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Abstract: Tetracycline (TC) and arsenic contaminants are two main pollutants in aquaculture and
livestock husbandry, and they have drawn worldwide attention. To address this issue, a novel
N-doped carbon@magnesium silicate (CMS) was fabricated via a facile and low-cost hydrothermal
route, adopting glucose and ammonia as C and N sources, respectively. The synergetic combination
of carbon and magnesium silicate makes CMS possess a high surface area of 201 m2/g and abundant
functional groups. Due to the abundant C- and N-containing functional groups and Mg-containing
adsorptive sites, the maximum adsorption capacity values of CMS towards As(V) and TC are
498.75 mg/g and 1228.5 mg/g, respectively. The type of adsorption of As(V) and TC onto CMS is
monolayer adsorption. An adsorption kinetic study revealed that the mass transfer and intraparticle
process dominates the sorption rate of As(V) and TC adsorption onto CMS, respectively. Various
functional groups synthetically participate in the adsorption process through complexion, π–π EDA
interactions, and hydrogen bonds. This work provides a one-step, low-cost route to fabricate a
N-doped carbonaceous adsorbent with a high surface area and abundant functional groups, which
has great potential in the application of practical sewage treatment.

Keywords: diatomite; adsorption capacity; N-doped carbon

1. Introduction

Nowadays, due to the increasing demand for meat products, aquaculture and live-
stock husbandry have developed rapidly. Serious environmental issues have been caused
by unreasonable development in the above areas, which seriously affects the biological
environments of aquatic ecosystems [1,2]. Tetracycline (TC) and arsenic species are two of
the main pollutants detected in sewage discharged from livestock ranches and intensive
fishing grounds [3,4]. TC is an efficient antibiotic, which is widely used for the prevention
and cure of diseases in fish and livestock [5,6]. However, TC is quite difficult to metabolize.
Long-term exposure to TCs can lead to an increase in bacterial resistance, thus posing a
great threat to human health and ecological environments [7,8]. Similarly, arsenic exists
as heavy metal oxyanions and is commonly used as a growth promoter in animals and
as a pesticide. The enrichment of arsenic species through migration can cause serious
damage to human health and ecosystems [9]. Thus, great attention has been paid to the
treatment of sewage containing these aforementioned pollutants. Various strategies have
been adopted for the removal of TC- and arsenic-containing sewage, including biological
treatment, chemical precipitation, photocatalysis, Fenton catalysis, adsorption, etc. Among
these methods, adsorption is commonly recognized as the most efficient and facile method
due to its wide applicable scope, facile operation, low cost, and convenience for field
application.
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Various adsorbents have been developed. Recently, carbonaceous adsorbents such as
graphene oxide, activated carbon, and biochar have attracted wide attention due to their
large specific surface area, abundant C-containing functional groups, and good adsorption
performance [10–13]. Furthermore, with the doping of specific elements such as N and S,
the adsorption performance of carbonaceous adsorbents can be effectively improved, since
the doping of N and S elements can increase the amount of specific surface-adsorptive
sites [14–18]. In recent years, carbonaceous adsorbents have shown great application
potential in the removal of TC- and arsenic-containing sewage.

Although carbonaceous adsorbents exhibit good adsorption performance in sewage
treatment, the reported carbonaceous adsorbents are far from meeting the requirements of
practical environment remediation. The complicated separation process of highly dispersed
carbonaceous adsorbents in water could cause secondary pollution to the environment.
Furthermore, raw carbonaceous adsorbent commonly needs an extra activation process
to obtain a higher specific surface area, and a carbonaceous composite is commonly ob-
tained by a two-step fabrication process [19,20]. Moreover, a further calcination treatment
under a nitrogen-containing atmosphere is also required for the N-doping of carbonaceous
adsorbent [16,18]. This leads to a complicated fabrication process with intrinsic environ-
mental hazards and energy consumption. Therefore, the facile fabrication of a carbonaceous
adsorbent with a high specific surface area still remains a challenge.

To address this issue, a diatomite template self-sacrificing method is proposed. As
reported in our previous research, diatomite can be adopted as a self-sacrificing template
in the synthesis of 3D hierarchical porous magnesium silicate with a high specific surface
area of 337 m2/g [21]. The obtained magnesium silicate inherits its structural character-
istics from diatomite and offers substantial interfaces for the guest product. Herein, with
diatomite as a self-sacrificing template, magnesium silicate and hydrothermal carbon could
be synthesized through one hydrothermal route. The combination of hydrothermal carbon
and magnesium silicate provides the composite with a high surface area and abundant
C-containing groups. Ammonia used in the hydrothermal route offers hydroxyl bonds
for the formation of magnesium silicate and also serves as a N source for the formation of
N-doped carbon. Notably, the Mg-adsorptive site can promote the removal of TC through
a cation bonding bridge, i.e., a cation–n bond and a cation–p bond [22]. Thus, the design of
carbon@magnesium (CMS) offered an ideal solution to obtain a N-doped carbonaceous
composite with a high specific surface area and abundant C and N groups with a facile
one-pot hydrothermal route. Owing to the high specific surface area and abundant func-
tional groups, the obtained N-doped CMS exhibited excellent adsorption capacities for
TC (1228.5 mg/g) and arsenic (498.75 mg/g). It was found that Mg-containing adsorptive
sites and C- and N-containing groups synergistically participated in the removal of As(V)
and TC. The adsorption kinetics revealed the difference in the adsorption process between
As(V) and TC by CMS. Furthermore, the adsorption mechanisms of CMS towards TC and
As(V) were also discussed. Above all, this work provides a strategy for the facile one-pot
synthesis of N-doped carbonaceous magnesium silicate for the efficient removal of TC and
As(V) from sewage.

