
Citation: Yevtushenko, A.; Kuciej, M.;

Topczewska, K.; Zamojski, P. Effect of

Convective Cooling on the

Temperature in a Friction System

with Functionally Graded Strip.

Materials 2023, 16, 5228. https://

doi.org/10.3390/ma16155228

Academic Editor: Francisco J.

G. Silva

Received: 30 June 2023

Revised: 19 July 2023

Accepted: 23 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of Convective Cooling on the Temperature in a Friction
System with Functionally Graded Strip
Aleksander Yevtushenko , Michał Kuciej , Katarzyna Topczewska * and Przemysław Zamojski

Faculty of Mechanical Engineering, Bialystok University of Technology (BUT), 45C Wiejska Street,
15-351 Bialystok, Poland; a.yevtushenko@pb.edu.pl (A.Y.); m.kuciej@pb.edu.pl (M.K.);
p.zamojski@pb.edu.pl (P.Z.)
* Correspondence: k.topczewska@pb.edu.pl

Abstract: An exact solution of the boundary-value problem of heat conduction was obtained with
consideration of heat generation due to friction and convective cooling for the strip/semi-space
system. Analytical solutions to this problem are known for the case with both friction elements made
of homogeneous materials or a composite layer with a micro-periodic structure. However, in this
study, the strip is made of a two-component functionally gradient material (FGM). In addition, the
exact, asymptotic solutions were also determined at small and large values of the Fourier number. By
means of Duhamel’s theorem, it was shown that the developed solution for a constant friction power
allows to obtain appropriate solutions with a changing time profile of this value during heating.
Numerical analysis in dimensionless form was carried out for the FGM (ZrO2—Ti-6Al-4V) strip in
combination with the cast iron semi-space. The influence of the convective cooling intensity (Biot
number) on the temperature field in the considered friction system was investigated. The developed
mathematical model allows for a quick estimation of the maximum temperature of systems, in which
one of the elements (FGM strip) is heated on the friction surface and cooled by convection on the
free surface.

Keywords: frictional heating; convective cooling; temperature; functionally graded material

1. Introduction

Analytical models of the frictional heating process in the pad/disc system are based
on the experimentally confirmed assumption that the main part of the heat generated by
friction is absorbed inside both sliding elements in the direction perpendicular to the contact
surface [1–3]. This makes it possible to ignore changes in the temperature gradient in the
other two directions, parallel to this surface [4]. As a consequence, the temperature field of
the friction element is determined based on an analytical or analytical–numerical solution
of the one-dimensional boundary-value problem of heat conduction for a two-element
semi-space/semi-space, strip/semi-space and strip/strip systems, made of homogeneous
materials [5,6]. The choice of one of these geometric schemes depends on the size of the
effective depth of heat penetration de f f to the insides of each element of the friction pair [7].
Various formulas are used to estimate this parameter at the design stage, and one of the
most commonly used is de f f =

√
3kts, where k is the coefficient of the thermal diffusivity

of the considered element and ts is the time of the frictional heating process [8]. If it turns
out that de f f < d, where d is the thickness of the element (pad, disc, etc.), during the
formulation of the thermal problem of friction, then this element was considered as a
semi-bounded body (half-space); otherwise, it was modeled with a strip.

In this article, the strip/semi-space friction system is considered, so we focused on the
most important results directly related to it. First, the process of heat generation during
braking with a constant deceleration under perfect thermal conditions of friction between
the layer and the half-space was considered. During the entire heating process, the free
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surface of the strip was maintained at a constant (initial) temperature, or it was adiabatic
(thermally insulated) [9]. The exact solutions of the corresponding boundary-value thermal
problems of friction formulated in this way were obtained by the superposition method
using the mathematical apparatus of the Laplace integral transform. Calculations were
made for a metal–ceramic (FMC-11) layer and a cast iron (ChNMKh) half-space.

The solutions obtained in article [9] were generalized by taking into consideration the
heat exchange with the surrounding environment on the free surface of the strip, according
to Newton’s law [10]. The transition from the space of transforms to the space of originals
was made using the integration technique in the plane of the complex parameter of the
Laplace transform. Numerical analysis was carried out for the steel strip and semi-space
made of aluminum. Using the Biot number, the influence of the intensity of convective
cooling of the free surface of the steel strip during its sliding with a constant velocity on the
surface of the aluminum semi-space was investigated.

The next studies concerned the modeling of imperfect thermal contact between the
strip and the semi-space [11,12]. Such contact takes place in most cases during sliding
and accompanying frictional heating of rough rubbing surfaces [13,14]. They assume that
the resulting temperature jump on the contact surface is proportional to the differences
in the intensity of heat fluxes directed along the normal from this surface to the insides
of the sliding bodies. The coefficient of proportionality is the coefficient of the contact
heat transfer—a parameter inversely proportional to the thermal resistance of the contact
surface. An exact solution of the thermal problem of friction was obtained with uniform
sliding of the strip over the surface of the semi-space, taking into account the imperfect
thermal contact and the preservation of the initial temperature on the free surface of the
strip [11]. The subsequent numerical analysis for the layer made of FMC-11 and the cast
iron (ChNMKh) half-space made it possible, in particular, to determine the applicability
ranges of the conditions of the perfect and imperfect thermal contact of friction for the
considered pair. Another analytical model was developed to simulate the temperature field
of the pad/disc system during braking with a constant deceleration under constant contact
pressure [12] based on the strip/semi-space scheme. This model takes into consideration
the thermal resistance of the contact surface with simultaneous convective cooling on the
free surface of the strip.

