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Abstract: Polyethylene (PE), one of the most popular thermoplastic polymers, is widely used in vari-
ous areas, such as materials engineering and biomedical engineering, due to its superior performance,
while 3D printing via fused deposition modeling (FDM) provides a facile method of preparing PE
products. To optimize the performance and assess the degradation of FDM-printed PE materials, we
systematically investigate the influences of printing parameters, such as fiber diameter (stretching)
and printer head temperature, and degradation, such as UV exposure and thermal degradation, on
the mechanical performance of FDM-printed PE fibers. When FDM-printed PE fibers with a smaller
diameter are prepared under a higher collecting speed, they undergo stronger stretching, and thus,
show higher tensile strength and Young’s modulus values. Meanwhile, the tensile strength and
Young’s modulus decrease as the printer head temperature increases, due to the lower viscosity,
and thus, weaker shearing at high temperatures. However, degradation, such as UV exposure and
thermal degradation, cause a decrease in all four mechanical properties, including tensile strength,
Young’s modulus, tensile strain and toughness. These results will guide the optimization of FDM-
printed PE materials and help to assess the durability of PE products against degradation for their
practical application.

Keywords: polyethylene; FDM-printed PE fibers; mechanical properties; degradation

1. Introduction

Polyethylene (PE), including both high-density polyethylene (HDPE) and low-density
polyethylene (LDPE), is an important material polymerized from ethylene and is widely
used in science and engineering [1–3]. PE has a simple basic structure of (CH2)n and is
constructed exclusively from C-C single bonds [4]. PE demonstrates a lot of excellent prop-
erties, including low cost, light weight, good flexibility, long durability, optical transparency,
electrical insulation, corrosion resistance, good processability and high toughness [5,6].
Due to its superior performance, PE is widely used in daily products [7,8], construction
materials [9,10], electronic devices [11], automotive vehicles [12], biomedical devices [13],
etc. For example, PE can be made into artificial implants, such as nasal dorsal enhance-
ments, long-term catheters, endoprostheses and facial prosthetics [14,15]. Investigations of
the mechanical performance of PE products and their durability against degradation are
important, since the product lifetime of PE materials must be taken into account for both
safety and budget concerns [16].

The mechanical performance of PE strongly depends on its molecular structure. For
example, HDPEs are produced via a low-pressure polymerization process and have an
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almost linear structure, with a density of 0.941~0.967 g/cm3, a crystallinity of 65~85% and
a molecular weight of 40,000–300,000 Da, while LDPEs are generally produced via high-
pressure polymerization and have many branches, with a density of 0.920~0.923 g/cm3, a
crystallinity of 45~65% and a molecular weight of 50,000–500,000 Da [17,18]. Compared
with LDPEs, HDPEs have a more linear structure, tighter molecular stacking, a higher
density, higher crystallinity and high tensile strength, but lower tensile strain [19]. The
tensile strength and tensile strain of HDPEs are 28 MPa and 213%, respectively, while those
of LDPEs are 10 MPa and 349%, respectively [20].

In addition to molecular structure, the processing parameters of PE products, which
could affect the orientational ordering, crystallinity and size of the crystallites in PE prod-
ucts, also strongly influence their mechanical performance. Generally, PE products are
processed via injection molding or 3D printing [20,21]. Compared with injection, 3D print-
ing via fused deposition modeling (FDM) provides an opportunity to fabricate customized
products on demand and has become more and more popular [22–27]. In FDM, PE fibers
are extruded out of a tiny nozzle and undergo strong shearing, which is beneficial for
orientational ordering and crystallization, and thus, contributes to the high tensile strength
and Young’s modulus [28]. Therefore, the printing parameters have a strong influence on
the mechanical performance of 3D-printed PE products [29,30].

The excellent mechanical performance of PE could be compromised by degrada-
tion [31]. The degradation of PE generally consists of abiotic and biotic degradation [32].
Abiotic degradation caused by light or heat is typically the initial and rate-determining step,
leading to smaller molecules [33,34]. UV radiation, for example, leads to the formation of
free radicals, which combine with oxygen at the surface and form peroxides and hydroper-
oxides [35]. So far, there are no systematic studies on the dependence of PE’s mechanical
properties on processing parameters and their variations against degradation. Investiga-
tions of the mechanical performance of FDM-printed PE products and their durability
against degradation are thus essential for the widespread applications of PE.

