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Abstract: Ni-xCu/Sn soldering joints were aged at 200 ◦C, and the microstructure evolution and
mechanical properties during the solid-state reaction were studied under shear loading. Results
showed that the intermetallic compounds (IMCs) exhibited a Cu content-dependent transformation
from the (Ni,Cu)3Sn4 phase to the (Cu,Ni)6Sn5 phase at the Ni-xCu/Sn interface. Furthermore, a
Cu3Sn layer was observed exclusively at the Cu/Sn interface. The shear strength of the soldering
joints after thermal aging exhibited an initial decrease followed by an increase, except for a significant
enhancement at the Cu content of 60 wt.%. In addition, the evolution law of mechanical properties and
failure mechanism of the thermal aging joints were elucidated based on the fracture microstructure
and the fracture curve of the joints.

Keywords: Ni-xCu/Sn soldering joints; solid-state reaction; intermetallic compounds; thermal aging;
mechanical properties

1. Introduction

Propelled by the market demand for electric vehicles and portable electronics, the ap-
plication of high-power and integrated chips led to an elevation in the service temperature
of micro-solder joints [1–3]. Cu/Sn micro-solder joints were widely used as the intercon-
nection system in 3D packaging, and the intermetallic compounds (IMCs) generated at the
Cu/Sn interface usually consisted of a Cu6Sn5 layer and a Cu3Sn layer with Kirkendall
voids [4–6]. However, the higher service temperature exacerbated the phase transition from
Cu6Sn5 to Cu3Sn within the micro-solder joints, resulting in the development of a porous
Cu3Sn layer [7–10]. These defects significantly impaired the electrical interconnection,
signal transmission, and mechanical properties of the micro-solder joints.

To impede the growth of the Cu3Sn layer, current methods involved incorporating a
minor Ni element into the Sn-based solder [11–13] or electroplating a Ni barrier layer on
the surface of the Cu substrate [14–17]. These approaches effectively delayed the growth
rate of the Cu3Sn layer. However, once the Ni element or Ni plating layer was depleted,
the Cu3Sn layer still developed at the interface. In comparison, incorporating Ni into the
Cu substrate allowed for stable growth of the reaction phase at the Cu/Sn interface. For
instance, Baheti et al. [18] found that a Cu-xNi/Sn interface with a Ni content exceeding
3 at.% solely yielded a single phase of (Cu,Ni)6Sn5 without the presence of the Cu3Sn phase.
It is noteworthy that previous studies on the Cu-Ni/Sn reactive systems predominantly
concentrated on Ni content below 25 wt.%, with emphasis on the morphological changes
in the single phase (Cu,Ni)6Sn5 [19–21]. Systematic studies to explore the composition and
evolution behavior of the IMCs at the Cu-Ni/Sn interface, particularly for Cu substrates
with varying Ni content, were insufficient. Furthermore, the impact of Cu incorporation on
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the microstructure and mechanical characteristics of Ni-Cu/Sn reactive systems when Ni
was employed as the fundamental metal has been scarcely reported on.

In this study, Ni-xCu/Sn soldering joints were aged at 200 ◦C, and the microstructure
evolution and mechanical properties during the solid-state reaction were studied with
varying Cu content and aging time. Additionally, the progression of mechanical properties
and failure mechanisms of Ni-xCu/Sn/Ni-xCu soldering joints were analyzed under
thermal load. This study provides potential guidance for the composition optimization of
micro-soldering substrates in high-power chips.

2. Materials and Methods

Ni-xCu alloys were synthesized via induction melting, incorporating varying Cu
contents ranging from 0 to 100 wt.% in increments of 10 wt.%. Cu and Ni blocks, with a
purity of 99.9%, were selected as the raw materials and individually placed into graphite
crucibles according to the predetermined mass percentages. The blocks were melted under
an argon-protective atmosphere. After additional homogenization treatment at 800 ◦C for
8 h, the deviation between the detected and intended Cu values was within 1 wt.%. The sol-
dering surfaces were polished to a uniform 5000 mesh, and the Ni-xCu alloys were divided
into 0.5 mm thick sheets and Φ5 mm × 3 mm cylinders using wire-cutting techniques.

A high-purity Sn ingot (99.99%) was rolled into a 30 µm thick solder strip and cut into
circular discs with a 5 mm diameter. These solder discs were positioned onto the surfaces of
Ni-xCu alloy sheets or assembled into a Ni-xCu/Sn/Ni-xCu sandwich structure (as shown
in Figure 1a). The specimens were soldered in a vacuum furnace at 260 ◦C for 30 min,
followed by subsequent aging at 200 ◦C for 24, 48 and 72 h, respectively. After the aging
process, the specimens were cooled to room temperature.
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and grain size of the IMCs. Additionally, the shear testing machine (MTS-E44.104) was 
employed to obtain the mechanical properties of the joints, and it was conducted at ambi-
ent temperature with a shear rate of 1 mm per minute. Figure 1b shows the assembly 

Figure 1. The assembly diagrams for (a) the shear joint and (b) the mechanical properties test.

