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Abstract: The paper presents a study of the crystal structure of anhydrous halides LiF, LiCl and
LiBr using density functional theory. Models composed of 125 atoms were used for this study.
The theoretical values of the lattice parameters and the distribution of charges in the crystals were
determined. Using the assumed models at the level of theory DFT/B3LYP/6-31+g*, the theoretical
infrared spectra of lithium halides (LiF, LiCl and LiBr) were calculated for the first time. Additionally,
measurements of experimental far-infrared (FIR) spectra were performed for these salts. All the
obtained theoretical values were compared with experimental data obtained by us and those available
in the literature.

Keywords: far infrared spectroscopy; DFT calculation; lithium halides: LiF, LiCl, LiBr; ATP charge
distribution

1. Introduction

The industrial importance of lithium compounds is growing due to the development
of electromobility and advanced energy storage systems [1–3]. More than 70% of all
produced lithium is used in the manufacturing of Li-ion batteries for electronics and electric
vehicles [4]. Other global end-use markets are estimated as follows: ceramics and glasses,
14%; greases, 3%; continuous casting mold flux powders, 2%; polymer production, 2%; air
treatment, 1%; and others, 4%. Lithium is traded mainly in the form of two components,
Li2CO3, which accounts for 46% of the total quantity (in 2015), and LiOH (19%) [5]. High-
purity lithium carbonate is well described in the literature (in terms of its preparation [6,7]
and characterization using spectral methods [8,9]). The IR spectra for LiOH have been
known for more than 50 years [10], and some new aspects, like LiOH hydration behavior,
are still being studied [11,12]. Of the various lithium compounds, lithium halides (LiF, LiCl
and LiBr) are rarely studied, despite their various industrial applications.

LiCl is the most common lithium compound that occurs in continental brines, geother-
mal waters and oilfield brines [13]. For practical reasons, LiCl is converted to Li2CO3
(Li2CO3 is precipitated from LiCl-saturated solutions) [14,15]. LiCl is highly hygroscopic
and undergoes the phenomenon of deliquescence, which means that it sorbs water vapor
from the air and spontaneously becomes an aqueous solution. This unique feature allows
it to be used as a desiccant for air-conditioning and drying purposes [16], or it can even
be used to produce potable water by capturing water vapor from atmospheric air [17]. At
the same time, this hygroscopicity hinders the application of LiCl in low-temperature heat
storage systems [18]. To overcome this drawback, various vapor-permeable composite
materials have been developed [19,20]. Other applications of lithium chloride include
fluxes for brazing aluminum [21], catalysts for organic oxidation reactions [22], separa-
tion of RNA in biological systems [23], medical treatments for bipolar disorder [24], and
molten salt mixtures [25,26]. Lithium bromide solutions are used mainly in air cooling
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systems’ absorption chillers, where water is the refrigerant and a solution of LiBr acts as
the absorbent [27,28]. Chillers of this kind can provide useful room cooling using waste
heat or renewable energy [29,30]. Highly concentrated (50–60%) LiBr brines are employed
as liquid desiccants [31]. Solid LiBr is often used in organic synthesis [32,33] and the
catalytic conversion of waste biomass [34–36]. Unlike heavier halides, LiF dissolves poorly
in water [37] and has rather niche applications, such as radiation-shielding materials [38],
glasses for photonic applications [39] and optical materials [40].

Lithium halides are thus widely used in different classes of materials, including
glass, polymers (plastics), composites, catalysts and alloys. Regardless of their form
(anhydrous solids or aqueous solutions), vibrational spectroscopy may be employed to
assess their purity. Our previous study [41] showed that far-infrared spectroscopy is
a useful tool to distinguish NaCl and KCl minerals, and even blue and colorless NaCl
from Kłodawa. Although the structural, elastic, electronic, etc., properties of LiF, LiCl,
LiBr, and LiI compounds have been studied, we have noticed that the far-infrared spectra
of anhydrous lithium halides have not yet been reported in the literature. There are
numerous studies on halide solvation using both experimental and computational infrared
spectroscopy [42–44]; however, the baseline, i.e., FIR spectra, for anhydrous salts has
not yet been shown. DFT calculations are often performed to evaluate the structural
and electrochemical properties of various cathode materials for lithium batteries. The
first ab initio calculations for a cathode material Li2CoMn3O8 (high-energy and voltage,
rechargeable 5 Volt Li-ion battery) were performed by Eglitis and Borstel [45]. Our aim is to
fulfill the gap and present the calculated IR spectra of the crystal structure models of lithium
halides obtained using the density functional theory (DFT). In addition, our experimental
work verifies the calculated spectra. Our results may contribute to the advancement of
material characterization using spectral techniques and prove the applicability of FIR in
the differentiation of lithium halides.

