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Abstract: Bi2Sr2Co2Oy thin films were grown on 10◦ vicinal-cut Al2O3 (0001) single crystalline
substrates by pulsed laser-deposition techniques with in situ annealing, post-annealing and non-
annealing process, respectively. The pure phase Bi2Sr2Co2Oy thin film was obtained with a non-
annealing process. The result of X-ray diffraction showed that Bi2Sr2Co2Oy thin film was obviously
c-axis preferred orientation. The laser-induced thermoelectric voltage signals were detected in
Bi2Sr2Co2Oy thin films, which originated from the anisotropy of the Seebeck coefficient. The max-
imum peak value of laser-induced thermoelectric voltage was strong and could reach as large as
0.44 V and the response time was 1.07 µs when the deposition time was 6 min. Furthermore, the peak
voltage enhanced linearly with the single-pulse laser energy. These characteristics demonstrate that
Bi2Sr2Co2Oy thin film is also an excellent choice for laser energy/power detectors.

Keywords: Bi2Sr2Co2Oy thin films; pulsed laser deposition; deposition process; laser-induced
thermoelectric voltage

1. Introduction

In the 21st century, the application of thermoelectric thin films in optical and ther-
mal radiation detectors has become the focus of research. Since the first discovery of
laser-induced thermoelectric voltage (LITV) effect in high-temperature superconductor
YBa2Cu3O7-δ (YBCO) thin films [1–3], it has attracted much attention. The mechanism of
this effect can be explained by the atomic layer thermopile model based on the anisotropic
Seebeck effect [4,5]. In addition to a high-temperature superconductor, most research on
LITV effect has been carried out in colossal magnetoresistance thin films and ferroelec-
tric films, such as La1−xSrxCoO3 (LSCO) [6,7], La1−xSrxMnO3 (LSMO) [8], La1−xSrxNiO3
(LSNO) [9], La1−xCaxMnO3 (LCMO) [10–13], SrTi1−xNbxO3 [14], Pb(Zr0.3Ti0.7)O3 [15],
Pb(Mg1/3Nb2/3)O3-PbTiO3 [16] and so on.

In recent years, cobalt-based oxides such as NaCo2O4 (NCO), Bi2Sr2Co2Oy (BSCO)
and Ca3Co4O9 (CCO) have attracted much attention because of their good thermoelectric
properties [17–23]. It is found that the difference in the Seebeck coefficient in the ab-plane
and along the c-axis is very large through detailed studies on the electrical transport
performance of above cobalt-based oxides [24]. It means that these cobalt-based oxides can
be applied not only in the field of thermoelectric apparatus, but also in photoelectric sensors.
Although research on the LITV effect in NCO and CCO thin films has been reported [25,26],
it is rarely reported in BSCO thin film fabricated by pulsed laser-deposition (PLD) technique.
Therefore, it is significant to study the LITV effect in BSCO thin film. In this paper, we
focus on the LITV effect in BSCO thin films which are deposited on 10◦ titling Al2O3 (0001)
substrate prepared by the PLD technique. As will be shown, the peak voltage value is 0.44 V
and the response time is 1.07 µs, suggesting that this thin film is an important candidate
material for laser energy/power meter.
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2. Experiments

A BSCO polycrystalline ceramic target was prepared through a solid-state-reaction
method using high-purity powder Bi2O3 (99.99 wt.%), SrCO3 (99.99 wt.%) and Co2O3
(99.99 wt.%). The Bi2O3 should be slightly excess in the process of a solid-state reaction
as Bi could be slightly lost. These raw materials were mixed in an agate mortar for 1 h,
then cold-pressed into a disk (the pressure is 20 MPa), sintered at 890 ◦C for 4 h in air
and cooled down to room temperature. BSCO thin films were grown on Al2O3 (0001)
substrates through the PLD technique. In order to find the best preparation process to
obtain pure-phase BSCO thin films, in situ annealing, post-annealing and non-annealing
were adopted, respectively. The ultraviolet (UV) pulsed laser beam from a KrF excimer
laser (Lambda Physik, LPX300, Göttingen, Germany) was used to ablate the target. The
wavelength, laser energy and repetition rate were 248 nm, 300 mJ and 5 Hz, respectively.
The distance between the target and the substrate was 50 mm.