The Ni-xCu/Sn aging joints and shear fracture joints were embedded in cold inlay
resin, followed by grounding and polishing to observe the microstructure of the IMCs. The
electron probe micro analyzer (EPMA, JEOL JXA-8230), coupled with an energy dispersive
X-ray spectrometer (EDS, INCAX-ACT), was employed to characterize the morphology
and component of the IMCs. The electron backscatter diffraction machine (SEM/EBSD,
JEOL JSM-7001 F) was employed to analyze the phase structure, distribution, and grain
size of the IMCs. Additionally, the shear testing machine (MTS-E44.104) was employed to
obtain the mechanical properties of the joints, and it was conducted at ambient temperature
with a shear rate of 1 mm per minute. Figure 1b shows the assembly diagram for testing the
mechanical properties of the joints. To ensure reliable results, specimens for each parameter
need to be tested 5 times to obtain an average value.
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3. Results and Discussion
3.1. Microstructure and Phase Components

Figure 2 shows the microstructure images of the Ni-xCu/Sn joints aged for 24 h.
The microstructure and thickness of the IMC layer exhibited a strong correlation with
the Cu content present in the Ni-xCu alloys. The IMCs exhibit a continuous layer at
the Ni-xCu/Sn interface as the Cu content ≤ 20 wt.% (Figure 2a–c), while particles with
deeper contrast start to emerge on this continuous layer as the Cu content increases to
30–50 wt.% (Figure 2d–f). The particle count grows with higher Cu content, gradually
replacing the continuous IMC layer and tending to form a continuous pattern. A reversion
to a continuous layer of interfacial IMCs is observed at a Cu content of 60 and 70 wt.%
(Figure 2g,h). With a further increase in Cu content to 80 and 90 wt.% (Figure 2i,j), the Sn
solder is nearly depleted, resulting in the appearance of holes on the surface of the IMC
layer. Additionally, when a pure Cu substrate is used (Figure 2k), the continuous IMC
layer exhibits a scalloped morphology, accompanied by the presence of two contrasting
regions at the Cu/Sn interface. Furthermore, except for a significant increase in the IMC
layer thickness at Cu contents of 80 and 90 wt.%, there are no significant differences in the
other samples.
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Figure 3 shows the microstructure images of the Ni-xCu/Sn joints aged for 48 h. The
microstructure and IMC layer thickness of each sample show negligible changes with the
extension of the aging time. Figure 4 shows the microstructure images of the Ni-xCu/Sn
joints aged for 72 h. With the aging time further extended, the microstructure and IMC
layer thickness of each sample continue to show minimal alterations, albeit with a slight
increment in thickness. The above phenomenon indicates that the microstructure of the
IMC layer tended to stabilize.
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Table 1 exhibits the EDS detection results on the designated positions in Figure 4. In the
case of pure Ni metal/Sn joints, the IMC layer can be referred to as the characteristic Ni3Sn4
phase (position 1) [22]. When the Cu content of Ni metal ≤20 wt.%, the IMCs maintain the
Ni3Sn4 phase structure, but there is a minor substitution of Ni with Cu, resulting in the
formation of (Ni,Cu)3Sn4 phase (positions 2 and 3) [23]. With an increase of Cu content to
30–50 wt.%, the particles formed on the (Ni,Cu)3Sn4 phase exhibit a structural transition
to the Cu6Sn5 phase, wherein Ni atoms partially replace Cu atoms and manifests as the
(Cu,Ni)6Sn5 phase (positions 4–9) [24]. Once the Cu content reaches ≥60 wt.%, it can be
deduced that the IMCs primarily comprise the (Cu,Ni)6Sn5 phase (positions 10–14). In
addition, in the case of pure Cu metal/Sn joints, interfacial IMCs are composed of the
conventional Cu6Sn5 phase and Cu3Sn phase (positions 15 and 16) [25].
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Table 1. The EDS detection results on the designated positions marked in Figure 4.