2. Experimental
2.1. Materials and Chemicals

Glucose (C6H12O6), magnesium chloride hexahydrate (MgCl2·6H2O), hydrochloric
acid (HCl, 1 mol/L), sodium hydroxide solution (NaOH, 8 g/L), ethanol (C2H5OH), am-
monia (25% wt%), and TC (C22H24N2O8) were purchased from Beijing Chemical Reagents
Company. All the chemicals were analytical regent grade and used without further purifi-
cation. An arsenic solution of l g/L was purchased from the National Research Center for
Certified Reference Materials. Diatomite was obtained from Changbai, Jilin province.
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2.2. Sample Synthesis

The preparation of CMS was accomplished based on our previous work with some
modification [21]. Typically, 1 g glucose and 1g raw diatomite were added into a mixed
solution of 10 mL deionized water and 40 mL ammonia solution (25 wt%). Then, the
suspension was kept stirring for 15 min, and 5 mL ethanol was added to the suspension
while stirring. Next, 5 g MgCl2·6H2O was added into 20 mL deionized water. The obtained
MgCl2 aqueous solution was dropwise added to the obtained suspension under stirring
for 30 min. The final suspension was transferred to a reaction caldron with hydrothermal
treatment at 180 ◦C for 8 h. The precipitates were rinsed 3 times with deionized water and
ethanol and dried at 60 ◦C for 3 h. The detailed synthesis processes of raw materials and
product are listed in Table 1.

Table 1. Raw materials used in the fabrication process.

No.
Item Glucose (g) Ammonia

(mL)
Ethanol

(mL)
Diatomite

(g)
MgCl2·6H2O

(g)
SBET

(m2/g) Sample

1# 1 20 0 1 5 32 CMH
2# 1 40 0 1 5 27.7 CMS-1
3# 1 40 5 1 5 33.7 CMS-2
4# 0.5 40 5 1 5 201 CMS
5# 1 20 0 0 0 / C2
6# 1 20 5 0 0 / C1

7# 0 40 0 1 5 337 Magnesium
silicate [21]

2.3. Materials Characterization

The morphology and element distribution of samples were observed using a field
emission scanning electron microscopy (Gemini SEM 300, ZEISS, Oberkochen, Germany)
and transmission electron microscopy (FEI Talos F200X-G2, FEI, Boston, MA, USA). Phase
composition was measured on a D8 Advance X-ray diffractometer using Cu Kα1 radiation.
The specific surface area and pore size distribution were measured using an ASAP 2020 (Mi-
cromeritics, Atlanta, GA, USA) apparatus utilizing BET and BJH methods. The functional
groups and bonds were identified with a Perkin-Elmer 1730 spectrometer (PerkinElmer,
Waltham, MA, USA) using the KBr pressed disk method. X-ray photoelectron spectroscopic
(XPS) spectra were measured with an ESCALAB 250Xi electron spectrometer (Thermo
Fisher, Waltham, MA, USA). The UV–vis spectrum of the TC solution was recorded using
a UV-3600 spectrophotometer (SHIMADZU, Kyoto, Japan). The concentration of arsenic
solution was measured using the ICP-AES technique with ICP-AES_OPTIMA7000DV
(PerkinElmer, Waltham, MA, USA) equipment with a detection limit of 0.001 mg/L. The
pH of solutions was measured with a PHS-3C pH meter (INESA, Shanghai, China). 13C
solid-state magic angle spinning (MAS) NMR experiments were conducted using a Bruker
Advance 400 MHz WB spectrometer (Bruker, Karlsruhe, Germany) using 4 mm zirconia
rotors as sample holders spinning at a MAS rate of νMAS = 15 kHz. Thermo-gravimetric
measurements were conducted using a differential scanning calorimeter (DSC 204F1, NET-
ZSCH, Selb, Bavaria, Germany).

2.4. Adsorption Capacity and Removal Efficiency Measurement

Both experiments were conducted to investigate the adsorption isotherms and kinetics.
For adsorption isotherms, 0.02 g of the prepared CMS was added to 70 mL As(V) and TC
solutions with different concentrations (50–800 mg/L), which were then treated under
stirring for a certain time at room temperature. As for the adsorption kinetics study, 0.02 g
CMS was added to 50 mL As(V) and a TC solution with a concentration of 100 mg/L. The
mixture was kept under stirring at 500 rpm. At predetermined time intervals (1–5 min), the
mixture was withdrawn and filtered for measurement. A syringe filter with a hydrophilic
PTFE membrane (diameter = 0.22 µm) was used to filter the mixed solution. HCl or NaOH
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aqueous solutions were used to adjust the pH. The concentrations of As(V) species and TC
in the filtrates were measured by ICP–AES and UV–vis techniques, respectively.

The As(V) and TC equilibrium adsorption capacity (Qe) and removal efficiency (Re)
were calculated according to the following formulas:

Qe =
(C0 − Ce)V

m
(1)

Re =
C0 − Ce

C0
× 100% (2)

where C0 and Ce represent the initial and equilibrium concentrations of As(V) and TC
species in solution, respectively. V represents the volume of the solution, and m is the mass
of the adsorbent.

3. Results and Discussion
3.1. Phase Composition of the Samples

Figure 1 shows the XRD patterns of the obtained carbonaceous materials with different
raw material ratios. As summarized in Table 1, no significant diffraction peaks of magne-
sium silicate were observed, as seen in Figure 1a, with only 20 mL ammonia added in the
fabrication aqueous solution. The diffraction peaks at 2θ = 18.6◦, 38.0◦, 50.8◦, 58.6◦, 62.0◦,
68.2◦, and 72.0◦ corresponded to (001), (011), (012), (110), (111), (103), and (201) crystal
planes of Mg(OH)2 with the Brucite phase (JCPDS# 83-0114), respectively, whereas with
abundant ammonia (40 mL) added, the diffraction peaks at 2θ = 6.1◦, 12.3◦, 18.5◦, 19.4◦,
19.4◦, 34.2◦, 35.8◦, and 60.0◦ corresponded to (002), (004), (006),

(
111

)
,
(
111

)
, (132),

(
134

)
,

and (060) crystal planes of Mg6Si4O10(OH)8 with the chlorite phase (JCPDS# 73-2376),
respectively, as illustrated in Figure 1b–d [22]. Additionally, no observable differences in
XRD patterns can be detected in Figure 1b–d. The above results revealed that the donated
amount of ammonia, rather than glucose or ethanol, in the fabrication process had an
obvious influence on the phase composition of the product fabricated.
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Figure 1. XRD patterns of the obtained carbonaceous composites with different raw material ra-
tios. 