The crystal structure of BSCO thin films was characterized by X-ray diffraction (XRD,
BDX3200, Peking University Instrument Factory, Beijing, China). An oscilloscope (Tektronix
TDS210, Beaverton, OR, USA) was adopted to measure the LITV signals of BSCO thin films.
In order to detect the LITV signals, two in-plane indium electrodes were placed on the thin
film’s surface. The UV-pulsed laser beam with a wavelength of 248 nm was used as the
thermal source to heat the thin film’s surface. The LITV signals were recorded when the
UV laser irradiated the thin film’s surface.

3. Results and Discussion
3.1. In Situ Annealing

Table 1 shows the preparation process of BSCO thin films by in situ annealing.
Figure 1a–c are the XRD patterns of BSCO-1~BSCO-3. From Figure 1a, it can be seen that
there are unknown diffraction peaks, and the intensity of the unknown diffraction peak in
front of (005) is very strong. In order to research the effect of oxygen pressure on the phase
of BSCO thin film, BSCO-2 thin film is prepared by reducing the oxygen pressure from
100 Pa to 60 Pa. As shown in Figure 1b, the phase of BSCO-2 thin film is similar to that
of BSCO-1 thin film, the intensity of the unknown diffraction peak in front of (005) is still
very strong. This shows that the oxygen pressure is not the main factor affecting the phase
of BSCO thin film, and the substrate temperature should be the key factor affecting the
phase of BSCO thin film. In the following experiment, the oxygen pressure is maintained at
60 Pa. When the oxygen pressure is low, the ions or atomic groups evaporated from the
target surface are less likely to collide and have a large surface migration energy when
reaching the substrate surface, which is conducive to the formation of nuclei and grain
growth. Therefore, the oxygen pressure is selected as 60 Pa. The substrate temperature
has a great influence on the phase of the thin films. Appropriate substrate temperature
can make the adsorbed atoms have a certain kinetic energy, the atoms are easy to diffuse
and migrate on the substrate surface, which makes the film easy to crystallize. At the same
time, the internal stress of the film will also be reduced. BSCO-3 thin film is prepared by
increasing the substrate temperature from 820 ◦C to 850 ◦C to find the appropriate substrate
temperature. It can be seen from Figure 1c that, except for the (0006) diffraction peak of
substrate Al2O3, all the diffraction peaks are basically unknown. This is mainly due to the
decomposition of the film at high temperatures.

Table 1. In situ annealing process.

Samples
Substrate

Temperature
(◦C)

Flowing Oxygen
Pressure (Pa)

Deposition
Time (min)

Pulsed Laser
Energy

(mJ/Pulse)

Annealing
Time (min)

BSCO-1 820 100 8 300 30
BSCO-2 820 60 8 300 30
BSCO-3 850 60 8 300 30
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Figure 1. XRD patterns of thin films prepared by in situ annealing: (a) BSCO-1, (b) BSCO-2 and
(c) BSCO-3.

3.2. Post-Annealing

It can be known from the BSCO-1~BSCO-3 thin films that the single-phase BSCO
thin film cannot be prepared by in situ annealing process. In order to prepare the single-
phase BSCO thin film, the deposition process is adjusted, and the post-annealing process
is adopted. Table 2 shows the deposition process of BSCO thin films by post-annealing.
Figure 2a–c are the XRD patterns of BSCO-4~BSCO-6. From Figure 2a, it can be seen that
the substrate temperature of 760 ◦C, annealing temperature of 510 ◦C and annealing time
of 1 h are feasible. All impurity phases have been eliminated, but the intensity of the BSCO
diffraction peak is weak, indicating that the crystallization quality of the thin film needs to
be improved. Meanwhile, the lower limit temperature of a substrate during the deposition
can be determined to be 760 ◦C. BSCO-5 thin film is prepared by increasing the substrate
temperature from 760 ◦C to 800 ◦C. From Figure 2b, it can be seen that when the substrate
temperature increased, the crystallization quality of the thin film is greatly improved, and
the intensity of the unknown diffraction peak in front of (005) is also significantly lower
than that of the BSCO-1~BSCO-3, indicating that the post-annealing process is effective for
eliminating the impurity phase. BSCO-6 thin film is prepared by increasing the substrate
temperature to 805 ◦C. As shown in Figure 2c, the intensity of the unknown diffraction
peak in front of (005) is much stronger than that of the BSCO-5 thin film, indicating that
under the same annealing temperature and annealing time, the substrate temperature of
800 ◦C is more suitable, and the higher substrate temperature cannot be selected to obtain
the pure-phase thin film, that is, the upper limit temperature of the substrate is 800 ◦C.
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Table 2. Post-annealing process.