Specimens Positions
Element Component (at.%)

Phase
Sn Ni Cu

Ni/Sn 1 57.40 42.60 / Ni3Sn4
Ni-10Cu/Sn 2 58.23 38.10 3.67 (Ni,Cu)3Sn4
Ni-20Cu/Sn 3 57.15 35.02 7.83 (Ni,Cu)3Sn4

Ni-30Cu/Sn
4 57.38 36.05 6.56 (Ni,Cu)3Sn4
5 46.45 21.44 32.11 (Cu,Ni)6Sn5

Ni-40Cu/Sn
6 57.23 34.56 8.21 (Ni,Cu)3Sn4
7 45.65 23.28 31.07 (Cu,Ni)6Sn5

Ni-50Cu/Sn
8 57.57 33.65 8.79 (Ni,Cu)3Sn4
9 46.56 20.42 33.02 (Cu,Ni)6Sn5

Ni-60Cu/Sn
10 46.39 16.67 36.94 (Cu,Ni)6Sn5
11 45.97 18.68 35.35 (Cu,Ni)6Sn5

Ni-70Cu/Sn 12 46.47 15.18 38.35 (Cu,Ni)6Sn5
Ni-80Cu/Sn 13 45.84 8.18 45.99 (Cu,Ni)6Sn5
Ni-90Cu/Sn 14 46.92 6.67 46.41 (Cu,Ni)6Sn5

Cu/Sn
15 46.48 / 53.52 Cu6Sn5
16 73.71 / 26.29 Cu3Sn

The phase structure and distribution features of the Ni-xCu/Sn/Ni-xCu joints under
thermal aging were further studied based on the EBSD characterization method. Figure 5
exhibits the EBSD patterns for the distribution of phases and grains in the Ni-xCu/Sn/Ni-
xCu (x = 20, 40, 60, and 80 wt.%) joints aged for 48 h. Based on the phase distribution
patterns (Figure 5(a1–a4)), the joint with a Cu content of 20 wt.% predominantly exhibits the
(Ni,Cu)3Sn4 phase, accompanied by a minor presence of the (Cu,Ni)6Sn5 phase, along with
noticeable exfoliation within the Sn solder. As the Cu content increases to 40 wt.%, there
is a corresponding rise in the proportion of the (Cu,Ni)6Sn5 phase, primarily observed as
large particles located above the (Ni,Cu)3Sn4 layer. In addition, the exfoliation of reactants
into the Sn solder is significantly reduced. At Cu content levels of 60 and 80 wt.%, the joints
primarily consist of the (Cu,Ni)6Sn5 phase, with a minor presence of the (Ni,Cu)3Sn4 phase,
and a full-IMC joint is formed at 80 wt.% Cu content.
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According to the grain distribution patterns (Figure 5(b1–b4)), the joint with a Cu
content of 20 wt.% exhibits fine grain size for the (Ni,Cu)3Sn4 phase and Sn solder, with a
smaller grain size observed at the interface compared to the center of the weld. The grain
size for the (Ni,Cu)3Sn4 phase remains fine, and the (Cu,Ni)6Sn5 phase corresponds to its
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particle size at a content of 40 wt.%, while the Sn solder presents as coarse grains. The Sn
solder in the joint with a Cu content of 60 wt.% remains coarse grains, and the grain size
of the (Cu,Ni)6Sn5 phase is significantly refined near the interface but larger near the Sn
solder. The grain size is relatively small in the full-IMC joint with a Cu content of 80 wt.%,
but it is also smaller at the interface compared to the center of the weld.

The aforementioned findings suggest a transformation of the reactants in the Ni-
xCu/Sn/Ni-xCu soldering joints from the (Ni,Cu)3Sn4 phase to the (Cu,Ni)6Sn5 phase
as the joints undergo thermal aging, with the Cu content playing a crucial role in this
evolution. Additionally, the distribution behavior of the reactants has an impact on the
grain size of the Sn solder. Therefore, the phase structure and distribution features of the
reactants on the mechanical properties of the joints need further study.