It should be noted that all the mentioned works concerned the case of homogeneous
materials of both elements of the friction couple. However, nowadays with the frictional
elements of modern tribosystems, the nonhomogeneous materials are more likely to be
used such as functionally graded materials (FGMs) [15–17]. Their usage is attractive to
engineers and material scientists given the continuous grading and tailoring capabilities,
when compared to traditional monolithic counterparts [18,19]. Usually, functionally graded
friction materials are two-component composites made of ceramic and metal. So, the
friction elements have high heat and wear resistance of ceramic on the outer zone, as
well as the mechanical strength of the metal inside elements at the same time [20,21]. A
smooth transition of composition from the outer surface to the inside ensure a reduction
in stress concentration and an increase in fracture strength [21,22]. Research shows that
controlling the gradient parameter of FGM can reduce residual tensile stress and improve
thermal shock resistance [23]. Many computational models have been recently developed
to evaluate the thermal response of FGMs, which is crucial for predicting failure mech-
anisms and designing friction couples [24–33]. Comprehensive reviews of the literature
on thermal and thermoelastic problems of friction for functionally graded materials are
given in our previous articles [34–36]. In these studies, the authors obtained the solutions
of the boundary-value problems of heat conduction for a coating (layer) made of FGM
with a heated surface that was ideally thermally connected to the surface of a homoge-
neous substrate (half-space) [35]. Then, the process of heat generation in a friction system
consisting of a homogeneous semi-space sliding on the surface of the FGM strip applied
to a homogeneous semi-space was investigated [36]. In both of these articles, the FGM
layer performed the role of the thermal-barrier coating (TBC), allowing for more efficient
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heat dissipation from the heated surface. However, in this article, the FGM strip is one of
the elements of the friction pair, absorbing the heat generated as a result of friction on the
contact surface and cooled by convection on the free surface. The latter factor has not been
taken into consideration in analytical models of friction heating involving FGM so far.

2. Statement to the Problem

Let the strip 0 ≤ z ≤ d at the initial moment t = 0 begin to slide with constant velocity
V0 in the positive direction of the axis Ox on the outer surface of the semi-space z ≤ 0
(Figure 1). The strip is made of a two-component functionally graded material, which has
exponentially increasing thermal conductivity coefficient along the thickness, whereas the
material of semi-space is homogeneous. Due to the friction on the contact surface z = 0,
the heat is generated and absorbed by each body of the friction couple. It was assumed
that the thermal contact of friction between the strip and the semi-space is full. This means
that the temperature of the friction surfaces of the strip and the half-space is the same, and
the sum of the intensities of heat fluxes directed along the normal from the contact surface
to the insides of each body is equal to the specific friction power q0 = f p0V0, where f is the
coefficient of friction, and p0 is the contact pressure. The free surface of the strip z = d is
convectively cooled with a constant coefficient of heat transfer h. The initial temperature T0
of the considered system is constant. A more detailed description of the assumptions of the
mathematical model is given in our previous article [34].
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Figure 1. Scheme of the friction system strip/semi-space. 
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Figure 1. Scheme of the friction system strip/semi-space.

The aim of this study is to explain the effect of FGM on the transient temperature
fields T(z, t), −∞ < z ≤ d, t ≥ 0 of the strip and the semi-space. For this purpose, based
on the above assumptions, the following thermal problem of friction for a single braking
process in relation to the temperature rise Θ(z, t) = T(z, t)− T0 was formulated:

∂

∂z

[
K1(z)

∂Θ(z, t)
∂z

]
− ρ1c1

∂Θ(z, t)
∂t

= 0, 0 < z < d, t > 0, (1)

K2
∂2Θ(z, t)

∂z2 − ρ2c2
∂Θ(z, t)

∂t
= 0, z < 0, t > 0, (2)

Θ(0+, t) = Θ(0−, t), t > 0, (3)

K2
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q0, t > 0, (4)

K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=d

= h[T0 − T(d, t)], t > 0, (5)

Θ(z, t)→ 0 , z→ −∞ , t > 0, (6)
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Θ(z, 0) = 0,−∞ < z ≤ d, (7)

where [37,38]
K1(z) = K1,1eγ∗z/d, γ∗ = ln(K1,2K−1

1,1 ), 0 ≤ z ≤ d, (8)

and K1,1, K1,2 K2 are the coefficients of thermal conductivity of FGM components and
semi-space, respectively, ρl , cl are the density and specific heat of materials of the strip
(l = 1) and the semi-space (l = 2), and γ∗ is the dimensionless gradient parameter.

Incorporating the following dimensionless parameters and variables:

ζ =
z
d

, τ =
k1t
d2 , K∗ =

K2

K1,1
, k∗ =

k2

k1
, Θ∗ =

Θ
Θ0

, Bi =
hd

K1,1
, (9)

where
k1 =

K1,1

c1ρ1
, k2 =

K2

c2ρ2
, Θ0 =

q0d
K1,1

, (10)

Equations (1)–(8) were written in the form:

∂2Θ∗(ζ, τ)

∂ζ2 + γ∗
∂Θ∗(ζ, τ)

∂ζ
− e−γ∗ζ ∂Θ∗(ζ, τ)

∂τ
= 0, 0 < ζ < 1, τ > 0, (11)

∂2Θ∗(ζ, τ)

∂ζ2 − 1
k∗2

∂Θ∗(ζ, τ)

∂τ
= 0, ζ < 0, τ > 0, (12)

Θ∗(0+, τ) = Θ∗(0−, τ), τ > 0, (13)

K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

− ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

= 1, τ > 0, (14)

eγ∗ ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1

+ Bi Θ∗(1, τ) = 0, τ > 0, (15)