2. Materials and Methods
2.1. Chemical Reagents

Lithium fluoride (LiF), chloride (LiCl) and bromide (LiBr) (analytical grade, 99+%,
ACS reagent) anhydrous salts were purchased from Thermo Fisher Scientific and ROTH. Im-
mediately after opening the original manufacturer’s packing and without any preparation,
the chemical reagents were taken for the infrared spectra measurements.

2.2. DFT Calculations

Calculations were performed at the DFT level, using the B3LYP functional and 6–31+g*
basis set, using the Gaussian’16 program packages [46–48]. B3LYP is one of the most
commonly used functionals. Eglitis et al.’s [49] calculations show that the B3PW or B3LYP
hybrid exchange-correlation functionals make it possible to achieve excellent agreement
with experiment for the band gaps for BaF2, SrF2 and CaF2. The input geometries of
salt crystal models (LiF, LiCl and LiBr) were taken for calculation from crystallographic
data [50–52]. Our previous study showed that calculations for a 125-atom model for
NaCl and KCl give reasonable results [41]. This 125-atom structure provides that each
of the 27 atoms of the conventional unit cell of the studied lithium halides has six-fold
coordination. Moreover, according to our previous study for NaCl and KCl, freezing of
all bond angles to 90◦ in the structure during the geometry optimization process leads to
a good simulation of the lattice parameters of the crystals and their infrared spectra [41].
Thus in this work, the geometries of the 125-atom model structures of LiF, LiCl and LiBr
were fully optimized with the restriction for all angles 90◦. No imaginary frequencies
were determined for any of the optimized structures of the tested halides of alkali metals.
Standard conditions (temperature of 298.15 K and pressure of 1 atm.) were applied. The IR
spectra of LiF, LiCl and LiBr were calculated by representing each band as a Lorentzian-
shaped curve. Half-bandwidths of 50 cm−1 were used to take temperature broadening into
account. Calculated frequencies were scaled by 0.9 factor [53]. The atomic charge is not
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a quantum chemical observable; therefore, there are many methods for dividing the total
charge of a molecule into atomic charges, of which one of the most well-known and widely
used is the APT (Atomic Polar Tensors) method [54]. In this approximation, the atomic
charge is related to the trace of the corresponding atomic polar tensor, i.e., the tensor of the
derivatives of the dipole moment with respect to atomic Cartesian coordinates.

2.3. Far Infrared Spectroscopy

The infrared absorption spectra measurements were taken on a Bruker VERTEX 70v
FT-IR spectrometer. Spectra were recorded in room conditions in the spectral range of
620–30 cm−1. The samples of lithium halides (LiF, LiCl, LiBr) were suspended in Apiezon
grease and placed on a polyethylene window. The spectra were measured in triplicate with
32 scans and a resolution of 2 cm−1.

3. Results
3.1. Model of Crystals of Anhydrous Salts: LiF, LiCl and LiBr
3.1.1. Geometry

The first step of the quantum-chemical calculation was geometry optimization of the
model of crystals of anhydrous salts LiF, LiCl and LiBr. The lithium fluoride, chloride and
bromide crystallize in Fm3m space-group symmetry. In the Schoenflies system, it is Oh
point group. The initial 125-atom model of the LiF (LiCl and LiBr) crystal that was taken for
calculations was part of the crystal structure determined by X-ray measurements [50–52].
Figure 1A shows the LiCl unit cell (same for LiCl and LiBr), which contains 27 atoms
(3 × 3 × 3). In order to preserve the symmetry of the unit cell and at the same time
guarantee that each of the 27 atoms of this unit cell had 6-fold coordination, a model
containing 125 atoms (5 × 5 × 5) had to be created (Figure 1B). This model was built by
adding one more layer of atoms on each of the six faces of a unit cell. During geometry
optimization, there was no change in the symmetry of the assumed models, and the final
structures had Oh symmetry.
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A comparison of the experimental and calculated geometrical parameters for LiF, LiCl
and LiBr unit cells is presented in Table 1.

Table 1. Comparison of experimental and calculated (DFT/B3LYP/6–31+g*) lattice parameters for
LiF, LiCl and LiBr.