Here, the mechanical performance of FDM-printed PE products and their durability
against degradation are systematically investigated, as they are the fundamental building
block of FDM-printed products and could exclude the influences of many factors, such
as printing path and bulk structure. HDPE and LDPE fibers, whose molecular structures
are shown in Figure 1a, are prepared through 3D printing via fused deposition modeling
(FDM), as presented in Figure 1b, and their mechanical performance is optimized in terms
of the printing parameters and tested against degradation, as presented in Figure 1c.
The influences of molecular structures and printing parameters, such as fiber diameter
(stretching) and printer head temperature, on the mechanical performance of FDM-printed
fibers are investigated in detail. Since UV and heating are the two most common and
important triggering sources for PE degradation, the mechanical performance of HDPE and
LDPE fibers after UV exposure and thermal degradation are also systematically studied.
The results of this study will shine light on the relationship between molecular structure
and mechanical properties, guide the optimization of FDM-printed PE materials and help
to assess the durability of PE products against degradation, which will pave the way for
their practical application.
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Changsha, China. 

2.2. Sample Preparation 
2.2.1. Preparation of FDM-Printed PE Fibers 
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polymer feed was melted in the printer head at 215 °C, 235 °C or 255 °C, and was extruded 
out of the tapered nozzle to form fibers. HDPE and LDPE fibers were collected on a 
winder at 25 °C and 50% relative humidity, as shown in Figure S1. The polymer feeding 
rate was kept constant at 0.3 cm/s. HDPE and LDPE fibers with diameters of 200 µm, 400 
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For thermal degradation, HDPE and LDPE samples were baked in an oven at 100 °C, for 
12 h and 24 h. Unless otherwise specified, five samples were tested for each group. 

Figure 1. Preparation and degradation of PE fibers. (a) Schematics showing the molecular structures
of HDPEs and LDPEs. (b) Preparation of PE fibers through 3D printing via fused deposition modeling
(FDM). (c) Schematics showing the microstructures of FDM-printed PE fibers before and after UV
exposure or thermal degradation.

2. Materials and Methods
2.1. Materials

High-density polyethylene (HDPE, 0.941~0.967 g/cm3, molecular weight of 40,000–
300,000 Da) and low-density polyethylene (LDPE, 0.920~0.923 g/cm3, molecular weight
of 50,000–500,000 Da) filaments were purchased from Yitailong Hi-tech Material Co., Ltd.,
Changsha, China.

2.2. Sample Preparation
2.2.1. Preparation of FDM-Printed PE Fibers

HDPE and LDPE fibers were prepared via fused deposition modeling (FDM). The
polymer feed was melted in the printer head at 215 ◦C, 235 ◦C or 255 ◦C, and was extruded
out of the tapered nozzle to form fibers. HDPE and LDPE fibers were collected on a
winder at 25 ◦C and 50% relative humidity, as shown in Figure S1. The polymer feeding
rate was kept constant at 0.3 cm/s. HDPE and LDPE fibers with diameters of 200 µm,
400 µm and 600 µm were obtained using collecting speeds of 11.6 cm/s, 3.1 cm/s and
1.2 cm/s, respectively.

2.2.2. Polarized Light Microscopy (PLM)

PLM images were taken using a polarized optical microscope equipped with a digital
CCD camera in transmission mode. HDPE and LDPE fibers were placed between a crossed
polarizer and analyzer and they were either parallel to the polarizer or positioned at an
angle of 40◦ with respect to the polarizer.