Θ∗(ζ, τ)→ 0 , ζ → −∞ , τ > 0, (16)

Θ∗(ζ, 0) = 0, |ζ| < ∞. (17)

3. Exact Solution

Using the Laplace integral transform [39]:

Θ∗(ζ, p) ≡ L[Θ∗(ζ, τ); p] =
∞∫

0

Θ∗(ζ, τ)e−pτdτ, Rep ≥ 0, (18)

to the boundary-value problem (11)–(17), the following boundary problem was obtained
with two ordinary differential equations:

d2Θ∗(ζ, p)
dζ2 + γ∗

dΘ∗(ζ, p)
dζ

− pe−γ∗ζ Θ∗(ζ, p) = 0, 0 < ζ < 1, (19)

d2Θ∗(ζ, p)
dζ2 − p

k∗2
Θ∗(ζ, p) = 0, ζ < 0, (20)

Θ∗(0+, p) = Θ∗(0−, p), (21)
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K∗
dΘ∗(ζ, p)

dζ

∣∣∣∣∣
ζ=0−

− dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=0+

=
1
p

, (22)

eγ∗ dΘ∗(ζ, p)
dζ

∣∣∣∣∣
ζ=1

+ Bi Θ∗(1, p) = 0, (23)

Θ∗(ζ, p)→ 0 , ζ → −∞ . (24)

The solution to the boundary problem (19)–(24) has the form:

Θ∗(ζ, p) =
e−

1
2 γ∗ζ∆1(ζ, p)
p
√

p ∆(p)
, 0 ≤ ζ ≤ 1, Θ∗(ζ, p) =

∆2(ζ, p)
p
√

p ∆(p)
, ζ ≤ 0, (25)

where

∆1(ζ, p) = A1(p)I1

(
2

γ∗
e−

1
2 γ∗ζ√p

)
+ B1(p)K1

(
2

γ∗
e−

1
2 γ∗ζ√p

)
, ∆2(ζ, p) = A2(p)e

√
p

k∗ ζ , (26)

∆(p) = A1(p)
[

I0

(
2

γ∗
√

p
)
+ ε I1

(
2

γ∗
√

p
)]
− B1(p)

[
K0

(
2

γ∗
√

p
)
− ε K1

(
2

γ∗
√

p
)]

, (27)

A1(p) = K0

(
2

γ∗
e−

1
2 γ∗√p

)
+ Bi

e−
1
2 γ∗

√
p

K1

(
2

γ∗
e−

1
2 γ∗√p

)
, (28)

B1(p) = I0

(
2

γ∗
e−

1
2 γ∗√p

)
− Bi

e−
1
2 γ∗

√
p

I1

(
2

γ∗
e−

1
2 γ∗√p

)
, (29)

A2(p) = A1(p)I1

(
2

γ∗
√

p
)
+ B1(p)K1

(
2

γ∗
√

p
)

, (30)

ε =
K∗√

k∗
, (31)

where In(x), Kn(x) are modified Bessel’s functions of the nth (n = 0, 1) order of the first
and second kind, respectively [40].

Applying the inverse Laplace transform [39]:

Θ∗(ζ, τ) ≡ L−1[Θ∗(ζ, p); τ] =
1

2πi

ω+i ∞∫
ω−i ∞

Θ∗(ζ, p)epτdp, ω ≡ Rep > 0, i ≡
√
−1, (32)

to the transformed solution in Equations (25)–(31), and by carrying out the integration
on the plane of the complex variable p, according to the methodology described in the
articles [10,35], with account of the following relations [40]:

I0(±ix) = J0(x), K0(±ix) = −0.5π[Y0(x)± iJ0(x)], (33)

I1(±ix) = ±iJ1(ix), K1(±ix) = 0.5π[J1(x)± iY1(x)], (34)
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where Jn(x) and Yn(x) are the Bessel functions of the nth (n = 0, 1) order of the first and
second kind, respectively, the dimensionless temperature rises in the strip and semi-space
were obtained in the form:

Θ∗(ζ, τ) = ϑ(ζ)− 2
π

ε e−
1
2 γ∗ζ

∞∫
0

F(x)G1(ζ, x)e−x2τdx, 0 ≤ ζ ≤ 1, τ ≥ 0, (35)

Θ∗(ζ, τ) = ϑ0 −
2
π

∞∫
0

F(x)G2(ζ, x)e−x2τdx, ζ ≤ 0, τ ≥ 0, (36)

where

F(x) =
Ψ(x)

x2
{
[Φ(x)]2 + [ε Ψ(x)]2

} , (37)

G1(ζ, x) = J(x)Y1

(
2

γ∗
e−

1
2 γ∗ζ x

)
− Y(x)J1

(
2

γ∗
e−

1
2 γ∗ζ x

)
, (38)

G2(ζ, x) = ε Ψ(x) cos
(

ζ√
k∗

x
)
−Φ(x) sin

(
ζ√
k∗

x
)

, (39)

Φ(x) = J(x)Y0

(
2

γ∗
x
)
− Y(x)J0

(
2

γ∗
x
)

, (40)

Ψ(x) = J(x)Y1

(
2

γ∗
x
)
− Y(x)J1

(
2

γ∗
x
)

, (41)

J(x) = J0

(
2

γ∗
e−

1
2 γ∗x

)
− Bi

e−
1
2 γ∗

x
J1

(
2

γ∗
e−

1
2 γ∗x

)
, (42)