Chemical Formula Crystal System Symmetry Space Group
Unit Cell Parameter

a = b = c (Å) α = β = γ (◦)

LiF isometric Fm-3m 4.020 ± 0.002 a, 3.906 ± 0.015 b 90.0

LiCl isometric Fm-3m 5.143 ± 0.006 a, 5.038 ± 0.022 b 90.0

LiBr isometric Fm-3m 5.489 ± 0.006 a, 5.283 ± 0.003 b 90.0

a—experimental value [50], b—calculated mean value (for 264 distances in model)

The results shown in Table 1 indicate that the theoretical values (calculation for
264 distances of Li-halide and for six distances of Li-halide in the surrounding of the
central 6-coordinated Li atom) are lower than those determined by X-ray diffraction. The
theoretical values are slightly smaller than the experimental values because they corre-
spond to a static crystal. The lattice parameters of lithium halides increase in the order
LiF < LiCl < LiBr, which corresponds with an increase in the atomic radius of the halogen.
The value of the cell parameter equals a = 5.038 Å and a = 5.283 Å for LiCl and LiBr,
respectively. These values are very similar, which is certainly due to the similar value of the
electronegativity (E) and ionic radius (R) [55] for these elements (ECl = 2.83, RCl− = 181 pm;
EBr = 2.74, RBr− = 196 pm). The value of this cell parameter for LiF is significantly different:
3.906 Å (EF = 4.1, RCl− = 119 pm). The results obtained during the calculations are fully
consistent with the experimental data.

3.1.2. Charge Distribution in Model Structure of LiF, LiCl and LiBr

Table 2 shows the calculated ATP charge (DFT/B3LYP/6–31+g*) on the lithium atom
and halide atoms in each model structure of LiF, LiCl and LiBr. The value of the negative
charge on the atom of the appropriate halide decreases in accordance with the series
F > Cl > Br and equals −0.8198, −0.7796 and −0.7408, respectively. This is consistent with
the decreasing value of electronegativity of individual elements. The positive charge on
the lithium atom is +0.8198, +0.7796 and +0.7408 for LiF, LiCl and LiBr, respectively. The
energetic conditions near/on the surface of the crystal are different from those inside
it. Inside the solid, the forces acting on the ions are balanced. On the surface, not all
coordination sites are saturated, which creates slightly different conditions and determines
reactivity. As shown in Table 2, there is a noticeable difference between the charge on
individual ions inside the crystal model and on its surface.

Table 2. Comparison of calculated ATP charges for LiF, LiCl and LiBr.

Chemical
Compound

Li
Mean Value

(N = 63)

Li
Central Atom

(N = 1)

Li
Surface
(N = 13)

X (F,Cl,Br)
Mean Value

(N = 62)

X (F,Cl,Br) in Direct
Surrounding Central Atom

(N = 6)

X (F,Cl,Br)
Surface
(N = 12)

LiF 0.8227
±0.0176 0.8171 0.8342

±0.0222
−0.8198
±0.0057

−0.8169
±0.0000

−0.8212
±0.0065

LiCl 0.7831
±0.0243 0.7626 0.8001

±0.0289
−0.7796
±0.0070

−0.7752
±0.0000

−0.7822
±0.0076

LiBr 0.7449
±0.0276 0.7172 0.7645

±0.0319
−0.7408
±0.0046

−0.7398
±0.0000

−0.7412
±0.0051
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3.2. Infrared Spectra of LiF, LiCl and LiBr

For the previously optimized structures (models of LiF, LiCl and LiBr), the IR frequen-
cies were calculated at the same level of theory (DFT/B3LYP/6-31+g*). The calculations
showed 369 (3 × 125 − 6) internal vibrations (with symmetry of A1g, A2g, Eg, T1g, T2g,
A1u, A2u, Eu, T1u) for the 125-atom model of salt. In the Oh point group, only vibrations
with symmetry T1u are active in the infrared spectrum. The frequency and intensity of
these 29 IR active T1u vibrations are presented in Table 3. As is shown in Table 3, IR
absorption of LiF, LiCl and LiBr appears only in the ranges of 609.41–111.43, 382.61–63.66
and 386.6–42.7 cm−1, respectively. Thus, the calculations confirmed that lithium fluoride,
chloride and bromide do not absorb infrared radiation in the broad spectral range. The
vibrations with the strongest intensity appear at 446.3, 478.2 and 516.3 cm−1 for LiF, at
241.0, 299.2 and 332.7 cm−1 for LiCl and at 229.1, 303.0 and 371.0 cm−1 for LiBr.

Table 3. Comparison of calculated (DFT/B3LYP/6-31+g*) IR frequency and intensity of T1u vibra-
tional modes for 125-atom models of halides: LiF, LiCl and LiBr.

No.