Although the XRD technique was sufficient to characterize the phase of the magne-
sium silicate component, no peaks of carbonaceous adsorbent were detected. In order to 
confirm the presence of carboxylic groups in CMS, the 13C-NMR technique was employed 
to characterize the C species, and the spectrum is illustrated in Figure 2. Two large peaks 

Figure 1. XRD patterns of the obtained carbonaceous composites with different raw material ratios.

Although the XRD technique was sufficient to characterize the phase of the magnesium
silicate component, no peaks of carbonaceous adsorbent were detected. In order to confirm
the presence of carboxylic groups in CMS, the 13C-NMR technique was employed to
characterize the C species, and the spectrum is illustrated in Figure 2. Two large peaks
existed at chemical shifts of 16–60 ppm and 100–150 ppm, corresponding to aliphatic ether
carbons and sp2-hybridized carbons, respectively. The latter peak revealed a large number
of C=C bonds in fabricated carbonaceous adsorbent [23], while the peak at around 175 ppm
referred to carboxylic acids (COOH) and ester groups (COOR) [24]. Theses peaks indicated
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abundant C- and O-containing groups in the fabricated carbonaceous adsorbent, which was
favorable for the removal of contaminants by carbonaceous CMS. Still, small differences
existed between CMS and pure C (Table 1, C1). The intensity of peaks in CMS (Figure 2E)
was lower than in pure C, CMH, CMS-1, and CMS-2. According to the fabrication process
(Table 1), the donated amount of glucose in CMS was much lower than in other samples,
resulting in a low content of carbonaceous species in CMS. This was the main reason for
the low peak intensity in Figure 2E.
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According to the results of XRD and 13C-solid NMR, the main components in the
composite CMH were magnesium hydroxide and hydrothermal carbon, whereas CMS,
CMS-1, and CMS-2 were mainly composed of magnesium silicate and hydrothermal carbon.
The carbonaceous species provided functional C-containing groups, and thus the TG-DSC
technique was employed to measure the content of carbonaceous species in the composite.
As illustrated in Figure 3, the mass loss process can be divided into four stages. During
the first stage, the water molecules associated with interparticle and interlayer surfaces
are removed completely before 200 ◦C [25]. During the third stage, structural water is
removed with a significant endothermic peak at 350 ◦C, while the mass loss in the second
and last stage is ascribed to the decomposition of carbonaceous species. Thus, the content
of carbonaceous species in the composite is the mass loss in the second and last stage [25].

Regarding the above analysis, the contents of carbonaceous species in samples CMH,
CMS-1, CMS-2, and CMS were 24.2%, 15.0%, 21.4%, and 11.4%, respectively. The C content
of CMH and CMS-2 was approximately two times that of CMS, suggesting that the glucose-
donating amount had a positive effect on the C content of the fabricated carbonaceous
adsorbent.
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Figure 3. TG-DSC curves of sample CMH (A), CMS-1 (B), CMS-2 (C), and CMS (D).

3.2. Surface Morphologies and Pore Structures

To obtain a comparative morphology of CMS, the morphology of pure carbon was
firstly characterized and is illustrated in Figure S1. Without ethanol added in the fabrication
process, the morphology of pure carbon was composed of membranes and microspheres
with a diameter of 8 µm (Figure S1A,B), while the obtained carbonaceous materials existed
only as microspheres with a diameter of 4 µm (Figure S1C,D) when ethanol was used in
the fabrication process. Moreover, the microspheres were uniformly distributed without
agglomeration.

Figure 4 shows SEM images of the samples obtained under different fabrication pro-
cesses. As observed in Figure 4A,B, nanospheres with diameters of 200–250 nm were
scattered on the edge of nanoflowers. Increasing the amount of ammonia to 40 mL, one
could see that the obtained structure of CMS-1 had a disk-like morphology with uniform
nanospheres on its surface (Figure 4C,D). With ethanol being added into the fabrication solu-
tion, the obtained morphology exhibited a significant change. As presented in Figure 4E,F,
numerous urchin-like structures were observed on the surface of the disk-like structure.
Further decreasing the amount of glucose added, the obtained CMS presented a unique 3D
structure (Figure 4G,H), similar to that of diatomite. Numerous flower spheres were dis-
persed on the outer surface of CMS, and these flower spheres were assembled by nanopetals
(Figure 4H), whereas the inner structure of CMS was similar to that of the Mg-chlorite
reported in our previous work [21]. The inner structure of CMS consisted of nanocolumn
arrays and cavity structures built by columns on the upper and lower surfaces (Figure S2).
These nanocolumn arrays grew in the pores of the self-sacrificing template diatomite and
prevented the 3D structure from collapsing.
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According to XRD and NMR analyses, CMS was composed of a carbonaceous phase
and magnesium silicate. It was essential to determine the relationship between morphology
and substance. Thus, the TEM technique was adopted to exhibit a visual expression of
the above relationship. As presented in Figure 5A, the C and N elements shared the same
element distribution, which implies that the spheres were mainly carbon spheres. How-
ever, the Mg and Si elements distributed in accordance with the shape of the nanopetals,
indicating that the flower sphere in CMH was mainly Mg(OH)2 according to the XRD
analysis. Moreover, the Si element distribution was not as clear as that of the Mg element,
indicating that little magnesium silicate existed in CMH. The element distribution of CMS-1
is presented in Figure 5B, and the C element distribution revealed that the nanospheres in
CMS-1 were also carbon spheres. Figure 5C,D show TEM images and element distributions
of samples CMS-2 and CMS, respectively. C, N, Mg, and Si elements scattered similarly,
indicating that the morphology of CMS-2 and CMS was constructed by both carbon and
magnesium silicate. Taking the fabrication process into account, the donation of ethanol
improved the distribution of the above four elements.
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3.3. Morphology Formation Mechanism of Carbon Species