2.2.3. UV Exposure and Thermal Degradation

HDPE and LDPE fibers were cut into 5 cm samples. For UV exposure, HDPE and
LDPE samples were placed 8 cm under a UV lamp (395 nm, 18 W) for 12 h, 24 h and 48 h.
For thermal degradation, HDPE and LDPE samples were baked in an oven at 100 ◦C, for
12 h and 24 h. Unless otherwise specified, five samples were tested for each group.
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2.2.4. Mechanical Testing

The mechanical performance of HDPE and LDPE fibers was tested using an electronic
single yarn strength tester at a speed of 10 mm/min at room temperature. Stress was
calculated by dividing the force by the cross-sectional area of the cylindrical fibers. Strain
was measured directly from the displacement. Young’s modulus was determined from the
slope of stress–strain curves at 1% strain in the linear elastic deformation region. Toughness
was calculated by integrating the shadow area of the stress–strain curves. Five samples
were tested for each group. Average value and standard deviation were calculated for
each group. Statistical significance was analyzed only between the groups of HDPE fibers
for clarity.

3. Results and Discussion

To prepare the FDM-printed fibers, the HDPE and LDPE fibers were extruded out of a
tiny nozzle in the 3D printer and underwent strong shearing during the printing process,
which is beneficial for the orientation and crystallization of PE molecules. The birefringence
of the HDPE and LDPE fibers was investigated via polarized light microscopy (PLM), as
shown in Figure 2. When HDPE and LDPE fibers are placed along the polarizer, they are
essentially dark. When HDPE and LDPE fibers make an angle of 40◦ with respect to the
polarizer, both of them show clear birefringence, suggesting the orientational ordering of
PE molecules along the fiber direction. Compared with LDPE fibers, HDPE fibers show
a more uniform texture in birefringence. However, LDPE fibers appear slightly brighter
under PLM, which is attributed to their higher transparency.
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HDPE and LDPE fibers decrease, while their tensile strain increases. This is because PE 
fibers with a smaller diameter are prepared at a higher collecting speed and undergo more 
stretching, thus having better molecular ordering and better mechanical performance. 
Since HDPE and LDPE fibers generally show similar dependence on the printing param-
eters, statistical significance was analyzed only between the groups of HDPE fibers for 
clarity. The results demonstrate that 200 µm HDPE fibers show a significant difference 

Figure 2. Photographs and PLM images of HDPE and LDPE fibers. (a) Photograph of an FDM-printed
200 µm HDPE fiber. (b) PLM images of an HDPE fiber parallel to the polarizer or at a 40◦ angle with
respect to the polarizer. (c) Photograph of an FDM-printed 200 µm LDPE fiber. (d) PLM images of an
LDPE fiber parallel to the polarizer or at a 40◦ angle with respect to the polarizer.

3.1. Optimization of FDM-Printed Fibers: Influences of Fiber Diameter (Stretching) and Printer
Head Temperature

The mechanical performance of FDM-printed fibers strongly depends on the printing
parameters, and thus, the influences of fiber diameter (stretching) and printer head temper-
ature were systematically investigated. HDPE and LDPE fibers with different diameters
were prepared using different collecting speeds. Their stress–strain curves are shown in
Figure 3 and their mechanical properties are analyzed in Figure 4 and Table S1. Both HDPE
and LDPE fibers show similar dependence on the fiber diameter. As the fiber diameter
increases from 200 µm to 600 µm, the tensile strength and Young’s modulus of HDPE and
LDPE fibers decrease, while their tensile strain increases. This is because PE fibers with a
smaller diameter are prepared at a higher collecting speed and undergo more stretching,
thus having better molecular ordering and better mechanical performance. Since HDPE
and LDPE fibers generally show similar dependence on the printing parameters, statistical
significance was analyzed only between the groups of HDPE fibers for clarity. The results
demonstrate that 200 µm HDPE fibers show a significant difference between 400 µm and
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600 µm HDPE fibers in tensile strength and tensile strain, suggesting that fiber diameter
(stretching) is an important printing parameter. The fracture surface morphologies of the
3D-printed HDPE and LDPE fibers with a diameter of 200 µm after tensile fracture are
shown in Figure S2. Compared to LDPE fibers, the fracture surface morphology of HDPE
fibers is more flat, which is attributed to their higher crystallinity.
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Figure 3. Mechanical performance of HDPE and LDPE fibers with different diameters. Stress–strain
curves of HDPE fibers with diameters of (a) 200 µm, (b) 400 µm and (c) 600 µm and LDPE fibers
with diameters of (d) 200 µm, (e) 400 µm and (f) 600 µm. The printer head temperature was 215 ◦C.
HDPE and LDPE fibers with a diameter of 200 µm, 400 µm and 600 µm were prepared with collecting
speeds of 11.6 cm/s, 3.1 cm/s and 1.2 cm/s, respectively. Five samples were tested for each system,
corresponding to five stress–strain curves.