Y(x) = Y0

(
2

γ∗
e−

1
2 γ∗x

)
− Bi

e−
1
2 γ∗

x
Y1

(
2

γ∗
e−

1
2 γ∗x

)
, (43)

ϑ(ζ) = (γ∗Bi)−1[γ∗ − Bi(e−γ∗ − e−γ∗ζ)], ϑ0 ≡ ϑ(0) = (γ∗Bi)−1[γ∗ − Bi(e−γ∗ − 1)]. (44)

On the contact surface ζ = 0, from Equations (38) and (39) follows that G1(0, x) = Ψ(x),
G2(0, x) = ε Ψ(x). Then, the solutions (35) and (36) have the form:

Θ∗(0+, τ) = Θ∗(0−, τ) ≡ Θ∗(τ) = ϑ0 −
2
π

ε

∞∫
0

F(x)Ψ(x)e−x2τdx, τ ≥ 0, (45)

which confirms the fulfillment of the boundary condition (13). Differentiating solutions (35)–(44)
with respect to the variable ζ, with account of the derivatives [40]:

J′1(x) = J0(x)− x−1J1(x), Y′1(x) = Y0(x)− x−1Y1(x), (46)

the dimensionless intensities of heat fluxes absorbed by the strip and the semi-space
were found:

∂Θ∗(ζ, τ)

∂ζ
= −e−γ∗ζ +

2
π

ε e−γ∗ζ
∞∫

0

xF(x)Ĝ1(ζ, x)e−x2τdx, 0 ≤ ζ ≤ 1, τ ≥ 0, (47)

K∗
∂Θ∗(ζ, τ)

∂ζ
=

2
π

ε

∞∫
0

xF(x)Ĝ2(ζ, x)e−x2τdx, ζ ≤ 0, τ ≥ 0, (48)
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where

Ĝ1(ζ, x) = J(x)Y0

(
2

γ∗
e−

1
2 γ∗ζ x

)
− Y(x)J0

(
2

γ∗
e−

1
2 γ∗ζ x

)
, (49)

Ĝ2(ζ, x) = ε Ψ(x) sin
(

ζ√
k∗

x
)
+ Φ(x) cos

(
ζ√
k∗

x
)

, (50)

and K∗, k∗ are the dimensionless thermal conductivity and diffusivity of the system, respec-
tively, as determined by Equation (9).

Substituting ζ = 0 in Equations (49) and (50), we found Ĝ1(0, x) = Ĝ2(0, x) = Φ(x)
and Formulas (47) and (48) take the form:

∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

≡ q∗1(τ) = −1 +
2
π

ε

∞∫
0

xF(x)Φ(x)e−x2τdx, τ ≥ 0, (51)

K∗
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0−

≡ q∗2(τ) =
2
π

ε

∞∫
0

xF(x)Φ(x)e−x2τdx, τ ≥ 0. (52)

From Equations (51) and (52), it is easy to obtain the confirmation of the fulfillment of
the boundary condition (14). For the purpose of checking the boundary condition (15) on
the free surface of the strip ζ = 1, from relations (35), (38), (44), (47) and (49), it was found:

Θ∗(1, τ) =
1
Bi
− 2

π
ε e−

1
2 γ∗

∞∫
0

F(x)G1(1, x)e−x2τdx, τ ≥ 0, (53)

∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1

= −e−γ∗ +
2
π

ε e−γ∗
∞∫

0

xF(x)Ĝ1(1, x)e−x2τdx, τ ≥ 0, (54)

where

G1(1, x) = J(x)Y1

(
2

γ∗
e−

1
2 γ∗x

)
− Y(x)J1

(
2

γ∗
e−

1
2 γ∗x

)
, (55)

Ĝ1(1, x) = J(x)Y0

(
2

γ∗
e−

1
2 γ∗x

)
− Y(x)J0

(
2

γ∗
e−

1
2 γ∗x

)
. (56)

Bearing in mind Equations (53)–(56) and the left-hand side of the boundary condition (15),
it was written in the form:

eγ∗ ∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=1

+ Bi Θ∗(1, τ) =
2
π

ε e−γ∗
∞∫

0

F(x)[xĜ1(1, x)− e−
1
2 γ∗Bi G1(1, x)]e−x2τdx, τ > 0. (57)

Substituting the functions J(x) (42) and Y(x) (43) to Equations (55) and (56), the
relations were determined [40]:

G1(1, x) = J0

(
2

γ∗
e−

1
2 γ∗x

)
Y1

(
2

γ∗
e−

1
2 γ∗x

)
− Y0

(
2

γ∗
e−

1
2 γ∗x

)
J1

(
2

γ∗
e−

1
2 γ∗x

)
≡ −γ∗e

1
2 γ∗

π x
, (58)

Ĝ1(1, x) = e−
1
2 γ∗Bi x−1G1(1, x). (59)

Proving the zero value of the integral in the right side of Equation (57), and thus, the
boundary condition (15) is met.

The fulfillment of the boundary condition (16) and the initial condition (17) were
verified numerically.
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4. Some Special Cases of Solution

Usage of the exact solutions (35) and (36) requires the numerical integration over a
semi-limited interval, which requires the application of appropriate, sometimes complex,
software. In this section, the asymptotic solutions (for small and large values of the Fourier
number τ) will be developed, which are devoid of this problem. In addition, the exact
solutions for the temperature generated in the strip and semi-space in the process of
frictional heating during braking with constant deceleration will be presented.