It is generally recognized that the growth mechanism of hydrothermal carbon is similar
to that of inorganic crystals. The growth of pure hydrothermal carbon comprises homoge-
neous nucleation and crystal growth. In a typical hydrothermal fabrication process, glucose
is pyrolyzed into organic acids such as formic acid, acetic acid, and acrylic acid. With
the pyrolyzation reaction proceeding, glucose is finally converted into the intermediate
hydroxymethyl furfural (HMF). Through a series of complicated reactions such as polymer-
ization and condensation, nucleation is finally accomplished [26]. Then, the carbonaceous
growth unit comes to the nucleus by diffusion and adsorption. Carbonaceous nuclei grow
uniformly and isotropically into carbon spheres, as described by the LaMer nucleation
diffusion control model [27].

In the fabrication process of CMS, the generated Mg(OH)2 and diatomite can serve
as a substrate for the nucleation of hydrothermal carbon at the initial stage. Thus, the
nucleation of hydrothermal carbon is a heterogeneous nucleation process. Due to the
lower energy required for heterogeneous nucleation, numerous carbonaceous nuclei are
generated on the surface of the substrates during the initial stage, while in the final stage,
the continuous isotropic growth of nanospheres is limited by the decreasing concentration
of the carbonaceous growth unit, leading to a nanosphere morphology of carbon species
in CMS. Once the organic solvent ethanol is donated to the hydrothermal solution, the
polarity and surface tension decrease, which helps to improve the solubility of the generated
oligomer and thus prevents the formation of an ordinary morphology [27,28]. The oligomer
is adsorbed on the surface of magnesium silicate and exists as amorphous carbon [29].
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3.4. Surface Areas and Pore-Size Distributions of the Samples

The specific surface area is a key element of an inorganic adsorbent in order to ac-
complish good adsorption performance. Figure 6 exhibits the N2 adsorption–desorption
isotherms and pore-size distributions of the fabricated carbonaceous materials. The four
samples shared a similar type IV N2 adsorption–desorption isotherm due to their meso-
porous structures. Moreover, the H3 hysteresis loop could be observed in the relative
pressure range of 0.4–1.0, which was ascribed to slit-shaped and wedge-shaped pore
structures due to the non-rigid aggregation of flakes [21]. Additionally, slit-shaped and
wedge-shaped pore structures as well as nanopetals could be seen, as shown in Figure 4.
Thus, it could be concluded that the nanopetal structures in the fabricated samples con-
tributed most to the specific surface area. The insets in Figure 6 show the detailed pore-size
distribution curve of each sample. The pore sizes were in the range of 0–120 nm and
centered at 0–20 nm, which also confirmed the existence of mesoporous structures in the
fabricated CMS.
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Figure 6. N2 adsorption–desorption isotherms of CMH (A), CMS-1 (B), CMS-2 (C), and CMS (D) (the
red line is adsorption branch and the black line is desorption branch, the inner is pore-size distribu-
tion).

As summarized in Table 1, the specific surface areas of the fabricated CMH, CMS-
1, CMS-2, and CMS were 32 m2/g, 27.7 m2/g, 33.7 m2/g, and 201 m2/g, respectively.
Through the comparison of these specific surface areas, it could be concluded that the
donated amount of glucose had a significant effect on the surface area of the fabricated
samples. As reported in our previous study, 3D magnesium silicate fabricated in a similar
route possessed a high specific surface area of 337 m2/g, which was obviously higher than
that of the fabricated carbonaceous CMS [21]. The large decrease in specific surface area
suggested that the carbonaceous component in the CMS compound had a negative effect
on the surface area. Additionally, with a decrease in the amount of glucose addition, CMS
exhibited a specific surface area of 201 m2/g, which was significantly higher than that of
CMH, CMS, and CMS-1.
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Nanospheres adsorbed on the petal structure in CMH and CMS-1, blocking their
pore structures and decreasing their surface areas. However, when ethanol was added
in the fabricated process, the hydrothermal carbon was in the amorphous form and was
adsorbed on the surfaces of CMS-2 and CMS. The amorphous carbon covered the surface
of magnesium silicate and blocked the pore structures, resulting in a low surface area of
CMS-2. With a decrease in glucose dosage, the surface area of CMS exhibited an observable
increase compared to that of CMS-2. Three reasons mainly contributed to the higher surface
area of CMS. Firstly, CMS possessed a unique 3D structure constructed by nanospheres,
nanocolumn arrays, and a cavity structure, which was favorable to a high surface area.
Secondly, the nanosphere and column structure were assembled by nanopetals, which
led to a numerous piled pore structure. Lastly, with the decrease in glucose donation, the
blocked pore structures were decreased, resulting in a more exposed pore structure. Thus,
CMS exhibited a higher specific surface area than CMH, CMS-1, and CMS-2.

3.5. Adsorption Capacity of CMS towards As(V) and TC

Surface area is a key element of the adsorption performance of the fabricated inor-
ganic adsorbent. CMS exhibited a much higher specific surface area than other fabricated
carbonaceous adsorbents in this work. Thus, CMS was selected as an adsorbent for the
removal of TC and As(V). Before conducting the adsorption experiments, it was essential
to determine the zeta potential of the adsorbent and the distributions of contaminants at
different pH values. As illustrated in Figure S3, the pHzpc of CMS was about 3, indicating
that CMS was negatively charged in solution at pH = 5–10. As for contaminants, TC
mainly existed as TCH− and TCH2 at pH = 5–10 [22], while As(V) existed as H2AsO4

− and
HAsO4

2− at pH = 5–10 [22]. To simulate a live environment of adsorption conditions in
sewage treatment, the pH of aqueous solutions was set at 7.

