb rubber” dis-
persion system and studying the devulcanization process, we have prepared compositions
(Table 7) and studied their rheological properties, Figure 8.

Table 7. Compositions of “hydrocarbon plasticizer—crumb rubber” dispersion systems.

System Number
Dispersion System Component, %

Petroleum Residual Extract Waste Industrial Oil Crumb Rubber CR 0.5

1 100 - 20
2 100 - 30
3 - 100 20
4 - 100 30
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Figure 8. Dynamic viscosity for dispersion system No. 1. Figure 8. Dynamic viscosity for dispersion system No. 1.

As shown in Figure 8, one disperse system could not obtain stable results. As you
can see, the results are not on one curve. Therefore, the viscosity measurement method
on the rotary viscometer is difficult for tested systems. Standard viscosity determination
conditions for polymer-modified binders are not suitable for crumb rubber modified.
Because of the elastic components, making it difficult to conduct measurements and obtain
stable data. And therefore, a significant number of studies are needed to find test conditions.
Which a difficult and consistent with existing research in this area [37,38]. So further
investigation of the rheological characteristics of disperse systems was carried out by
determining the shear viscosity on a dynamic shear rheometer, Figure 9.
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Figure 9. Shear viscosity for dispersion systems No. 1–4.

The optimal preparation time for all investigated dispersion systems No. 1–4 with
different percentages of crumb rubber is when the shear viscosity of dispersion systems
reaches approximately the same values. The viscosity curves go to a “plateau”, indicating a
maximum degree of swelling of crumb rubber and the formation of structured bonds in the
dispersion system [39,40]. The results of shear viscosity measurements (Figure 9) show that
as a result of thermo-mechanical action, reaching a “plateau” for all the systems studied
occurs after three hours. Further thermomechanical action is not effective. An exception is
a sample with a residual extract containing 30% crumb rubber. This is apparently due to the
initially lower naphthenic oil content of 22% in the petroleum residual extract compared to
62% in the waste industrial oil. After all, naphthenic oils are the best softeners for rubber,
providing a stronger swelling of rubber, their uniform distribution and playing an essential
role in improving some of the structural properties of rubber. The high crumb rubber
content and low naphthenic oil content led to the delamination of the system after 4 h of
thermo-mechanical processing. This is indicated by the shear viscosity values (Figure 9,
4–6 h).

For practical applications, the most promising is maximally filled with crumb rubber
concentrates of “hydrocarbon plasticizer—crumb rubber” dispersion systems. Therefore,
the distribution uniformity was evaluated in systems with 30% crumb rubber. The results
are shown in Figure 10.

The analysis of the results obtained, Figure 10, shows that in the sample prepared with
waste industrial oil after three hours of thermo-mechanical exposure, a “loosened” structure
of the crumb rubber is observed, which indicates the devulcanization process taking place.
It consists of partial destruction of the rubber, resulting in local destruction of its spatial
structure. That is, the density of the spatial network decreases due to the disintegration
of part of the transverse bonds and some of the main molecular chains [39,41]. Further,
to stabilize and inhibit the devulcanization process occurring at the stage of CRMB at the
final stage of preparation, a devulcanizer/stabilizer is introduced. In the sample prepared
with the petroleum residual extract, this effect was not observed. This is also reflected in
the lower values obtained for shear viscosity (Figure 9). Therefore, it was not considered
further in the study of the dependencies of the CRMB properties.
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To establish the features of the influence of crumb rubber on the structure of the CRMB,
the compositions were prepared (Table 8), and their performance properties were studied
(Figure 11 and Table 9).

Table 8. Compositions of crumb rubber modified binders.

CRMB
Number

CRMB Component, %
Homogeneity

of CRMBBitumen
pen. 50/70

Petroleum Residual
Extract

Waste
Industrial

Oil

Crumb
Rubber
CR 0.5

Poly-
TransoctenamerRubber

(over 100%)

Synthetic Wax
(over 100%)

1 56.6 33.4 10 3 - 56.6 yes
2 34.8 50.2 15 3 - 34.8 yes
3 13.2 66.8 20 3 - 13.2 yes
4 56.6 33.4 10 - 3 56.6 yes
5 34.8 50.2 15 - 3 34.8 no
6 13.2 66.8 20 - 3 13.2 no
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Table 9. Operational properties of crumb rubber modified bitumen.