The dependence of HDPE and LDPE fibers on their molecular structures could be
investigated by comparing their mechanical performance. Since HDPEs have a more
linear structure, which facilitates the ordering and crystallization of PE molecules, HDPE
fibers overall show higher tensile strength and Young’s modulus values than LDPE fibers.
However, the tensile strain of HDPE fibers is smaller than that of LDPE fibers. The
toughness of HDPE fibers, which was calculated by integrating the shadow area of the
stress–strain curves, is comparable to that of LDPE fibers when the diameters are 200 and
400 µm. This is because HDPE fibers have higher tensile strength but lower tensile strain.
But the toughness of LDPE fibers with a diameter of 600 µm is much lower than that of
HDPE fibers due to its very low tensile strength.

The influences of printer head temperature on mechanical performance were also
investigated by printing 200 µm HDPE and LDPE fibers at 215 ◦C, 235 ◦C and 255 ◦C. Their
stress–strain curves are shown in Figure 5 and their mechanical properties are analyzed
in Figure 6 and Table S2. Both HDPE and LDPE fibers show similar dependence on the
printer head temperature. Interestingly, their tensile strength and Young’s modulus values
decrease as the printer head temperature increases, while their tensile strain increases.
A possible reason for these results is that PE that is melted at a higher temperature has
lower viscosity, and thus, undergoes weaker shearing, resulting in a less ordered molecular
arrangement along the fiber direction.
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Figure 4. Mechanical properties of HDPE and LDPE fibers with different diameters. (a) Tensile
strength, (b) Young’s modulus (1% strain), (c) tensile strain and (d) toughness of HDPE and LDPE
fibers with diameters of 200 µm, 400 µm and 600 µm. The printer head temperature was 215 ◦C. HDPE
and LDPE fibers with diameters of 200 µm, 400 µm and 600 µm were prepared with collecting speeds
of 11.6 cm/s, 3.1 cm/s and 1.2 cm/s, respectively. Unless otherwise specified, Young’s modulus
was determined at 1% strain. Unless otherwise specified, statistical significance was analyzed only
between the groups of HDPE fibers for clarity. Unless otherwise specified, ns denotes not significant;
**** denotes p < 0.0001. p is the probability that the difference between the two sets of data is caused
by experimental error.
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Figure 5. Mechanical performance of HDPE and LDPE fibers printed at different printer head
temperatures. Stress–strain curves of HDPE fibers printed at (a) 215 ◦C, (b) 235 ◦C and (c) 255 ◦C and
LDPE fibers printed at (d) 215 ◦C, (e) 235 ◦C and (f) 255 ◦C. The diameter of HDPE and LDPE fibers
was about 200 µm.
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tures. (a) Tensile strength, (b) Young’s modulus (1% strain), (c) tensile strain and (d) toughness of
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was about 200 µm. ns denotes not significant; * denotes p < 0.05; ** denotes p < 0.01; *** denotes
p < 0.001; **** denotes p < 0.0001. p is the probability that the difference between the two sets of data
is caused by experimental error.