Figure 7 shows equilibrium adsorption capacities of different samples towards As(V)
(A) and TC (B). As presented in Figure 7A, the equilibrium adsorption capacity of CMS
increased with the initial concentration of As(V) until it reaches an equilibrium. In the
initial concentration of 600 mg/L, the experimental maximum adsorption capacity of
CMS towards As(V) was 498.75 mg/g. Notably, the maximum adsorption capacity of
CMS towards As(V) was higher than that of magnesium silicate (201 mg/g) and pure
carbon (12 mg/g) fabricated in a similar manner, suggesting that the combination of
magnesium silicate with hydrothermal carbon possesses better adsorption properties than
a single phase. Similar phenomena were observed in the adsorption of TC (Figure 7B). The
maximum adsorption capacity of CMS towards TC was 1228.5 mg/g, which was higher
than that of magnesium silicate (314 mg/g) and pure carbon (21.5 mg/g). This provided
additional evidence of the advantage of a combination.

For the adsorption of As(V) and TC onto CMS, two factors limited its consistent in-
creasing in adsorption capacity with an increase in its initial concentration. Firstly, with
limited surface area, surface-adsorptive sites became insufficient, as the initial concentra-
tions of the contaminant kept increasing, and the adsorption process gradually came to
an equilibrium state. Secondly, the adsorption of contaminants onto CMS decreased its
surface energy and made CMS less adsorptive to contaminants. Finally, the adsorption
capacity of CMS reached a saturation value. Notably, in a relatively low concentration of
TC, one TC molecule tended to connect with two Mg-adsorptive sites on the surface of
CMS [30], whereas in a relatively high concentration of TC, one TC molecule connected
with one Mg-adsorptive site [30]. This phenomenon was ascribed to the adsorption nature
of CMS towards TC, which also confirmed the strong connection between Mg-adsorptive
sites and TC molecules.
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Furthermore, recyclability is an important factor for practical sewage treatment. To
demonstrate its reusability, the adsorbent was washed with HCl solution (1 mol/L) and
deionized water after each adsorption procedure several times. The experimental results
of CMS reusability are presented in Figure S4. After the fourth adsorption cycle, the
adsorption capacity of CMS towards As(V) and TC decreased from 243.3 to 163.1 mg/g
and from 395.5 to 298.3 mg/g, respectively. Figure S5 displays the XPS survey of CMS after
the first and fourth adsorption cycles. As illustrated in Figure S5A, after the first and fourth
adsorption cycles, the XPS signals of C 1s, N1s, and Mg 1s experienced a significant drop in
peak intensity compared to signals of CMS. The decreases in C, N, and Mg signals partly
suggested a decrease in adsorptive sites on the surface of the regenerated adsorbent CMS
compared with raw adsorbent CMS. A similar phenomenon was observed in Figure S5B.
However, the peak intensity of C 1s exhibited an obvious increase. As summarized in
Table S1, the atomic ratios of the C element in CMS and CMS after the first and fourth
TC adsorption cycles were 11.25%, 35.45%, and 61.32%, respectively. The increase in the
atomic ratio was consistent with the change in the C 1s peak intensity. Two factors mainly
contributed to the increase in the C 1s peak intensity. Firstly, as TC mainly consists of
carbonaceous material, the adsorption of TC onto CMS surely increased the C1s peak
intensity. Secondly, after four TC adsorption cycles, the TC contaminant adsorbed onto
CMS remained on the surface of CMS after regeneration treatment. The decrease in the
adsorption capacity of CMS was due to the insufficient recovery of adsorptive sites and
partial irreversible adsorption of CMS towards As(V) and TC. Overall, it can be concluded
that the adsorbent CMS can be used as a potential adsorbent in practical applications due
to its high adsorption capacity and good reusability.

To evaluate the adsorption properties of CMS, the adsorption capacities of CMS
towards As(V) and TC were compared with the as-reported results, as summarized in
Table 2. As illustrated, the fabricated CMS exhibited a higher maximum adsorption capacity
towards TC than the reported common adsorbents, i.e., magnetic graphene oxide [31], N-
doped carbon [32], Y-GO-SA [22], Fe-doped activated carbon [33], and boron nitride with
N-defects [34] but a slightly lower capacity than Fe/porous carbon [35]. As for the removal
of As(V), the maximum adsorption capacity of CMS was lower than that of Mg–N-co-
doped lignin [36], and covalent organic frameworks [37] but higher than Y-GO-SA [22]
and Yttrium-doped iron oxide [38]. Therefore, CMS exhibits a higher adsorption capacity
towards TC and a good adsorption capacity towards As(V). Regarding the facile and
low-cost fabrication route, CMS possesses great advantages over common adsorbents in
practical environmental remediation.
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Table 2. Comparison of the As(V) and TC adsorption capacity of CMS with various adsorbents
reported in the literature.

Adsorbent pH Qmax(As(V))
(mg/g)

Qmax(TC)
(mg/g) Ref.

Magnetic graphene oxide 5 - 149 [31]
Yttrium-doped iron oxide 7 170.4 - [38]

N-doped carbon 8 - 339 [32]
Y-GO-SA 5 273 478 [22]

Mg–N-co-doped lignin 7 687 - [36]
Fe-doped activated carbon 4.35 - 625 [33]

Boron nitride with N-defects 7 - 1101 [34]
CMS 7 498.75 1228.5 Present work

Fe/porous carbon 7 - 1301 [35]
Covalent

organic frameworks 7 787 - [37]

3.6. Adsorption Isotherms and Kinetics

For an adequate reflection of the affinity between CMS and As(V)/TC, adsorption
isotherms of Freundlich, Langmuir, and Temkin models were chosen to describe their
adsorption behaviors. The linear equations of Langmuir, Freundlich, and Temkin models
are summarized in Text S1. The adsorption isotherms of As(V) and TC on CMS stud-
ied at 298 K are shown in Figure S6. The experimental adsorption data of As(V) and
TC fit well with the Langmuir model, with higher correlation coefficients of 0.996 and
0.999, respectively. The fitting results imply that the adsorption of As(V) and TC are both
monolayer adsorption [30]. Adsorptive sites and functional groups on the surface of CMS
rather than electrostatic attraction play major roles in the removal of As(V) and TC. The
Temkin isotherm fitting results suggest that the adsorption of As(V) and TC onto CMS is
an exothermic process [21].