Name of Parameter CRMB No. 1 CRMB No. 4 Test Methods

Original Binder

Viscosity: max 3 Pa*s,
test temp 135 ◦C, Pa*s 0.22 0.08 Interstate Standard GOST

33137 [42]
Dynamic shear:

G*/sin δ, min 1.00 kPa
test temp at 10 rad/s, ◦C

58 34 Interstate Standard GOST
R 58400.10 [36]

Continuous Grading
Temperature, ◦C 61.3 38.8 Interstate Standard GOST

R 58400.10 [36]

Rolling Thin-Film Oven Residue

Dynamic shear:
G*/sin δ, min 2.20 kPa

test temp at 10 rad/s, ◦C
46 34

Interstate Standards GOST
33140 [43],

GOST R 58400.10 [36]

Continuous Grading
Temperature, ◦C 47.3 39.0

Interstate Standards GOST
33140 [43],

GOST R 58400.10 [36]

Figure 11 shows a heterogeneous system where the polymer-rich phase is associated
with swelling or partial degradation of crumb rubber particles in light fractions, such as
saturated and aromatic, dispersed in the bitumen matrix as a spherical structure. The size
of the polymer phase appears to decrease with optimal curing time and optimal content
of crumb rubber. The crumb rubber copolymers are evenly distributed in the bitumen
matrix [39]. Analysis of fluorescence microscopy data (Figure 11) reveals that the most
uniform distribution of crumb rubber and absence of aggregated particles is observed in
CRMB samples with 10% crumb rubber and 3% devulcanizing/stabilising agent (regardless
of its variation). It is also worth noting that CRMB samples with 15% and 20% crumb
rubber content show visible system delamination, confirmed by structural homogeneity
studies, so these samples were not considered further in the study.

According to the test results, CRMB No. 1 and No. 4 meet the viscosity requirements
for PG bitumen, their viscosity being less than 3 Pa*s. The high-temperature value of
Performance Grade for CRMB No.1 prepared with poly-transoctenamer rubber is higher
than that of CRMB No.4. However, it is worth noting that for CRMB No. 4 prepared with 3%
synthetic wax, the Dynamic shear for Original Binder and Rolling Thin-Film Oven Residue
corresponds to the same high-temperature value of Performance Grade. This demonstrates
a stable structure and stabilization of the devulcanization process, which makes it promising
to investigate further the effect of this synthetic wax on CRMB properties.

It is worth mentioning that scientific research is currently ongoing to adjust and
optimise compositions of CRMB, select a harder bitumen base and develop technological
bases to produce more concentrated rubber-containing dispersion systems to increase the
operating temperature interval of the CRMB produced.

4. Conclusions

The semi-empirical Traxler and Hildebrand compatibility parameters are unreliable
for “hydrocarbon plasticizer—crumb rubber” dispersion systems. It is found that the most
suitable semi-empirical coefficient for establishing a compatible plasticizer to crumb rubber is
one based on the ratio of paraffin-naphthenic compounds to asphaltene-resin compounds.

Using differential scanning calorimetry, the temperature regimes of the degradation
of crumb rubber were investigated. It was found that the degradation of crumb rubber
is initiated at 190 ◦C and proceeds up to 442 ◦C. Considering the technical safety of
the experiment and values of the flash point of hydrocarbon plasticizers, an optimum
preparation temperature of 210 ◦C has been established.

When selecting the methods of investigation of the “hydrocarbon plasticizer—crumb
rubber” dispersion system, it was found that the method of determining the dynamic
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viscosity of the dispersion system on a rotary viscometer is not applicable due to the
presence of elastic components, making it difficult to conduct measurements and obtain
reliable data. The most suitable method is the shear viscosity method.

The hydrocarbon plasticizer with high naphthenic oil content was found to be the
most compatible with crumb rubber. To study the possibility of providing stabilization
and inhibition of the ongoing devulcanization process of crumb rubber, six samples of
CRMB with devulcanizing/stabilizing agents were prepared and examined. Based on the
results of fluorescent microscopy, it was found that the most uniform distribution of crumb
rubber and lack of aggregated particles is observed in the samples of CRMB with 10% of
crumb rubber and 3% devulcanizing/stabilizing agent, regardless of its variety. The CRMB
samples with a higher crumb content of 15% and 20% and with synthetic wax have been
found to exhibit visible system delamination.

The test results of the CRMB obtained have shown that the viscosity of the systems
meets the requirements of the standard for PG bitumen. Synthetic wax as devulcaniz-
ing/stabilising agent for crumb rubber in the binder volume is more promising than
poly-transoctenamer rubber.
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