3.2. Degradation of FDM-Printed Fibers: Influences of UV Exposure and Thermal Degradation

In general, degradation will greatly compromise the mechanical performance of
materials, while UV exposure is one of the main sources causing the degradation. The
influences of UV exposure on the mechanical performance of FDM-printed fibers were
systematically investigated by exposing PE fibers to UV for different durations. The
stress–strain curves of the HDPE and LDPE fibers are shown in Figure 7 and their tensile
strength, Young’s modulus, tensile strain and toughness are analyzed in Figure 8 and
Table S3. As expected, UV exposure will break the PE molecular chains. Therefore, all
four mechanical properties of HDPE and LDPE fibers, including tensile strength, Young’s
modulus, tensile strain and toughness, decrease as the UV exposure time increases. In
particular, after 24 h UV exposure, the tensile strength and Young’s modulus show a
significant decrease. Compared to HDPE fibers, LDPE fibers show a larger decrease in their
mechanical performance. This is because the crystallinity of HDPE fibers is higher than
that of LDPE fibers, and thus, HDPE fibers are more resistant to UV degradation.
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Figure 8. Mechanical properties of HDPE and LDPE fibers before and after UV exposure. (a) Tensile
strength, (b) Young’s modulus, (c) tensile strain and (d) toughness of HDPE and LDPE fibers before
UV exposure and after 12 h, 24 h and 48 h UV exposure. The printer head temperature was 215 ◦C.
The diameter of HDPE and LDPE fibers was about 200 µm. The samples were placed 8 cm under a UV
lamp (395 nm, 18 W). ns denotes not significant; * denotes p < 0.05; ** denotes p < 0.01; *** denotes p <
0.001. p is the probability that the difference between the two sets of data is caused by experimental
error.

In addition to UV exposure, the influences of thermal degradation were also inves-
tigated. The stress–strain curves of HDPE and LDPE fibers before and after thermal
degradation are shown in Figure 9 and their mechanical properties are summarized in



Materials 2023, 16, 5182 9 of 11

Figure 10 and Table S4. To avoid the influence of fiber melting and thermal relaxation on
mechanical performance, the HDPE and LDPE fibers were baked at 100 ◦C, which is below
the melting temperature of PE, and no observable changes in suspended fibers after the
thermal degradation tests ensued. Results similar to those caused by UV exposure are
observed for thermal degradation, in that the tensile strength, Young’s modulus, tensile
strain and toughness of HDPE and LDPE fibers all decrease as the baking time increases.
However, compared with UV exposure, statistical significance starts to appear only after
24 h of baking at 100 ◦C, suggesting that PE fibers are more susceptible to UV exposure
than thermal degradation. In addition, the decrease in the mechanical performance could
be attributed to thermal degradation. This is because thermal relaxation generally results
in an increase in tensile strain instead of a decrease.
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head temperature was 215 ◦C. The diameter of HDPE and LDPE fibers was about 200 µm.
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Figure 10. Mechanical properties of HDPE and LDPE fibers before and after thermal degradation.
(a) Tensile strength, (b) Young’s modulus, (c) tensile strain and (d) toughness of HDPE and LDPE
fibers before baking and after 12 h and 24 h baking at 100 ◦C. The printer head temperature was
215 ◦C. The diameter of HDPE and LDPE fibers was about 200 µm. ns denotes not significant;
* denotes p < 0.05; ** denotes p < 0.01. p is the probability that the difference between the two sets of
data is caused by experimental error.



Materials 2023, 16, 5182 10 of 11

4. Conclusions

HDPE fibers overall have higher tensile strength and Young’s modulus values but
lower tensile strain than LDPE fibers. The mechanical performance of FDM-printed fibers
strongly depend on the printing parameters, such as fiber diameter (stretching) and printer
head temperature. Interestingly, the influences of printing parameters are very different
from those of degradation. For example, when a smaller fiber diameter and lower printer
head temperature cause an increase in the tensile strength and Young’s modulus, they will
also cause a decrease in tensile strain, and thus, roughly no change in toughness. However,
degradation, such as UV exposure and thermal degradation, generally causes a decrease in
all four mechanical properties, including tensile strength, Young’s modulus, tensile strain
and toughness. In addition, PE fibers are more susceptible to UV exposure than thermal
degradation. These results will shine light on the relationship between molecular structure
and mechanical properties, guide the optimization of FDM-printed PE materials and help to
assess the durability of PE products against degradation during their practical application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16145182/s1, Figure S1: Preparation of PE fibers; Figure S2:
Fracture surface morphology of 3D-printed PE fibers after tensile fracture; Table S1: Mechanical
properties of HDPE and LDPE fibers with different diameters; Table S2: Mechanical properties
of HDPE and LDPE fibers printed at different printer head temperatures; Table S3: Mechanical
properties of HDPE and LDPE fibers before and after UV exposure; Table S4: Mechanical properties
of HDPE and LDPE fibers before and after thermal degradation.
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