As for the kinetics study, the effect of adsorption time on the equilibrium adsorption
capacity of CMS towards As(V) (A) and TC (B) is plotted in Figure 8. The adsorption of
As(V) onto CMS was accomplished within 30 min, whereas, the equilibrium adsorption of
TC onto CMS required 180 min. Differences in equilibrium adsorption times revealed that
diverse adsorption mechanisms occurred during the adsorption of As(V) and TC by CMS.
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Figure 8. Effect of adsorption time on the adsorption capacity of CMS towards As(V) (A) and TC (B).

For an adequate appreciation of the As(V) and TC adsorption processes onto CMS,
kinetic models including pseudo-first-order (PFO) and pseudo-second-order (PSO) were
employed to interpret the adsorption plots originated from kinetic adsorption experiments
(detailed information about the kinetics models is listed in Text S2). The linearly fitting
curves of PFO and PSO are illustrated in Figure S7, and the results are summarized in
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Table 3. The coefficient (R2) of the PSO model for both As(V) and TC adsorption was
nearly 1, which was higher than that of the PFO model. Additionally, the qe,cal of As(V)
and TC adsorption obtained from the PSO model was much closer to the experimental
adsorption capacity than that of the PFO model. The above results suggest that PSO is
more accurate for interpreting the adsorption behavior of CMS towards As(V) and TC.
Thus, chemisorption is a limiting factor of the sorption rate during the removal of As(V)
and TC [36].

Table 3. Fitting results of pseudo-first-order and pseudo-second-order models.

Species

Model Pseudo-First-Order Pseudo-Second-Order

qe,exp
(mg/g)

qe,cal
(mg/g)

k1
(min−1) R2 qe,exp

(mg/g)
qe,cal

(mg/g)
k2

(min−1) R2

As(V) 93.5 50.995 0.16055 0.95 93.5 98.619 6.023·10−3 1.00
TC 188.725 13.17 0.0149 0.79 188.725 187.970 0.0108 1.00

To investigate the possible transportation mechanisms involved in the adsorption of
As(V) and TC, the Weber–Morris intraparticle diffusion model and the Boyd model were
employed to fit the adsorption data during the kinetics study (detailed information about
the intraparticle diffusion kinetic model and the Boyd model is listed in Text S3, and the
results are summarized in Table 4). As shown in Figure 9A1,A2, the adsorption process
of As(V) and TC onto CMS could be divided into two stages [25,39]. The first stage is
commonly recognized as a mass transfer process in which As(V) or TC contaminants in
solution diffuse to the external surface of CMS. Contaminants of As(V) and TC are adsorbed
on the external surface of CMS through adsorptive sites. The intraparticle diffusion constant
kid represents the diffusion rate, which is affected by the contaminant species, concentration,
and so on. It was noticed that the diffusion rate of As(V) was higher than that of TC based
on a higher value of k1d during the first stage (Table 4). Although the electrostatic attraction
between CMS and TC contributed to the diffusion rate of TC, the As(V) existed as highly
mobile ions with small molecule weights. Thus, As(V) exhibited a higher diffusion rate than
organic TC, which possessed a high molecule weight during the first stage. Comparatively,
the second stage was ascribed to the diffusion of As(V) and TC from the exterior surface to
the internal surface and pores, which was controlled by intraparticle diffusion. In this stage,
the k2d of As(V) diffusion was also higher than that of TC, indicating that As(V) possessed
a higher diffusion rate than TC. The molecule weight of TC is much higher; thus, it was
more difficult for TC to diffuse through boundaries, resulting in a low diffusion rate of
TC. Based on the above analysis, the adsorption of CMS towards As(V) has a higher rate
in both external mass transfer and intraparticle diffusion, resulting in a faster adsorption
towards As(V).

Table 4. Fitting results of Weber–Morris model and the Boyd model.

Species

Model Weber–Morris Boyd

K1d
(mg·g−1·min−0.5) R1

2 C1
K2d

(mg·g−1·min−0.5) C2 R2
2 R2

As(V) 32.508 0.97 5.052 3.810 72.777 0.99 0.95
TC 11.875 0.99 153.059 0.7702 178.004 0.99 0.98/0.98
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As the adsorption process consists of external mass transfer and intraparticle diffusion,
it was necessary to judge which one exerted a greater influence on the adsorption rate of
As(V) and TC. Subsequently, the Boyd model was adopted to further analyze the adsorption
kinetic data [40]. As shown in Figure 9B1,B2, the fitted plot of As(V) adsorption was nearly
a straight line according to a high coefficient (R2 = 0.95), suggesting that the external mass
transfer process delivered a greater influence of As(V) adsorption onto CMS, whereas the
fitted plot of TC adsorption was not a straight line. The plot could be separated into two
straight lines with coefficients of 0.98 and 0.98, respectively. In this situation, the fitted plot
of TC adsorption revealed that external mass transfer exhibited a weak influence on the TC
adsorption rate, and it was intraparticle diffusion that mainly dominated the sorption rate
of TC onto CMS.