Small values of Fourier number τ (large values of the Laplace transform parameter p). Includ-
ing Formulas (26)–(30), the asymptotes of the modified Bessel functions for large values of
arguments [40]:

In(x) ∼=
ex
√

2πx
, Kn(x) ∼=

√
π

2x
e−x, n = 0, 1, (60)

where the transformed solutions (25) were written in the form:

Θ∗(ζ, p) ∼=
e−

1
4 γ∗ζ

(1 + ε)

e−α
√

p

p
√

p
, 0 ≤ ζ < 1, Θ∗(ζ, p) ∼=

1
(1 + ε)

e−ζ∗
√

p

p
√

p
, ζ ≤ 0, (61)

where

α =
2

γ∗
(1− e−

1
2 γ∗ζ), ζ∗ =

|ζ|√
k∗

. (62)

Proceeding in the transforms (61) to the originals by means of the relation [41]:

L−1

[
e−α
√

p

p
√

p
; τ

]
= 2
√

τ ierfc
(

α

2
√

τ

)
, α ≥ 0, (63)

where ierfc(x) = π−0.5e−x2 − x erfc(x), erfc(x) = 1− erf(x), and erf(x) is the Gauss error
function [40]. Asymptotes of the dimensionless temperature rise at the initial moments of
the heating process were found:

Θ∗(ζ, τ) ∼=
2
√

τ e−
1
4 γ∗ζ

(1 + ε)
ierfc

(
α

2
√

τ

)
, 0 ≤ ζ ≤ 1, 0 ≤ τ << 1, (64)

Θ∗(ζ, τ) ∼=
2
√

τ

(1 + ε)
ierfc

(
ζ∗

2
√

τ

)
, ζ ≤ 0, 0 ≤ τ << 1. (65)

On the contact surface ζ = 0, with consideration of the parameter α definition in
Equation (62), from Equations (64) and (65), the following was obtained:

Θ∗(0+, τ) = Θ∗(0−, τ) = Θ∗(τ) ∼=
2

(1 + ε)

√
τ

π
. (66)

In the case of homogeneous strip ( γ∗ → 0) from Equation (62), we determined α→ ζ
and the solutions (64) and (65) take the form of a known solution of the problem for two
homogeneous semi-spaces under uniform sliding [5]:

Θ∗(ζ, τ) =
2
√

τ

(1 + ε)
ierfc

(
ζ

2
√

τ

)
, ζ ≥ 0, τ ≥ 0, (67)

Θ∗(ζ, τ) =
2
√

τ

(1 + ε)
ierfc

(
− ζ

2
√

k∗τ

)
, ζ ≥ 0, τ ≥ 0. (68)

For ζ = 0 from Equations (67) and (68), we received also the solution (66) to determine the
temperature on the contact surface.

Analyzing the obtained asymptotic solutions (64) and (65), it can be noticed that at the
beginning of the friction heating process, the effect of convective cooling on the free surface
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of the strip on the temperature of both elements is insignificant, and the gradient nature of
the material affects the temperature only inside the layer.

Large values of Fourier number τ (small values of Laplace parameter p). For small values of
arguments, the modified Bessel function behaves as follows [40]:

I0(x) ∼= 1, I1(x) ∼= 0.5x, K0(x) ∼= − ln(x), K1(x) ∼= x−1. (69)

Considering the asymptotes (69) in Equations (26)–(30), the transform solutions (26)
were presented in the form:

Θ∗(ζ, p) ∼=
φ∗(ζ)

p(
√

p + a)
, 0 ≤ ζ ≤ 1, Θ∗(ζ, p) ∼=

e−ζ∗
√

p

εp(
√

p + a)
, ζ ≤ 0, (70)

where

φ∗(ζ) =
φ(ζ)

εφ0
, a =

γ∗Bi
εφ0

, (71)

φ(ζ) = γ∗ + Bi(e−γ∗ζ − e−γ∗), φ0 ≡ φ(0) = γ∗ + Bi(1− e−γ∗). (72)

Taking into consideration the relation [41]:

L−1

[
a e−b

√
p

p(
√

p + a)
; τ

]
= erfc

(
b

2
√

τ

)
− eab+a2τerfc

(
b

2
√

τ
+ a
√

τ

)
, a > 0, b ≥ 0, (73)

the following asymptotes of dimensionless temperature rise for large values of the Fourier
number, and τ were found:

Θ∗(ζ, τ) ∼= a−1φ∗(ζ)[1− ea2τerfc(a
√

τ
)
], 0 ≤ ζ ≤ 1, τ >> 1, (74)

Θ∗(ζ, τ) ∼=
1
aε

[
erfc

(
ζ∗

2
√

τ

)
− eaζ∗+a2τerfc

(
ζ∗

2
√

τ
+ a
√

τ

)]
, ζ ≤ 0, τ >> 1. (75)

On the friction surface ζ = 0 from Equations (62) and (72) follows that ζ∗ = 0 and
φ∗(0) = ε−1, and from the solutions (74) and (75), yields:

Θ∗(0+, τ) = Θ∗(0−, τ) ≡ Θ∗(τ) ∼= (aε)−1[1− ea2τerfc(a
√

τ)], τ >> 1, (76)

where parameters ε and a were designated on the basis of Equations (31) and (71).
Bearing in mind the values of limits:

lim
γ∗→0

a =
Bi
ε

lim
γ∗→0

γ∗

[γ∗ + Bi(1− e−γ∗)]
=

Bi
ε(1 + Bi)

, (77)

lim
γ∗→0

a−1β(ζ) =
1
Bi

lim
γ∗→0

[γ∗ + Bi(e−γ∗ζ − e−γ∗)]

γ∗
=

1 + Bi(1− ζ)

Bi
, (78)

from the Equations (74) and (75), the solution were obtained to determine the temperature
in the considered system with a homogeneous strip [10].