3.2. Mechanical Properties and Failure Mechanism of the Joints

Figure 6 shows the shear strength of the Ni-xCu/Sn/Ni-xCu joints aged for 48 h.
A significant correlation exists between the mechanical properties of joints and the Cu
content, exhibiting an initial decrease followed by an increase, except for a significant
enhancement at a Cu content of 60 wt.%. Specifically, the measured average shear strength
of the Ni-60Cu/Sn/Ni-60Cu joint is 26.96 MPa, slightly surpassing the Cu/Sn/Cu joint,
which is 24.47 MPa.
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Figure 7 shows the fracture images of the Ni-xCu/Sn/Ni-xCu joints aged for 48 h. The
position and morphology of the fracture are closely associated with the phase structure
and distribution of the IMCs in the joints. The fracture occurs inside the Sn solder with
a smooth surface when the Cu content ≤20 wt.%. The fracture in the case of 30 wt.% Cu
content primarily takes place within the Sn solder, partially along with the (Cu,Ni)6Sn5
particle phase, leading to a jagged surface. The fracture occurs along the interface between
the (Cu,Ni)6Sn5 particle phase and the Sn solder as the Cu content reaches 40 and 50 wt.%.
When the Cu content is increased to 40 and 50 wt.%, the fracture occurs at the interface
between the (Cu,Ni)6Sn5 particle phase and the Sn solder. When the Cu content reaches
60 wt.% or pure Cu substrate is used, the fracture position reverts back to inside the Sn
solder, displaying a smooth surface. In the case of Cu contents ranging from 70 to 90 wt.%,
the Sn solder is depleted, and the fracture occurs at the center of the full-IMC joint, resulting
in a rough surface.
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The evolution mechanism of the shear strength of aging joints can be comprehen-
sively analyzed according to the results shown in Figures 7 and 8. The shear strength de-
crease of the joints with Cu content from 10 to 30 wt.% is mainly caused by the failure 
mode transition of joint to brittle fracture. This transformation mechanism originates from 
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The failure mode of aged joints was further studied, and a comprehensive analysis
of mechanical properties and failure mechanisms was conducted in conjunction with
micrographs of fracture sections. Figure 8 shows the displacement-shear force curves of
the Ni-xCu/Sn/Ni-xCu joints aged for 48 h. In Figure 8a, the joint fracture curves exhibit a
steep decline for pure Ni substrate, indicating a combination of brittle and ductile fractures.
However, in the case where the Cu content incorporated into Ni ranges from 10 to 30 wt.%,
the fracture curve of the joints decreases vertically, indicating a transition to brittle fracture
mode. In Figure 8b, with the Cu content ranging from 40 to 60 wt.%, the failure mode of
the joints shifts to a hybrid fracture. The transition in failure mode is correlated with the
microstructure, phase composition, fracture position, and grain size of the Sn solder, which
can be evidenced in Figures 5 and 7. In Figure 8c, the failure mode of the joints reverts back
to brittle fracture when the Cu content increases to 70–90 wt.%, while the failure mode of
the joint remains a hybrid fracture for the pure Cu substrate.
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The evolution mechanism of the shear strength of aging joints can be comprehensively
analyzed according to the results shown in Figures 7 and 8. The shear strength decrease
of the joints with Cu content from 10 to 30 wt.% is mainly caused by the failure mode
transition of joint to brittle fracture. This transformation mechanism originates from the
exfoliation of a large number of (Ni,Cu)3Sn4 particles into the Sn solder, which leads to
increased solder brittleness [26]. When the Cu content in the joint is 40 and 50 wt.%, the
shear strength is further reduced. This is because the existence of the (Cu,Ni)6Sn5 particle
phase can promote the fracture that occurs preferentially at its interface with the solder,
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thereby reducing the mechanical properties of the joint. When the Cu content is 60 wt.%,
the joint shear strength increases significantly. This is not only because the IMCs at the
Ni-60Cu/Sn interface are single-phase with fine grains, but also because the IMCs have
a slower growth rate compared to Cu/Sn. When the Cu content is 70 to 90 wt.%, the
joint quickly forms a full IMC, and there is a large number of shrinkage cavities in the
center of the weld, resulting in the transition of the joint to brittle fracture with the lowest
shear strength.

4. Conclusions

The microstructure evolution and mechanical properties of the Ni-xCu/Sn interface
during the solid-state reaction were studied at 200 ◦C with different Cu content and aging
time. The main results are as follows:

1. The phase composition of IMCs exhibited a Cu content-dependent transformation
from the (Ni,Cu)3Sn4 phase to the (Cu,Ni)6Sn5 phase at the Ni-xCu/Sn interface, and
a Cu3Sn layer was observed exclusively at the Cu/Sn interface;

2. The morphology of the IMC layer underwent a transition from a continuous layer to a
layer with particles above it, and finally to a continuous layer again. The IMC layer
thickness at the Ni-xCu/Sn interface remains relatively consistent, except for cases
where a full-IMC layer was formed at Cu contents of 80 and 90 wt.%;

3. The shear strength of the Ni-xCu/Sn/Ni-xCu soldering joints after aging exhibited
an initial decrease followed by an increase, except for a significant enhancement at
a Cu content of 60 wt.%. The decline in mechanical properties of the aging joints
could be attributed to solder brittleness, the growth of (Cu,Ni)6Sn5 particles, and the
presence of shrinkage cavities in the center of full-IMC welds. Notably, at a Cu content
of 60 wt.%, the (Cu,Ni)6Sn5 phase exhibited a slow growth rate with refined grains at
the interface, resulting in improved mechanical properties of the joint.
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