Samples Substrate
Temperature (◦C)

Flowing Oxygen
Pressure (Pa)

Deposition
Time (min)

Pulsed Laser
Energy (mJ/Pulse)

Annea-Ling
Time
(min)

Annealing
Temperature

(◦C)

BSCO-4 760 60 8 300 60 510
BSCO-5 800 60 8 300 60 510
BSCO-6 805 60 8 300 60 510
BSCO-7 780 60 8 300 120 510
BSCO-8 795 60 8 300 120 510
BSCO-9 800 60 8 300 120 510
BSCO-10 780 60 8 300 180 510
BSCO-11 795 60 8 300 180 510
BSCO-12 800 60 8 300 180 510

Materials 2023, 16, x FOR PEER REVIEW 4 of 13 
 

 

selected to obtain the pure-phase thin film, that is, the upper limit temperature of the sub-

strate is 800 °C.  

Table 2. Post-annealing process. 

Samples 
Substrate Tem-

perature (°C) 

Flowing Ox-

ygen Pres-

sure (Pa) 

Deposition Time 

(min) 

Pulsed Laser En-

ergy (mJ/Pulse) 

Annea-ling 

Time  

(min) 

Annealing Temper-

ature (°C) 

BSCO-4 760 60 8 300 60 510 

BSCO-5 800 60 8 300 60 510 

BSCO-6 805 60 8 300 60 510 

BSCO-7 780 60 8 300 120 510 

BSCO-8 795 60 8 300 120 510 

BSCO-9 800 60 8 300 120 510 

BSCO-10 780 60 8 300 180 510 

BSCO-11 795 60 8 300 180 510 

BSCO-12 800 60 8 300 180 510 

 

Figure 2. XRD patterns of thin films prepared by post-annealing: (a) BSCO-4, (b) BSCO-5 and (c) 

BSCO-6. 

Figure 3a–c are the XRD patterns of BSCO-7~BSCO-9. The BSCO-7~BSCO-9 thin films 

also adopt the post-annealing process, and the annealing temperature is still kept at 510 

°C, but the annealing time is extended to 2 h to research whether the impurity phase can 

be eliminated by extending the annealing time. It can be seen from Figure 3a that when 

the annealing time is extended to 2 h, other unknown diffraction peaks have been elimi-

nated except the unknown diffraction peak in front of (005), and the intensity of the un-

known diffraction peak in front of (005) is further reduced compared with that of BSCO-

5, indicating that extending the annealing time is effective to eliminate the impurity phase. 

The BSCO-8 thin film is prepared by increasing the substrate temperature to 795 °C. From 

Figure 3b, it can be seen that when the substrate temperature rises from 780 to 795 °C, the 

Figure 2. XRD patterns of thin films prepared by post-annealing: (a) BSCO-4, (b) BSCO-5 and
(c) BSCO-6.

Figure 3a–c are the XRD patterns of BSCO-7~BSCO-9. The BSCO-7~BSCO-9 thin
films also adopt the post-annealing process, and the annealing temperature is still kept
at 510 ◦C, but the annealing time is extended to 2 h to research whether the impurity
phase can be eliminated by extending the annealing time. It can be seen from Figure 3a
that when the annealing time is extended to 2 h, other unknown diffraction peaks have
been eliminated except the unknown diffraction peak in front of (005), and the intensity of
the unknown diffraction peak in front of (005) is further reduced compared with that of
BSCO-5, indicating that extending the annealing time is effective to eliminate the impurity
phase. The BSCO-8 thin film is prepared by increasing the substrate temperature to 795 ◦C.
From Figure 3b, it can be seen that when the substrate temperature rises from 780 to 795 ◦C,
the intensity of the unknown diffraction peak in front of (005) enhanced, indicating that
the deposition process of BSCO-7 is a better process under the same annealing condition.
As shown in Figure 3c, when the substrate temperature rises to 800 ◦C, the intensity of
the unknown diffraction peak is stronger than that of BSCO-8, which further shows that
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the deposition process of BSCO-7 is better. At the same time, the substrate temperature
should be controlled between 780 and 790 ◦C when the thin film is prepared by annealing
at 510 ◦C for 2 h.
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Figure 4a–c are the XRD patterns of BSCO-10~BSCO-12. BSCO-10~BSCO-12 thin
films also adopt the post-annealing process. The annealing time is extended to 3 h to
research whether the unknown diffraction peak can be eliminated by further extending the
annealing time. From Figure 4a–c, it can be seen that the unknown diffraction peak still
exists when the annealing time is extended to 3 h, and the intensity of the impurity phase
is equivalent to that of BSCO-7~BSCO-9 thin film, which indicates that the impurity phase
cannot be completely eliminated by extending the annealing time to 3 h.