Linearly decreasing the time profile of specific friction power. Demonstrated above, the
exact solutions (35)–(44) were found for the invariable specific friction power over time,
q(t) = q0, t ≥ 0 in the boundary condition (4). In the relevant thermal problems of friction
concerning the modeling of the frictional heating process during braking with a constant
deceleration, the temporal profile of specific friction power has the form [1]:

q̂(t) = q̂0q∗(t), q̂0 = 2q0, q∗(t) = 1− t t−1
s , 0 ≤ t ≤ ts, (79)
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where ts is the stop moment of the vehicle. Dimensionless temperature rise Θ̂∗(ζ, τ),
corresponding to the specific power of friction (79), was found based on the Duhamel’s
theorem [42]:

Θ̂∗(ζ, τ) =
∂

∂τ

τ∫
0

q∗(τ − s)Θ∗(ζ, s)ds, ζ ≥ 0, 0 ≤ τ ≤ τs, (80)

where Θ∗(ζ, τ) is the dimensionless temperature rise (35)–(44) and function q∗(τ):

q∗(τ) = 1− τ τ−1
s , 0 ≤ τ ≤ τs, τs = k1tsd−2. (81)

Substituting solutions (35) and (36) and function q∗(τ) (81) to the right side of
Equation (80) yields:

Θ̂∗(ζ, τ) = ϑ(ζ)q∗(τ)− 2
π

ε e−
1
2 γ∗ζ

∞∫
0

F(x)G1(ζ, x)P(τ, x)dx, 0 ≤ ζ ≤ 1, 0 ≤ τ ≤ τs, (82)

Θ̂∗(ζ, τ) = ϑ0q∗(τ)− 2
π

∞∫
0

F(x)G2(ζ, x)P(τ, x)dx, ζ ≤ 0, 0 ≤ τ ≤ τs, (83)

where
P(τ, x) = e−x2τ − 1

x2τs
(1− e−x2τ), (84)

and the constant ϑ0 and functions ϑ(ζ), F(x), Gl(ζ, x), l = 1, 2 were determined from
Equations (37)–(44).

5. Numerical Analysis

Approval of the developed calculation model was performed for a friction system, in
which the strip is made of a two-component FGM, and the counterbody is homogeneous
(cast iron ChNMKh). The base of the FGM is zirconium dioxide ZrO2, and on the second
component of material the titanium alloy Ti-6Al-4V was selected. Properties of these
materials at the initial temperature T0 = 20 ◦C are given in Table 1. For the same volume
fraction of ZrO2 and Ti-6Al-4V, effective specific heat and density of the strip material
amounted to c1 = 495.55 J kg−1K−1 and ρ1 = 5266.98 kg m−3, respectively. By means of
Equation (8), the dimensionless gradient of selected FGM was also established γ∗ = 1.26.
The rest dimensionless input parameters for the calculations are spatial variable ζ, Fourier
number τ and Biot number Bi (9).

Table 1. Materials’ properties [36].

Material Thermal Conductivity
Wm−1K−1

Specific Heat
J kg−1K−1

Density
kg m−3

ZrO2 K1,1 = 1.94 c1,1 = 452.83 ρ1,1 = 6102.16
Ti-6Al-4V K1,2 = 6.87 c1,2 = 538.08 ρ1,2 = 4431.79
ChNMKh K2 = 52.17 c2 = 444.6 ρ2 = 7100

The aim of this numerical analysis was to establish the qualitative effect of the intensity
of the convective heat exchange with the environment (parameter Bi) on the free surface
of the FGM strip z = d (ζ = 1) on the temperature of friction system. It should be noted
that the case Bi→ 0 corresponds to the thermal isolation of the surface ζ = 1; however,
for Bi→ ∞ on this surface during the whole process of heating, the initial temperature
is sustained T(d, t) = T0 (Θ∗(1, τ) = 0). Results for dimensionless temperature rise
Θ∗(ζ, τ) (35)–(44) and the intensity of the heat fluxes q∗l (τ), l = 1, 2 (51) and (52) obtained
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by means of the numerical integral procedure QAGI from the package QUADPACK [43]
were presented in Figures 2–6.
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Influence of the Biot number Bi value on the evolution of Θ∗(ζ, τ) is shown in Figure 2.
A slight decrease in temperature on the friction surface ζ = 0 with the increase in Bi
becomes visible for τ ≥ 0.6 (Figure 2a). While the free surface ζ = 1 of the FGM strip is
more sensitive to changes in the Biot number. Growth of the convective cooling intensity
causes a significant decrease in the temperature of this surface much earlier, at τ ≥ 0.1
(Figure 2b). For the fixed value of Fourier number τ, the temperature on both surfaces
drops for higher values of parameter Bi. This effect is most noticeable on the free surface of
the FGM strip ζ = 1.

The drop in temperature on the contact surface ζ = 0 and the free surface ζ = 1 of the
strip with the increase in the Biot number Bi for the fixed value τ = 1 is demontrated in
Figure 3. The highest temperature on both surfaces is achieved for the assumption of the
adiabatic (Bi = 0) free strip surface. Next, growth of Bi causes cooling of the considered
surfaces. An explicit decrease in temperature on the contact surface ζ = 0 is visible for
0 ≤ Bi ≤ 10. A further increase in Bi shows practically no effect on the temperature on
this surface.
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Thus, when estimating the maximum (achievable at the contact surface ζ = 0) temper-
ature of the selected friction system, the cooling of the free strip surface should be taken
into consideration for the values of the Biot number outside the specified range. If Bi > 10,
then the boundary condition (5) in the formulation to the thermal problem of friction has
to be replaced by its simplified variant T(d, t) = T0, t > 0 (Θ∗(1, τ) = 0 in the condition
(15)). A decrease in Bi causes the drop in temperature on the surface ζ = 1 to the level of
the initial temperature Θ∗ = 0, the most noticeable in the range 0 ≤ Bi ≤ 60.