3.7. Adsorption Mechanism of CMS towards As(V) and TC

To identify the carbonaceous species and chemical environment, XPS spectra of the
fabricated pure hydrothermal carbon (Table 1, C1) are illustrated in Figure 10. The XPS
survey spectrum (Figure 10A) showed that significant N1s, O1s, and C1s characteristic
peaks appeared, which demonstrated the successful hydrothermal reaction of ammonia
with glucose [41]. Additionally, the atomic ratios of C, N, and O elements were 76.47%,
14.23%, and 9.30%, respectively, suggesting that the fabricated hydrothermal carbon had
abundant N-containing functional groups. As illustrated in Figure 10B, the C element
mainly existed as C-C/C=C/CHx, C=N/C-OR, C-N/C-OH, and COOR at the binding
energy values of 284.6 eV, 285.7 eV, 287.1 eV, and 289 eV, respectively [42]. The binding
energies and content of C and N species are summarized in Table 5. N 1s spectrum
(Figure 10C) analysis showed that the N 1s spectrum could be fitted into three peaks at
binding energies of 399 eV, 400.3 eV, and 401.4 eV, which corresponded to pyridinic-N,
pyrrolic-N, and graphitic-N [42], respectively, while the O1s XPS spectrum (Figure 10D)
showed that the O element existed in the form of C=O bonds and C-O bonds. The existence
of pyridinic-N, pyrrolic-N, and graphitic-N revealed that the N element can be doped into
carbon species through hydrothermal reactions, and hydrothermal carbon with abundant
C- and N-containing groups is favorable for the removal of contaminants in sewage. Thus,
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the combination of hydrothermal carbon with magnesium silicate can provide C- and
N-containing groups for CMS.

Figure 10. XPS spectra of pure hydrothermal carbon (A) survey, (B) C 1s, (C) N 1s, and (D) O 1s.

Table 5. Concentration of C and N in different samples.

Bond/Species Binding
Energy (eV)

Concentration (%)

Pure C CMS
CMS after

As(V)
Adsorption

CMS after
TC

Adsorption

C-C/C=C/CHx 284.6 31.2 24.6 42.1 34.6
C-OR/C=N 285.7 48.8 53.2 51.3 37.6
C-OH/C-N 287.1 19.0 11.5 3.6 8.6

COOR 289 1.0 10.8 3.1 19.2
Pyridinic-N 399 65.0 62.9 49.5 54.3
Pyrrolic-N 400.3 27.3 19.5 22.8 38.0

Graphitic-N 401.4 7.8 17.6 27.7 7.6

In order to determine the role of C- and N-containing groups in the adsorption of
CMS towards As(V) and TC, XPS measurements were conducted, and the results are
displayed in Figure 11. In addition to the XPS signals of Mg, Si, and O elements, C1s and N
elements were also observed in the XPS survey of CMS before the adsorption (Figure 10A,B).
Considering the peak intensity of C and N elements in the XPS survey, the C and N contents
in CMS were much lower than those of the fabricated N-doped hydrothermal carbon. After
the adsorption of As(V), significant peaks of As 2p and As 3d were observed in the XPS
survey of CMS, revealing that As(V) was successfully adsorbed onto CMS. As for TC
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adsorption, the intensity of the Mg XPS signal significantly decreased in the XPS survey of
CMS, indicating that the adsorption of TC consumed Mg-containing adsorption sites on
the surface of CMS.

Figure 11. XPS spectra of CMS before and after As(V) and TC adsorption for (A1,B1) survey,
(A2,B2) N1s spectra, and (A3,B3) C 1s spectra.

Compared with pure hydrothermal carbon (Table 1, C1), the C and N species and bind-
ing energy in CMS remained unchanged, whereas the contents of C and N species exhibited
a noticeable change, which may be attributed to the co-existence of magnesium silicate in
the fabrication process. The binding energy and content of C and N species in CMS are
summarized in Table 5. The content of pyridinic-N, pyrrolic-N, and graphitic-N changed
after the adsorption of CMS towards As(V) and TC, suggesting that N species participate
in the adsorption of As(V) and TC [42]. As for the adsorption of As(V) (Figure 11A2),
the bigger change in the content of pyridinic-N revealed that pyridinic-N in N species
mainly contributed to the adsorption of As(V). As for the adsorption of TC (Figure 11B2),
the contents of pyridinic-N and graphitic-N decreased, indicating that pyridinic-N and
graphitic-N participated in the adsorption of TC. The TC molecule is a π-electron-rich
donor due to its structure of a benzene ring and C- and N-containing groups. Graphitic-N
is considered to be an efficient π-electron acceptor and can adsorb TC molecules through
π–π electron donor–acceptor (EDA) interactions [5,22,42]. The pyridinic-N connects TC
molecules through hydrogen bonds, realizing the adsorption of TC [5,22,42]. As illustrated
in Figure 11A3, the contents of COOR and C-OH/C-N groups significantly decreased after
As(V) adsorption. The functional groups of COOR and C-OH/C-N connected with As(V)
through complexation, resulting in a decrease in the contents of COOR and C-OH/C-N
groups [22,36]. In the adsorption of TC, the contents of C-OR/C=N and C-OH/C-N groups
decreased. The C=N and C-N bonds corresponded to graphitic-N and pyridinic-N, which
enabled the TC removal with π–π EDA interactions and hydrogen bond effects [42]. In
summary, XPS analysis confirms the important role of C and N species in the adsorption of
CMS towards As(V) and TC. With C- and N-containing groups, CMS can effectively adsorb
the contaminants of As(V) and TC from sewage.
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The FT-IR technique was employed to analyze the role of functional groups and
adsorptive sites in the adsorption of CMS towards As(V) and TC. According to XRD and
NMR analyses, CMS was composed of Mg-chlorite and N-doped hydrothermal carbon,
suggesting CMS possesses Mg-adsorptive sites and C- and N-containing groups. As
illustrated in Figure 12a, the adsorption peaks at 1016, 3439, and 3679 cm−1 were attributed
to the Si-O-Mg bond, a dissociative hydroxyl group, and Mg-OH, respectively. The Si-O-Mg
bond and Mg-OH were attributed to magnesium silicate in CMS, whereas the dissociative
hydroxyl group consisted of a hydroxyl group from magnesium silicate and C-OH from
carbonaceous species. The component of magnesium silicate possessed limited variety of
functional groups, while the component of N-doped hydrothermal carbon had various
active functional groups. The peaks at 1080 and 1240 cm−1 were attributed to the vibration
of C-O and C-N bonds, respectively. The above peaks in the FT-IR spectrum were affected
by the large and wide peak of the Si-O-Mg bond. The peaks at 1450, 1625, and 1653 cm−1