3.3. Non-Annealing

In order to prepare pure-phase BSCO thin film, considering the above two preparing
processes, the non-annealing process is adopted, namely, the thin film is cooled down to
room temperature immediately after deposition. Table 3 shows the deposition process
of BSCO thin film by non-annealing. Figure 5 is the XRD pattern of BSCO-13. All the
diffraction peaks can be characterized as the diffractions of BSCO except for the substrate
peak, which means that a pure-phase BSCO thin film has been prepared on the Al2O3 (0001)
substrate by the PLD technique. Furthermore, the diffraction peaks are sharp, implying
that the BSCO thin film has good crystallinity. Good crystalline quality is beneficial to
obtain strong peak voltage. It is important to note that all the diffraction peaks of BSCO
thin film are (00l), indicating that thin film is obviously c-axis preferred orientation.
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Table 3. Non-annealing process.

Sample Substrate
Temperature (◦C)

Flowing Oxygen
Pressure (Pa)

Deposition
Time (min)

Pulsed Laser
Energy (mJ/Pulse)

BSCO-13 790 60 8 300

3.4. LITV Effect

Figure 6 illustrates the LITV signal of BSCO thin film on 10◦ tilting the Al2O3 (0001)
substrate with a deposition time of 6 min at room temperature. The single-pulse laser
energy on the thin film is 246 mJ. It can be seen that there is an obvious LITV signal in
BSCO thin film. The crystal structure of Bi2Sr2Co2Oy is composed of a conductive CoO2
layer and an insulating rock-salt-type layer. These two layers possess the same a- and
c-axis lattice parameters and β angles but different b- axis lattice parameters, causing a
misfit along the b direction [27]. This layered crystal structure leads to high anisotropic
electronic properties, such as the ab-plane Seebeck coefficient Sab being much larger than
that of along c-axis Sc. The Sab–Sc is about several tens of µV/K [28,29]. When the BSCO
thin film is irradiated by a pulsed laser beam, the surface of the thin film absorbs the laser
energy, the difference in temperature is come into being between the bottom and the top
of the thin film, resulting in a temperature gradient perpendicular to the thin film surface.
Owing to the highly anisotropic Seebeck coefficients between ab-plane and along c-axis,
the temperature gradient in the ab-plane and along the c-axis is different, resulting in the
difference in electron mobility. Ultimately, the electrons transfer to the indium electrodes,
and the transverse thermoelectric voltage is detected. The peak voltage (Vp) is 0.44 V, which
is much stronger than the Vp achieved in LSCO (Vp is 0.15 V) [7], LCMO (Vp is 0.16 V) [10],
and ZnO (Vp is 0.27 V) [30] thin films. The response time (full width at half maximum) is
1.07 µs. This result indicates that BSCO thin film can be applied to manufacture the probe
of detectors due to large peak voltage and fast response speed.
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Figure 6. The LITV signal of Bi2Sr2Co2Oy thin film on 10◦ tilting Al2O3 (0001) substrate with
deposition time of 6 min.

Figure 7 presents the LITV signals of BSCO thin film with different single-pulse laser
energies. The single-pulse laser energies are 66, 84, 102, 126, 138, 156, 168, 198, 228 and
246 mJ, respectively. It can be seen that the peak voltage increases from 0.14 to 0.44 V when
the single-pulse laser energy is increased from 66 to 246 mJ. In other words, the peak voltage



Materials 2023, 16, 5165 8 of 12

enhances with the increase of the single-pulse laser energies. Furthermore, the response
time slows down from 0.72 to 1.07 µs with an increase of single-pulse laser energies. The
surface temperature of the film increases with the incident laser energy, resulting in the
increase in the temperature gradient between the bottom and the top of the thin film,
which slows down the falling edge of the LITV signal, so the response time increases. The
peak voltage and response time for samples corresponding to different single-pulse laser
energies are summarized in Table 4.
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Table 4. The peak voltage and respond time of different single-pulse laser energy.