Most of the heat generated by friction on the contact surface is absorbed by the
semi-space (Figure 4). This is due to the much better thermal conductivity of cast iron
compared to zirconium dioxide (Table 1). In the initial heating period (0 < τ ≤ 0.2), the
strip absorbs ≈ 15%, and the semi-space the remaining ≈ 85% of the heat. The proportion
of heat distribution between the strip and the half-space changes with the sliding time
depending on the value of Bi. For small values of Biot number, the amount of heat absorbed
by the strip decreases slightly in time of heating, achieving for τ = 1 the values ≈ 10%
and ≈ 13% for Bi = 0.01 and Bi = 1, respectively. At the same time, the amount of heat
directed to the half-space increases proportionally. The growth of the cooling intensity on
the free strip surface increases the heat absorbed by it for τ = 1 to 20% and 27% for Bi = 10
and Bi = 100, respectively.
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The comparison of temperature values found by means of exact solution (35)–(44)
(solid lines) and asymptotic solutions (64) and (65) for small values of the Fourier number
τ (dashed lines) are illustrated in Figure 5. Good agreement of the results for 0 ≤ τ ≤ 1,
determined based on the exact and asymptotic solutions, take place on the contact surface
ζ = 0 and inside the semi-space for ζ = −0.5 and ζ = −1, for all four selected values of Bi.
Whereas inside the FGM strip, using the asymptotic solution should be restricted to the
range 0 ≤ τ ≤ 0.2.

Asymptotic solutions (74) and (75) for large values of τ allow for estimation of the
temperature in the range 0 ≤ τ ≤ 10 both in the strip and in the half-space (Figure 6). The
accuracy of such an estimation rises with the increasing intensity of convective cooling
on the free strip surface. Such a good agreement of the temperature time profiles, found
with the use of exact and asymptotic solutions, allows for extensive use of the latter
in engineering calculations of the temperature mode for the selected friction pair. The
advantage of the asymptotic solution is the lack of numerical integration, which occurs
when using the exact solution (35)–(44).

An influence of functionally graded material of the strip on the temperature field of
the friction system is presented in Figure 7. Calculations were carried out based on the exact
solutions for sliding under the constant (35)–(44) or linearly decreasing (82)–(84) temporal
profile of specific friction power. Heating of the strip over the entire thickness is visible
with low (Bi = 1) intensity of convective cooling on the free strip surface (Figure 7a,c).
However, when the Biot number is increased to the value Bi = 100, the initial temperature
is maintained on the free surface of the strip (Figure 7b,d).
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Hence, we conclude that when determining such an important parameter as the
effective depth of heat transfer during calculations of the temperature mode of the friction
node [7], in the case Bi = 1, the entire thickness of the strip should be taken, and in the case
Bi = 100, only that part of it should be taken that is determined by the distance from the
contact surface at which the temperature is 5% of the maximum value.

The reduction in the temperature of the friction system as a result of the use of FGM
is most noticeable near the contact surface during braking with a constant deceleration
(Figure 7c,d). During uniform sliding with constant velocity, the temperature of the strip
and the half-space at a fixed distance from the contact surface increase monotonically over
the heating time (Figure 7a,b). By contrast, in the case of sliding with a linearly decreasing
velocity, the temperature first quickly increases to the maximum value, after which the
stage of slight cooling begins and lasts until the standstill (Figure 7c,d).

6. Conclusions

An analytical model was developed to simulate the processes of frictional heating on
the contact surface and convection cooling on the free surface of the friction pair, in which
one element was made of FGM and the other of a homogeneous material. Ignoring changes
in the temperature gradient in directions parallel to the contact surface, the transient,
one-dimensional temperature field in such a system was found from the exact solution of
the thermal friction problem for the strip/half-space scheme at constant specific friction
power. It was assumed that the two-component FGM strip has a thermal conductivity
coefficient increasing exponentially along the thickness, and the material of the half-space is
homogeneous. The friction thermal contact of the strip and the semi-space is perfect, and on
the free surface of strip, the heat exchange with the surrounding environment takes place
according to Newton’s law. In addition, the exact, asymptotic solutions were also obtained
for small and large values of the Fourier number. Using the Duhamel’s formula and the
solution at a constant specific friction power, appropriate solutions were determined with
a linearly decreasing time profile of the specific friction power. This made it possible to
simulate the frictional heating process during braking with a constant deceleration.