LiF LiCl LiBr

Frequency
(cm−1)

IR Int.
(KM/Mole)

Frequency
(cm−1)

IR Int.
(KM/Mole)

Frequency
(cm−1)

IR Int.
(KM/Mole)

1 111.4 1.7 63.7 2.3 42.7 0.3
2 160.1 0.1 89.6 0.0 67.0 1.6
3 184.2 0.0 101.0 0.0 73.1 1.9
4 213.4 0.9 118.6 0.0 81.3 20.2
5 217.6 0.5 121.0 0.0 84.7 0.0
6 235.3 3.0 130.3 1.9 95.1 0.4
7 250.4 25.8 143.5 15.0 107.1 0.7
8 253.2 0.0 146.1 0.5 110.7 9.4
9 255.4 0.1 158.7 1.5 121.0 38.4

10 265.3 2.1 159.8 7.3 124.7 35.4
11 280.3 0.7 172.3 0.1 137.6 2.8
12 292.1 4.0 174.2 4.6 142.0 111.1
13 314.0 5.5 183.0 1.5 159.1 37.5
14 315.8 8.7 195.0 13.5 173.9 0.0
15 335.1 4.9 201.3 14.5 175.3 119.1
16 341.2 161.5 205.3 0.0 194.5 201.3
17 346.0 142.6 210.7 28.4 215.9 10.9
18 357.4 56.2 212.0 2.3 229.1 1212.2
19 365.0 56.8 214.0 91.0 240.1 3.7
20 377.6 896.1 219.9 4.7 247.5 0.3
21 384.4 106.3 231.5 176.6 266.2 51.1
22 394.8 403.0 236.5 326.1 272.4 9.7
23 439.3 497.7 241.0 1168.7 279.6 14.3
24 446.3 1561.7 277.1 155.2 303.0 1647.0
25 478.2 1570.5772 299.2012 1661.4200 319.8562 40.7289
26 516.3 1549.7978 320.8487 37.8190 332.3225 247.1439
27 529.9 164.5545 332.7207 2017.2156 345.7773 60.3065
28 579.3 476.5014 369.7691 766.1095 371.0345 1523.0904
29 609.4 438.1410 382.6068 75.2121 386.6431 59.1295

A comparison of the experimental and calculated far-infrared spectra of lithium halides
is presented in the range of 600–30 cm−1 in Figure 2.

Figure 2 shows far-infrared spectra of anhydrous LiF, LiCl and LiBr salts. In each case,
very broad bands are observed with maximum absorption at 170, 200 and 353 cm−1 for
LiBr, LiCl and LiF, respectively. Other alkali metal halides also absorb within a similar
spectral range. For example, the most intense band in the FIR spectrum of NaCl and KCl is
observed at 175 cm−1 and at 145 cm−1, respectively [41]. The calculation method used has
its limitations. In order for the calculated spectra to better reflect the experimental spectra,
we used a scaling factor (SF = 0.9) and gave the calculated signals a larger half-width
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(50 cm−1). The experimental spectra (Figure 2) show that the bands are actually wide. The
calculations reflect the experimental data well. In particular, they reproduced very well the
fact of the high similarity of the LiCl and LiBr spectra and the high contrast of these spectra
with the LiF spectrum.
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4. Conclusions

The paper presents research on lithium compounds (LiF, LiCl and LiBr), whose impor-
tance in the industry is increasing. Although many works devoted to this topic, especially
in the last decade, there are still gaps in the current knowledge. The aim of our article
was to present additional experimental and theoretical data on the structure and spectral
properties of selected anhydrous lithium halides.

The study included an experimental part that involved measurements of far-infrared
spectra. To our knowledge, FIR spectra of anhydrous LiF, LiCl and LiBr salts have been
presented for the first time. The spectra are unique for each compound; therefore, they can
now be distinguished.

The second part of the research consisted of calculations using the density functional
theory method. Calculations were performed for a crystal model containing 125 atoms. In
each case, the final geometry of the model preserved Oh symmetries. Theoretical values
of lattice parameters and charge distribution in theoretical structures of anhydrous LiF,
LiCl and LiBr were calculated at the B3LYP/6-31+g* theory level. The obtained values
are consistent with the experimental data presented in the literature. Additionally, in this
work, the infrared spectra for the model of crystals of LiF, LiCl and LiBr were calculated
(the B3LYP functional and the 6-31+G* basis set) for the first time. The obtained theoretical
spectra were similar to the experimental spectra.

Electron charge density distribution and related properties are important to the un-
derstanding and design of materials, as many fundamental properties relevant to a wide
range of applications are directly related to them. Thus, our research could be useful in
predicting the properties of lithium compounds.
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