corresponded to the COOR group, C=N bond, and C=O/C=C bond, respectively. The
latter two peaks exhibited as one peak in the FT-IR spectrum due to the relatively close
wavelengths.
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After the adsorption of As(V), the peak intensities of the Si-O-Mg bond, COOR, C=N,
C=O, dislocated hydroxyl group, and Mg-OH significantly decreased, indicating that the
above adsorptive sites participated in the adsorption of CMS towards As(V), which is
consistent with the XPS analysis results. This confirmed the contribution of C- and N-
containing groups. The intensity decrease in the Si-O-Mg bond and Mg-OH was attributed
to the formation of amorphous magnesium arsenate complex ((Mg-O)AsO3

−) [22,43].
Moreover, the amorphous metal complex and As(V) could also be adsorbed by COOR,
C=N, and C=O bonds, resulting in a decrease in the peak intensity through hydrogen
bond interactions. Based on the above analysis, multi-adsorptive sites participate in the
adsorption of CMS towards As(V).

Figure 12c illustrates the FT-IR spectrum of CMS after TC adsorption. It was observed
that the peaks of Mg-OH and N-H bond disappeared while the peak intensities of the C-N
and Si-O-Mg bonds decreased, which was attributed to the complexation of Mg-containing
adsorptive sites with TC molecules into magnesium tetracycline complex (MgTC) [30].
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Since TC is a π-electron-rich donor and possesses hydroxyl, carbonyl, and amino groups,
it can donate numerous electrons to Mg-containing groups to form a MgTC complex via
cation–π bridge and cation–n bridge interactions [22,30]. Then, N-H bonds in graphitic-N
and pyridinic-N connect with MgTC or TC through π–π EDA interaction and hydrogen
bonds. As the TC molecule possessed abundant COOR, C=O, C=C, and C-O bonds, the
observable increase in peak intensity of the above C-containing groups provided solid
evidence of the high adsorption capacity of CMS towards TC. Figure 12d presents the
FT-IR spectrum of the synthesized MgTC. The adsorption peaks at 1475 and 846 cm−1 were
observed in MgTC and CMS after the adsorption, suggesting that the MgTC complex was
adsorbed onto CMS. According to XRD and FT-IR analysis, CMS is composed of N-doped
hydrothermal carbon and Mg-rich magnesium silicate, which provide CMS with abundant
Mg-adsorptive sites and C- and N-containing groups. Due to the abundant adsorptive sites
and functional groups, CMS possesses a satisfying adsorption capacity towards As(V) and
TC.

3.8. Synergism in Construction and Adsorption

In the construction of CMS, hydrothermal carbon and magnesium silicate play dif-
ferent roles. They synthetically endow CMS with abundant C- and N-containing groups
and high surface area. Fabricated 3D magnesium silicate possesses a high specific surface
area [21], which mainly serves as a frame in the construction of CMS. As discussed in
the FT-IR analysis, hydrothermal carbon provides abundant C- and N-containing groups,
which make the composite CMS more adsorptive [41]. Especially, the doping of the N
element leads to more defects and higher surface energy of hydrothermal carbon, which is
favorable to adsorption reactions [36,42]. The dopant of the N element exists as pyridinic-N,
pyrrolic-N, and graphitic-N, which could connect the TC molecule with π–π EDA interac-
tions. Through combination, CMS inherits a 3D structure with a large surface area from
magnesium silicate and abundant C- and N-containing groups from N-doped hydrother-
mal carbon. Thus, they synergistically participate in the construction of 3D CMS with a
high surface area and an abundance of various functional groups.

For a better understanding of synergism, the construction mechanism of CMS and
its synergistic adsorption behaviors towards As(V) and TC are schematically depicted in
Figure 13. In the adsorption of CMS towards As(V) and TC, various functional groups
also exhibit synergistic effects in the adsorption processes. In the adsorption of As(V),
Mg-containing groups and C- and N-containing groups synergistically participate in the
removal of As(V) through different mechanisms. The Si-O-Mg bonds as well as the Mg-OH
group react with As(V) to form an amorphous magnesium arsenate complex. C- and N-
containing groups connect with the amorphous complex through adsorption and chelation.
In the adsorption of TC, Mg-containing groups chelate with TC to form MgTC, while
C- and N-containing groups connect with TC or MgTC through π–π EDA interactions
and hydrogen bonds. Thus, both Mg-containing groups and C- and N-containing groups
contribute to the adsorption of TC by CMS.
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4. Conclusions

In summary, a 3D porous N-doped CMS is fabricated using a one-step hydrothermal
route with ammonia and glucose as N and C sources, respectively. Through the synergic
combination of hydrothermal carbon and magnesium silicate, the obtained CMS possesses
a high surface area of 201 m2/g and abundant C- and N-containing groups. The existence
and morphology formation mechanisms of C and N species are thoroughly investigated.
The maximum adsorption capacities of CMS towards As(V) and TC are 498.75 mg/g and
1228.5 mg/g, respectively. The adsorption isotherm fitting results imply that the adsorption
types of As(V) and TC are both monolayer adsorption. The kinetics analysis indicates that
the external mass transfer process has a greater influence on As(V) adsorption onto CMS,
whereas intraparticle diffusion mainly dominates the sorption rate of TC adsorption onto
CMS. Various functional groups synergically participate in the adsorption of As(V) and
TC. The adsorption mechanism of CMS towards As(V) includes complexion and hydrogen
bond interactions, while the adsorption of TC by CMS is mainly due to complexion caused
by cation–π bridges, cation–n bridges, π–π EDA interactions, and hydrogen bonds. The
facile synthesis procedure and good adsorption capacity make CMS a promising adsorbent
in practical environmental remediation.
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