Numerical analysis was performed for a functionally graded strip (ZrO2—Ti-6Al-4V),
sliding against the cast iron half-space (ChNMKh). The following was established:

(1) Applying of FGM for one element of the friction couple (strip) allows for a decrease in
the temperature on the contact surface in comparison to the case of the homogeneous
strip (zirconium dioxide);

(2) A convective heat exchange with the environment on the free surface of the strip causes
a decrease in the temperature on the contact surface at the values of the Biot number
0 ≤ Bi ≤ 10. However, the greatest drop in temperature on the free surface of the strip
occurs in the range of changes 0 ≤ Bi ≤ 60;

(3) Most part of the frictional heat is absorbed by the cast iron semi-space (≈85%) in the
initial stage of the heating process. With the elapse of the slipping time and the increase
in the cooling intensity of the free surface of strip, the amount of heat absorbed by the
half-space decreases to 73% for τ = 1 and Bi = 100. The amount of heat directed to the
FGM strip increases accordingly;

(4) Obtained asymptotic solutions for small and large values of the Fourier number τ
can be used to quickly estimate the temperature of both elements of the system, with
high accuracy. At the same time, the solution for large values of the Fourier number is
useful for determining the temperature at any time during the friction heating process
at τ > 0;

(5) Convective cooling of the FGM strip allows for a reduction in the effective depth of
heating, i.e., the distance from the contact surface at which the temperature of each
element reaches significant values;

(6) The space–time distribution of isotherms in the strip and semi-space depends on the
time profile of the specific friction power. With a constant friction power during sliding,
the temperature monotonically increases with the increasing heating time (Fourier
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number τ). However, in the case of braking with constant deceleration, the temperature
of the friction surface reaches its maximum value around half the stopping time τs.

Summing up, the analysis carried out on the basis of the developed mathematical
model of the frictional heating process showed that both the use of FGM and convection
cooling in the process allow for an effective reduction in the temperature of the friction
pair elements.

We would like to note that analytical solutions of one-dimensional friction thermal
problems allow for estimating with good accuracy the maximum temperature of friction
systems. This has been confirmed in many papers containing relevant experimental mea-
surements [44,45]. These solutions are used to estimate the temperature on the nominal
contact surface of the braking system (an average during one cycle of heating and cooling
during disc rotation). It is one of the components to determine the maximum temperature in
such a system, and the second component is the flash temperature. The maximum temper-
ature is a design parameter for the development of a methodology for the initial selection
of friction materials in various types of brake systems, including disc brake systems.

Such models regarding FGMs, proposed by us so far, assume the perfect thermal
friction contact between the elements. This is fully justified when the friction surfaces
of these elements are sufficiently smooth. However, in reality, these surfaces are rough,
depending on the level of treatment and operating conditions. This causes the thermal
resistance of the contact surface, and as a result, the appearance of a temperature jump
on the friction surfaces. One of the approaches to solve this problem is to introduce into
the formulation of the relevant problems, the conditions of imperfect thermal contact of
friction. We plan to implement it at the next stage of our research, obtaining a solution to
this problem in the case of friction pair elements made of FGM and investigating the effect
of thermal resistance on temperature.
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Nomenclature

Bi Biot number
c Specific heat (J kg−1K−1)
d Thickness of the strip (m)
f Coefficient of friction
h Coefficient of convective heat exchange (W m−2K−1)
In(·) Modified Bessel functions of the nth order of the first kind
Jn(·) Bessel functions of the nth order of the first kind
Kn(·) Modified Bessel functions of the nth order of the second kind
k Thermal diffusivity (m2s−1)
K Thermal conductivity (W m−1K−1)



Materials 2023, 16, 5228 17 of 18

p Parameter of the Laplace integral transform
p0 Nominal pressure on the contact surface (Pa)
q Specific power of friction (W m−2)
q0 Nominal value of the specific friction power (W m−2)
t Time (s)
ts Stop moment of the process (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
V0 Sliding velocity (m s−1)
Yn(·) Bessel functions of the nth order of the second kind
z Spatial coordinate in axial direction (m)
γ∗ Gradient parameter of FGM
Λ Temperature rise scaling factor (◦C)
ε Dimensionless coefficient of thermal activity
Θ Temperature rise (◦C)
Θ∗ Dimensionless temperature rise
ρ Density (kg m−3)
τ Dimensionless time
τs Fourier number
ζ Dimensionless spatial coordinate in axial direction

References
1. Newcomb, T.P. Temperatures reached in disc brakes. J. Mech. Eng. Sci. 1960, 2, 167–177. [CrossRef]
2. Day, A.J. Braking of Road Vehicles; Butterworth-Heinemann/Elsevier: Oxford, UK, 2014.
3. Bauzin, J.G.; Keruzore, N.; Laraqi, N.; Gapin, A.; Diebold, J.F. Identification of the heat flux generated by friction in an aircraft

braking system. Int. J. Therm. Sci. 2018, 130, 449–456. [CrossRef]
4. Nosko, A.L.; Belyakov, N.S.; Nosko, A.P. Application of the generalized boundary condition to solving thermal friction problems.

J. Frict. Wear 2009, 30, 455–462. [CrossRef]
5. Carlslaw, H.C.; Jaeger, J.J. Conduction of Heat in Solids, 2nd ed.; Clarendon Press: Oxford, UK, 1959.
6. Ling, F.F. Surface Mechanics; Wiley: New York, NY, USA, 1973.
7. Chichinadze, A.V. (Ed.) Polymers in Friction Assemblies of Machines and Devices: A Handbook; Allerton Press Inc.: New York, NY,

USA, 1984.
8. Chichinadze, A.V.; Kozhemyakina, V.D.; Suvorov, A.V. Method of temperature-field calculation in model ring specimens during

bilateral friction in multidisk aircraft brakes with the IM-58-T2 new multipurpose friction machine. J. Frict. Wear 2010, 31, 23–32.
[CrossRef]

9. Yevtushenko, A.A.; Kuciej, M. Temperature in a frictionally-heated ceramic-metal patch and cast iron disc during braking. Numer.
Heat Transf. Part A Appl. 2009, 56, 97–108. [CrossRef]

10. Yevtushenko, A.A.; Kuciej, M. Influence of convective cooling on the temperature in a frictionally heated strip and foundation.
Int. Comm. Heat Mass Trans. 2009, 36, 129–136. [CrossRef]
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