Samples Single-Pulse LASER Energy (mJ) Peak Voltage (V) Respond Time (µs)

A 66 0.14 0.72
B 84 0.15 0.75
C 102 0.20 0.80
D 126 0.22 0.87
E 138 0.26 0.89
F 156 0.28 0.92
G 168 0.31 0.93
H 198 0.36 0.98
I 228 0.39 1.04
J 246 0.44 1.07

The relationship between the peak voltage and the single-pulse laser energy is demon-
strated in Figure 8. There is a good linear relationship between peak voltage and single-
pulse laser energy. Based on the atomic layer thermopile model, the time-dependent LITV
effect can be defined as the following equation [31]:

U(t) =
α0Elsin(2α)

4dρc0
√

πDt
(Sab − Sc)

(
e−δ2/4Dt − e−d2/4Dt

)
(1)
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where t is the time, α0 is the absorption coefficient of thin film, E is the single pulse laser
energy, l is the effective length of film irradiated by laser, α is the tilt angle of substrate,
d is thin film thickness, ρ is the density of thin film, c0 is the specific heat capability of
thin film, D is the thermal diffusion coefficient of thin film, Sab is the Seebeck coefficient in
ab-plane, Sc is the Seebeck coefficient along c-axis and δ is the penetration depth of laser. It
is known from Equation (1) that the voltage is proportional to the single-pulse laser energy;
therefore, the Vp enhances linearly with the increase of the single-pulse laser energies. Our
experimental result is consistent with Equation (1), as indicated in Figure 8. It is worth
noting that appropriate single-pulse laser energy is not the higher the better, as there exists
an upper limit value. This is because too-high single-pulse laser energy will result in the
presence of conditions with temperatures too high on the surface of thin film and thus
lead to its irreversible damage. Hence, the upper limit value of single-pulse laser energy
should be controlled at a value that avoids the damage of thin film during the experiment
of testing the LITV signal. In our experiment of testing the LITV signal, the upper limit
value of single-pulse laser energy is 246 mJ. When the incident single-pulse laser energy
exceeds 246 mJ, the film is damaged and the LITV signal cannot be detected.
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Figure 8. The linear relationship between the peak voltages and the single-pulse laser energy.

In order to comprehend the mechanism of the LITV effect better, the LITV signals of
the BSCO thin films prepared at different deposition times are measured. The experimental
conditions are the same as those deposited for 6 min. Figure 9 displays the LITV signals
of BSCO thin films when deposition time is 4, 6 and 8 min, respectively. It is estimated
that the thickness of these three films is about 240, 360 and 480 nm, respectively, on
the basis of film growth rate (10 Å/S). It is clear that the peak voltage enhances with
increasing deposition time from 4 min to 6 min, reaches the maximum value, 0.44 V and then
decreases with deposition time. That is to say, an optimal deposition time corresponding to a
maximum peak voltage value, does exist. This tendency of the deposition time dependence
of peak voltage in BSCO thin film is consistent with that in La0.5Sr0.5CoO3 thin film [7]
and SrTi1−xNbxO3 thin film [14], when these films are irradiated by single-pulse laser.
In addition, the response time slows down from 0.57 µs to 1.72 µs with increasement of
deposition time, which is in agreement with Equation (1). The results of peak voltage and
response time for samples grown at different times are listed in Table 5.
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Table 5. Peak voltage and response time of thin films at different deposition times.

Samples Deposition Time (min) Peak Voltage (V) Respond Time (µs)

A 4 0.26 0.57
B 6 0.44 1.07
C 8 0.17 1.72

4. Conclusions

In summary, a high-quality Bi2Sr2Co2Oy thin film was grown on an Al2O3 single
crystal substrate which is cut with a 10◦ tilting angle along the (0001) direction through the
pulsed laser deposition technique with a non-annealing process. The LITV signals were
detected in Bi2Sr2Co2Oy thin films. It was found that the peak voltage signal was strong,
reaching 0.44 V and the response time was 1.07 µs. There was a good linear relationship
between peak voltage and the single-pulse laser energy. All the above results suggest
that Bi2Sr2Co2Oy thin films used as laser energy/power detectors will be more and more
competitive due to high peak voltage and fast response speed. In addition, since the
laser-induced thermoelectric voltage effect originates from the anisotropy of the Seebeck
coefficient, it can be extended to other types of materials as long as the materials have an
anisotropic Seebeck coefficient.
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